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Flat building blocks for flat silicene
Masae Takahashi

Silicene is the silicon equivalent of graphene, which is composed of a honeycomb carbon structure 
with one atom thickness and has attractive characteristics of a perfect two-dimensional π-conjugated 
sheet. However, unlike flat and highly stable graphene, silicene is relatively sticky and thus unstable 
due to its puckered or crinkled structure. Flatness is important for stability, and to obtain perfect 
π-conjugation, electron-donating atoms and molecules should not interact with the π electrons. The 
structural differences between silicene and graphene result from the differences in their building blocks, 
flat benzene and chair-form hexasilabenzene. It is crucial to design flat building blocks for silicene with 
no interactions between the electron donor and π-orbitals. Here, we report the successful design of 
such building blocks with the aid of density functional theory calculations. Our fundamental concept 
is to attach substituents that have sp-hybrid orbitals and act as electron donors in a manner that it 
does not interact with the π orbitals. The honeycomb silicon molecule with BeH at the edge designed 
according to our concept, clearly shows the same structural, charge distribution and molecular orbital 
characteristics as the corresponding carbon-based molecule.

Silicene is the silicon equivalent of graphene, which is a famous material composed of a honeycomb layer of car-
bon just one atom thick1–3. If applied to electronic devices, these silicene layers would enable the semiconductor 
industry to achieve ultimate miniaturization4, 5. However, unlike flat and highly stable graphene (Fig. 1a), silicene 
is relatively sticky and unstable due to its puckered or crinkled structure (Fig. 1b)6. To produce silicene, the hot 
vapor of silicon atoms is condensed onto crystalline blocks of silver7–16 or other materials17–19. However, the sub-
strate can affect the π conjugated system. Recent twisted silicene multilayers have proved the two-dimensional 
(2D) nature of silicene and was a major progress toward flat silicene20, but interlayer interactions still perturb the 
electronic structure of 2D materials.

The building blocks of graphene are benzene and/or C6 clusters (Fig. 1c), both of which are flat21, 22. In contrast, 
hexasilabenzene, which is a building block of silicene, is not flat but instead has a chair form (Fig. 1d)23. Benzene 
is an archetypical aromatic hexagon composed of carbon with delocalized π electrons. The 2D aromaticity of flat 
monocyclic systems is governed by the Hückel 4 N + 2 rule, where N is the number of π electrons. The outstand-
ing properties of C6 clusters include double aromaticity24 with an orthogonal Hückel framework (an out-of-plane 
pπ orbital and an in-plane radial-type orbital contributing to σ-aromaticity in a single molecule). We previously 
discovered a similar flat silicon hexagon with double aromaticity, i.e., the dianion of the Si6 cluster (Fig. 1d)25, 26. 
This finding encouraged us to design the present flat silicene building blocks using electron-donating substitu-
ents. A pioneering work recently reported the formation of flat silicene via doping with calcium as an electron 
donor27, and attempts to make flat hexasilabenzene and Si6 clusters were carried out earlier with Zintl anions28, 29. 
In either case, the Si6 hexagon is surrounded by an electron donor, creating a three-dimensional crystal but not a 
pure 2D crystal.

To realize a perfect and stable π-conjugated 2D sheet of silicene, the sheet must be flat and have no 
electron-donating atoms or molecules interacting with the π electrons. The only way to donate electrons without 
disturbing the out-of-plane π orbital is to modify the in-plane edges. A theoretical study of silicene molecules 
(large polycyclic molecules consisting of six-membered silicon rings) from Si13H9 to Si60H24 showed that silicene 
molecules with hydrogen atoms at the edge are not flat but have a low-buckled structure30. This indicates that, as 
described above, electron-donating substituents are good candidates for the formation of flat silicene molecules 
and hydrogen atoms are not suitable. Although a theoretical attempt to use an electron-donating metal, such as 
lithium, at the in-plane edge gave the D6h planar structure of hexasilabenzene31–33, the lithium atoms were not 
attached to one silicon atom but instead attached between two adjacent silicon atoms due to the ability of silicon 
to form three-center bonds with lithium. Furthermore, the bicyclic chain is no longer flat when lithium is used as 
the electron donor but is puckered with a zigzag chain. A completely different concept is necessary for the design 
of a flat polycyclic molecule consisting of silicon hexagons as flat silicene building blocks. Here, we report the 
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successful design of flat 2D molecules composed of six-membered silicon rings with modifications at the in-plane 
edges using density functional theory (DFT) calculations.

Results
Basic concept.  Our basic concept for the design of flat polycyclic molecules consisting of silicon hexagons is 
to use sp-hybrid orbitals (Fig. 2b) with electron-donating ability. We first considered the differences between C-H 
and Si-H interactions. Notably, the energies of the interacting orbitals are different. That is, the energy difference 
between the H 1s and Si 3p orbital is larger than that between the H 1s and C 2p orbital. The use of a lithium 2s 
orbital instead of a hydrogen 1s orbital is a straightforward way to compensate for the energy difference (Fig. 2a). 
However, unlike hydrogen, the empty 2p orbital (Fig. 2b) of lithium interacts with the silicon 3p orbital and forms 
a three-center bond with two adjacent silicon atoms of the silicon ring. Eventually, we decided to use linear sp-hy-
brid orbitals and selected BeH as the substituent. First-year chemistry textbooks state that BeH2 has a linear shape 
due to its sp-hybrid orbital. Figure 2b shows the molecular orbital of an Li atom and BeH radical for comparison. 
The difference between the two singly occupied molecular orbitals (SOMOs) is that the SOMO of the BeH radical 
points to the Si6 ring (Fig. 2b). Silicon equivalents 1, 2, 3, 4 and 5 of benzene (6), naphthalene (7), anthracene (8), 
pyrene (9) and coronene (10), respectively, were selected as building blocks and substituted with BeH at the ring 
edge (Fig. 3).

Optimized structure.  The five silicon-based molecules 1–5 with BeH at the ring edge show the same 
structural, charge distribution and molecular orbital features as the corresponding carbon-based molecules 
6–10, where BeH is used according to the above concept. All of the calculated molecules 1–10 have a flat struc-
ture as their minimum with no imaginary frequencies. Electron donation stabilizes the flat structure of the 
six-membered silicon ring and further provides the stable flat structure of polycyclic silicon molecules. The lowest 

Figure 1.  2D sheets of carbon and silicon and their building blocks. Graphene (a), silicene (b), benzene and a 
C6 cluster (c), and hexasilabenzene and a Si6 dianion cluster (d).

Figure 2.  (a) The periodic table of elements H–Ar. (b) The molecular orbitals of an Li atom and BeH radical. 
The orbitals were calculated at the B3LYP/cc-pVTZ level and are depicted at the 0.02 isovalue.
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vibrational frequency modes (ν1), given in Table 1, are the out-of-plane motion of the terminal BeH moiety 
(3) and the out-of-plane ring deformation (1, 2, 4–10), respectively. The calculated silicon-silicon bond length 
(2.22 to 2.28 Å) is between the silicon-silicon single and double bond length (the bond lengths of H3Si–SiH3 and 
H2Si = SiH2 at the B3LYP/cc-pVTZ level are 2.355 Å and 2.166 Å, respectively), which is similar to the structure 
of aromatic benzene having a bond length between the carbon-carbon single and double bond. The silicon-silicon 
bond lengths are equal in hexasilabenzene 1 due to its D6h symmetry but differ at most by 0.06 Å in the other mol-
ecules 2–5. The carbon-based structures 6–10 show the same behavior. Benzene 6 has the same carbon-carbon 
bond lengths throughout the ring, while the others 7–10 have slightly different bond lengths, with the difference 
being at most 0.08 Å. Notably, the terminal BeH is not located between the two silicon atoms in the minimized 
structures of 1–5, which is markedly different from the lithium-terminated six-membered ring Si6Li6

31.

Charge distribution.  As shown in Table 1, the total NPA charges on the silicon rings (Qring) of 1–5 are all 
negative, indicating electron donation from the terminal BeH to the ring moiety. Figure 4 compares the charge 
distribution in molecules 1–5 to that of 6–10. The charge of the ring-edge silicon, at which BeH is directly bound, 
is strongly negative (red), while that of the silicon inside the ring is nearly neutral (black). The charge of the Be 
atom is strongly positive (green), while that of the hydrogen in BeH is strongly negative (red). These trends are 
the same as those in 6–10, but the contrast between the negative and positive charges is slightly enhanced in the 
silicon-based molecules 1–5. The total NPA charge on the carbon ring (Qring) of 6–10 is negative, and the ring is 
surrounded by positively charged hydrogen atoms. The edge carbon is negatively charged, and the inside of the 
ring is nearly neutral. The neutrality of the charge inside the ring is more evident in larger molecules. The charge 
distribution indicates that BeH terminates the silicon equivalents 1–5 as well as the hydrogen atoms of 6–10.

Molecular orbitals.  Pure π-conjugation is a key property of flat silicene as well as flat graphene. The highest 
occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) are shown in 
Fig. 5. The HOMO and LUMO of 1–5 are all confirmed to be π orbitals. Their shapes are similar to the HOMO 
and LUMO of 6–10, but slightly delocalized on the Be atoms. Thus our design using a linear sp-hybrid orbital at 
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Figure 3.  Calculated molecules. 1–5: X = Si, R = BeH; 6–10: X = C, R = H. The notation r1–r5 represents the 
bond length between the adjacent X atoms.

Molecule Bond lengtha/Å Qring
b ν1

c/cm−1 H-L gapd/eV

1 2.252/r1 −2.2 47.57 1.90 (2.60)

2 2.267/r1, 2.234/r2, 2.267/r3, 2.266/r4 −3.0 22.22 1.61 (1.94)

3 2.274/r1, 2.229/r2, 2.274/r3, 2.250/r4, 2.274/r5 −3.8 13.41 1.21 (1.51)

4 2.248/r1, 2.252/r2, 2.280/r3, 2.222/r4, 2.263/r5 −3.8 15.26 1.39 (1.58)

5 2.231/r1, 2.268/r2, 2.255/r3, 2.263/r4 −4.6 14.80 1.24(1.71)

6 1.391/r1 −1.2 413.94 5.47 (6.70)

7 1.412/r1, 1.370/r2, 1.416/r3, 1.428/r4 −1.6 173.54 4.39 (4.79)

8 1.421/r1, 1.363/r2, 1.425/r3, 1.395/r4, 1.440/r5 −2.0 91.43 3.22 (3.57)

9 1.388/r1, 1.399/r2, 1.433/r3, 1.355/r4, 1.423/r5 −2.0 99.20 3.68 (3.84)

10 1.366/r1, 1.419/r2, 1.416/r3, 1.423/r4 −2.4 88.27 3.22 (4.03)

Table 1.  Optimized geometry, charge (Qring), frequency (ν1) and HOMO-LUMO gap of molecules 1–10 at the 
B3LYP/cc-pVTZ level. aThe notation r1−r5 represents the bond length between the X atoms (X = Si, C) shown 
in Fig. 3. bQring: Summation of the NPA charges on the ring. cν1: The lowest vibrational frequency. dHOMO-
LUMO gap from the first excitation energies obtained by TDDFT/B3LYP. HOMO-LUMO gap from the Kohn-
Sham eigenvalues of the ground state DFT/B3LYP calculation is given in parentheses.
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the terminus is expected to successfully provide the building blocks for flat and stable π-conjugated silicene. The 
HOMO-LUMO gap of all the proposed precursor molecules are listed in Table 1.

Other hexagons and isomers.  Several other hexagons X6R6 (X = Si, Ge) were calculated to investigate 
which R substituents, other than Si6(BeH)6, can be used for the design of flat hexagons (Table 2). Since our aim 
is to obtain a six-membered ring with D6h symmetry, we optimized the structure under the constraint of D6h 
symmetry. In case of metal substitution at ring edge, two types of structures have the symmetry of D6h (Fig. 6): 
benzene-like (A) and Si6Li6-like where metal moves between two silicon atoms (B). For comparison, the results of 
Si6H6 and Si6Li6 of structure A at the same level of calculations as our present work are also listed in Table 2. As is 
well known, our results also showed benzene-like structure of Si6H6 and Si6Li6 did not give a minimum.

Among the optimized hexagons in Table 2, a flat D6h ring was obtained as the minimum for only the 
MgH-terminated six-membered silicon ring and the BeH-terminated six-membered germanium ring. In both 
hexagons, MgH and BeH have an sp-hybrid orbital and acts as an electron donor. In the optimized structure, 
BeH and MgH do not migrate to between the silicon atoms or germanium atoms. The optimized silicon-silicon 
and germanium-germanium bond lengths are 2.264 Å and 2.350 Å, respectively. Although the minimized geom-
etry of the MgH-terminated six-membered silicon ring has a flat structure, the planar hexagon is not the min-
imum of the MgH-terminated six-membered germanium ring but is instead its 1st order transition state (TS). 
Furthermore, with CaH substitution, both the six-membered silicon and germanium rings become consider-
ably higher order TS. Therefore, light metals are better for the design of flat hexagons. The imaginary mode of 
MgH-terminated six-membered germanium ring is the out-of-plane motion of MgH, which leads to a nonplanar 
structure. This motion does not cause MgH to migrate between two germanium atoms. The lowest vibrational 
frequency of BeH-terminated six-membered germanium ring is 22.24 cm−1, which is much smaller than that of 
BeH-terminated six-membered silicon ring (47.57 cm−1). This makes it difficult to design flat building blocks 
for flat germanene. A proper substituent at the ring edge is required to tune the charge on the ring and the bond 
strength between Ge and the substituent.

Several monovalent and divalent metals with electron-donating ability were examined as substituents (R = Na, 
K, Mg, Ca, Cu, Zn), but these did not produce flat D6h hexagons as the minimum. Table 2 lists more stable struc-
ture between the two D6h structures, benzene-like (A) and Si6Li6-like (B). Three are 1st order TSs, and the others 
are higher order TSs. The imaginary modes of the 1st order TSs are the out-of-plane motion of the metal (R = K 
and Zn) and out-of-plane ring deformation (R = Cu), leading to a nonplanar minimum. As mentioned before, the 
lithium-terminated six-membered silicon ring has a D6h planar structure31–33, and the lithium atom is not attached to 
one silicon but between two adjacent silicon atoms. Cu showed a benzene-like structure (A), while the other metals 
migrated between two silicon atoms (B) similar to lithium. Thus, simple electron donation is insufficient for the design 
of flat hexagons. Next, for the substituent with an sp-hybrid orbital (R = (C≡N)), the D6h structure was obtained as the 
1st order TS. The imaginary mode is out-of-plane ring deformation, leading to a nonplanar minimum. Therefore, a 
simple sp-hybrid orbital without electron donation is also insufficient for the design of flat hexagons.

Figure 4.  Charge distribution of molecules 1–10. Each atom is colored according to the charge, and the number 
indicates the charge.
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Hexasilabenzene is known to be less stable than many of its isomers. For example, synthetically accessible 
hexasilaprismane34–36 is more energetically stable. To examine the relative stability between the isomers of our 
system, we calculated the six valence isomers37, 38 of Si6(BeH)6 and obtained the silicon equivalent of benzvalene39, 
prizmane40 and bicyclopropenyl41 in addition to benzene (1) as a minimum. Among the four, BeH-terminated 
hexasilabenzvalene is the most stable at the B3LYP/cc-pVTZ level of calculation. Since BeH-terminated hexasi-
labenzene is not the most stable isomer, the step-by-step manufacture of flat silicene from BeH-terminated hex-
asilabenzene is not recommended. It would be better to prepare zigzag silicene and then terminate it with BeH.

Figure 5.  HOMO and LUMO of molecules 1–10. The molecular orbitals were calculated at the B3LYP/cc-
pVTZ level and are depicted at the 0.01 and 002 isovalues for 1–5 and 6–10, respectively.

X R Stationary pointa Imaginary Mode of 1st TS Structureb

Si Na 3rd TS B

Si K 1st TS Our-of-plane motion of K B

Si Mg 2nd TS B

Si Ca 6th TS B

Si Cu 1st TS Out-of-plane ring deformation A

Si Zn 1st TS Our-of-plane motion of Zn B

Si C≡N 1st TS Out-of-plane ring deformation A

Si MgH MIN A

Si CaH 6th TS A

Ge BeH MIN A

Ge MgH 1st TS Our-of-plane motion of MgH A

Ge CaH 17th TS A

Si H 1st TS Out-of-plane ring deformation A

Si Li 6th TS A

Table 2.  Optimized hexagonsX 6R6 with D6h symmetry. Full geometry optimizations were performed at the 
B3LYP/6-311++ G(3df,3pd) level for K, Ca, Cu, Zn and CaH substitution, and at the B3LYP/cc-pVTZ level 
for H, Li, Na, Mg, C≡N, BeH and MgH substitution. aMIN: minimum, TS: transition state. bTwo D6h structures 
A and B are shown in Fig. 6. More stable structure between the two D6h structures is listed for the terminal 
substituent of metals (R = Na, K, Mg, Ca, Cu, Zn). For comparison, the results of Si6H6 and Si6Li6 of structure A 
are listed.



www.nature.com/scientificreports/

6Scientific ReporTs | 7: 10855  | DOI:10.1038/s41598-017-11360-4

Discussion
Here, we designed flat building blocks 1–5 to construct flat silicene using DFT calculations. We used substituents 
with sp-hybrid orbitals that act as electron donors. The minimum structure of all the obtained silicon polycyclic 
molecules 1–5 is flat. The charge is nearly neutral inside the ring and strongly negative at the ring edge due to the 
terminal BeH substituent. The HOMO and LUMO of 1–5 are π-orbitals. The designed molecules 1–5 could act 
as building blocks for flat silicene, which is a π-conjugated 2D sheet composed of six-membered silicon rings. 
The difference between the silicene constructed here and graphene is that BeH must be present at the terminal 
to stabilize the flat structure. In this sense, the molecules presented here are building blocks of silicene ribbons 
due to the existence of a terminal substituent. Flat six-membered silicon rings have long been desired in silicon 
chemistry and 2D silicon materials. In this study, flat hexasilabenzene was realized, and it was confirmed that the 
extended ring molecules are also flat. The flatness of these building blocks opens the way to flat silicene ribbons 
or films constructed by them, but at present it does not guarantee the flatness of silicene ribbons or films. Further 
theoretical and experimental studies with careful design of the edge structure are required to realize flat silicene.

Methods
DFT calculations.  DFT calculations were performed with the Gaussian 09 software package42. We utilized a 
hybrid Becke-type three-parameter exchange functional43 paired with the gradient-corrected Lee, Yang, and Parr 
correlation functional (B3LYP)44, 45 and the cc-pVTZ basis set46–50 unless otherwise noted. The geometric param-
eters were fully optimized, and the minimized structures were confirmed to have no imaginary frequencies. 
To investigate the charge at each atom, natural population analysis (NPA)51–56 charges were calculated, as NPA 
charges are less basis-set dependent. Time-dependent density functional theory (TDDFT) calculations were car-
ried out to obtain the HOMO-LUMO gap using the optimized ground state geometries57. In all molecules stud-
ied here, the first excitation is mainly contributed by the HOMO-LUMO transition, although some of them are 
forbidden with zero oscillator strength. In Table 1, we list the first excitation energies as the HOMO-LUMO gap.
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