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Abstract: The maximum aerobic metabolic rate can be expressed in multiple metabolically equivalent
tasks (MET), i.e, METmax. The purpose was to quantify the error when the conventional
(3.5 mL-kg~!-min~!) compared to an individualized 1-MET-value is used for calculating METmax
and estimating activity energy expenditure (AEE) in endurance-trained athletes (END) and active
healthy controls (CON). The resting metabolic rate (RMR, indirect calorimetry) and aerobic metabolic
capacity (spiroergometry) were assessed in 52 END (46% male, 27.9 + 5.7 years) and 53 CON
(45% male, 27.3 & 4.6 years). METmax was calculated as the ratio of VO,max over VO, during RMR
(METmax_ind), and VO,max over the conventional 1-MET-value (METmax_fix). AEE was estimated
by multiplying published MET values with the individual and conventional 1-MET-values. Dependent
t-tests were used to compare the different modes for calculating METmax and AEE (x = 0.05). In women
and men CON, men END METmax_fix was significantly higher than METmax_ind (p < 0.01), whereas,
in women END, no difference was found (p > 0.05). The conventional 1-MET-value significantly
underestimated AEE in men and women CON, and men END (p < 0.05), but not in women END
(p > 0.05). The conventional 1-MET-value appears inappropriate for determining the aerobic metabolic
capacity and AEE in active and endurance-trained persons.

Keywords: resting metabolic rate; maximum oxygen consumption; energy expenditure; endurance
athletes

1. Introduction

The aerobic capacity (maximum oxygen consumption, VO,max) is defined as the highest rate
at which oxygen can be taken up and utilized by the body during an intense large muscle group
exercise [1]. It is used in both athletic and health settings, as a determinant of physical performance [1]
or as a predictor of health risk and longevity [2]. Traditionally, VO,max is expressed as the ratio of
maximum rate of oxygen consumption and body mass (mL-kg~!-min~!). However, expressing VO,max
by normalizing for body mass (1) can be problematic since an m-based ratio is negatively correlated
with m [3] and, therefore, imposes a penalty in heavier subjects, especially since the actual scaling with
m is not linear [4]. This ratio is, thus, inappropriate for studies where VO,max is compared between
groups that are not matched for body size and mass, or when body mass changes over time [5,6]. One
way to remove the effects of m is to adjust VO,max by using the power function relationship VO,max =
am* where a is the scaling constant and k is the scaling exponent [5]. However, there is considerable
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controversy regarding the theoretical value this exponent should take (e.g., k=2/3,3/4 or >3/4) [7,8].
In addition, the effect of m is also a function of body composition since muscle volume is an important
determinant of metabolic capacity while fat tissue is comparatively metabolically inert. This would
imply that fat mass changes would introduce a greater bias as compared to lean mass changes.

Alternatively, the aerobic capacity can be expressed as the maximum aerobic metabolic rate in
a multiple of metabolic equivalent of tasks (MET), i.e., METmax. One MET is defined as the energy
expended by a subject at rest (resting metabolic rate, RMR) of ~1 kcal-kg~1-h~! [9], and is equivalent
to a volume of oxygen consumed of 3.5 mL O, kg’1 -min~! [10]. The MET provides a useful way to
describe and classify physical activities by expressing the specific level of activity energy expenditure
(AEE) (under steady state conditions) in relative value, i.e., as a multiple of RMR. Theoretically, 10 METs
would then correspond to 35 mL O, kg~! -min~!, which is equivalent to ~10 kcal-kg~!-h 1.

The Compendium of Physical Activities provides a five-digit coding scheme linking categories
and types of physical activity with their respective intensity values in METs [9]. It was originally
developed for use in epidemiologic and surveillance studies to standardize the MET intensities for
various types of physical activity used in questionnaires. However, the Compendium is also frequently
applied for determining precise energy costs of activities outside of its original scope. In several
studies, where physical activity questionnaires were applied, the energy expenditure was estimated by
using established MET codes from the Compendium of Physical Activity [11-16].

Several authors have questioned the widespread application of the conventional 1-MET
value [17-20]. The value was derived from measurements of resting oxygen consumption (resting
metabolic rate, RMR) of just one person, who is a 70-kg, 40-year old male, and it was shown that
this value over-estimates [19-26] or underestimates [19] RMR for many types of individuals. RMR
is lower in overweight subjects, declines with age, and is lower in females compared to males [20].
Therefore, estimation of AEE using the conventional 1-MET value might misrepresent actual energy
expenditure. This might lead to inaccurately estimating energy requirements resulting in a positive
or negative energy balance and undesirable and unexpected weight fluctuations. In addition, the
maximum aerobic metabolic rate expressed as METmax might be erroneous when the conventional
1-MET value is used instead of the actual metabolic rate at rest. However, the correct assessment
of oxygen consumption at rest (resting metabolic rate; RMR) requires considerable expense for both
participants and researchers. Therefore, several prediction equations were developed to estimate RMR
(e.g., Harris-Benedict [27], Cunningham [28]), but these also have their limitations [29,30].

Purpose of the study was to quantify the error when the conventional compared to an
individualized 1-MET value is used for (1) calculating METmax, and (2) estimating energy expenditure
for various daily physical activities, in endurance trained women and men, and active healthy controls.
It was further investigated whether the use of a predicted RMR by the Harris-Benedict equation would
reduce such an error. It was hypothesized that the use of the conventional 1-MET value would lead to
relevant errors in both calculating METmax and estimating energy expenditure in comparison with an
individualized approach.

2. Materials and Methods
2.1. Participants

After a public announcement, 68 competitive endurance athletes (31 women, 37 men; regular
endurance training volume >300 min-wk~! and participation in competitions) and 63 healthy,
non-endurance-trained active controls (34 women, 29 men; max. 150 min-wk~! moderate endurance
training) were recruited for this study. Inclusion criteria for all participants were weight stability (<2 kg
of weight difference in the last 3 months), a Body Mass Index (BMI) between 18.5 and 25 kg-m’z,
and an age between 18 and 40 years. All participants were non-smokers, not pregnant or lactating,
not dieting, not suffering from metabolic disease and/or eating disorders, and not taking medication
(apart from contraceptives). Athletes did not change their training habits within the last four weeks
before the experiments (e.g., due to injury or disease).
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The Regional Ethics Committee of the Canton Berne, Switzerland (KEK-number 090/15) approved
all experimental procedures, and the study was carried out according to the recommendations of the
latest Helsinki Declaration. Written informed consent of the participants was obtained before any testing.

2.2. Study Design

The participants arrived to the testing center on two separate testing days and had refrained
from strenuous physical activity for at least 24 h. On the first testing day, the participants completed,
in a fasting state (>12 h absence of any food or fluid intake, >36 h absence of alcohol or caffeine
intake) measurements in the following order: (1) anthropometry and body composition, (2) RMR,
and (3) individual calibration of a combined heart rate (HR) and movement sensor (see below). One
week after the first testing day, the participants performed an incremental exercise test (VOpmax) in a
non-fasted state. On the days between the two testing days, the participants wore the HR and movement
sensor for at least 7 days. All tests were carried out in Magglingen (Switzerland) at an altitude of 950 m.

2.3. Anthropometric Data and Body Composition

Height and body mass were measured to the nearest 0.5 cm and 0.1 kg using a height rod (Seca
213, Seca, Hamburg, Germany) and a calibrated beam scale (Seca 877, Seca, Hamburg, Germany),
respectively, with the participants in light clothing and without shoes.

Body composition was assessed using Lunar iDXA (GE Healthcare, Madison, WI, USA). The iDXA
was calibrated on a daily basis using a calibration phantom before any testing. The participants were in
underwear, bladder-voided, and all metal artefacts were removed. During the measurement, participants
were in a supine position on the scanning table with their ankles and legs fixed using supports. Arms were
positioned to the side with the palms flat on the table. Participants were requested not to move during the
measurement. Whole body scans were performed, according to the manufacturer’s instructions. Adipose
tissue mass, lean tissue mass, and bone mineral content were derived with the accompanying software
(enCore software v. 11.10, GE Healthcare, Madison, WI, USA). Estimation of total body composition with
the Lunar iDXA has been reported to be excellent in other studies [31,32].

2.4. Resting Metabolic Rate

Following the body composition assessment, RMR was measured by indirect calorimetry using
a ventilated hood system (Quark CPET, COSMED Srl, Rome, Italy). Calibrations of the flowmeter
and gas analyzer were carried out before each test, according to the manufacturer’s instructions.
Participants were acclimatizing and relaxing for 30 min on a bed before the hood was placed over the
participant’s head and measurements were started. VO, and carbon dioxide production (VCO,) were
measured for 30 min at 10-s intervals with participants remaining motionless in a supine position in a
thermo-neutral environment (20-25 °C [33]). The first 5 min were eliminated as the acclimatization
artifact. From the remaining 25 min, the interval of 5 consecutive minutes with the lowest means of the
coefficients of variation (CV) for VO, and VCO; was chosen. By use of the abbreviated Weir equation,
RMR was calculated [34]. Pre-hoc exclusion criteria were values of CV of VO, and VCO, >10% and
respiratory quotient (RQ, defined as the ratio of VCO, and VO,) <0.70 and >1.00, since values outside
the plausible range for RQ suggest protocol violations or inaccurate gas measurements [33]. Average
RQ during RMR measurement was 0.76 £ 0.04 and the CV of VO, and VCO; were 3.6 £ 1.5% and
4.5 + 1.9%, respectively. RMR measurements took place at a mean temperature of 21.9 £ 1.1 °C,
39.1 £ 10.3% humidity, and an air pressure of 914 & 8 hpa.

2.5. Measurement of VO,max

Before the test, each participant filled out the German [35] or French [36] version of the Physical
Activity Readiness Questionnaire (PAR-Q). Only if participants answered all items with “no,” the exercise
testing was started. The test was performed on a treadmill (women: model Mercury, men: model Venus,
h/p/Cosmos Sports & Medical GmbH, Traunstein, Germany). After a 5-min warm-up jog, non-athletic
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participants began running at 7 km-h~!, whereas participants from the athletic group started at 9 km-h~!.
The speed was increased by 1 km-h1 every minute for the first 3 min of the test, and, thereafter, by 0.5
km-h~! every 30 s until exhaustion. Treadmill inclines were set at 4° throughout the test [37]. Gas
exchange was measured breath-by-breath with an open-circuit system (Quark CPET, COSMED 6511,
Rome, Italy). Calibration was performed before each test, according to the manufacturer’s instructions.
VO, data was processed using 10-s time averages and VO,max was determined as the highest 30-s
VO, average for the test [38]. HR was continuously registered with a wireless HR monitoring system
(model 57990, COSMED Srl, Rome, Italy). The participants’ rating of perceived exertion (RPE) was
assessed immediately after the test with Borg’s RPE scale [39]. If the primary criteria of a plateau
in oxygen uptake (defined as an increase of VO, <2.1 mL-kg~!-min~! [40]) was not reached by the
participant (n = 4), then the secondary criteria of a RQ value >1.10, and an HR close (+ 10 bpm) to the
age-predicted maximum HR [41] were used to determine whether the participant reached maximal
effort and VO,max [42]. VO,max-tests were carried out at a mean room temperature of 21.7 1.2 °C, a
humidity of 39.2 £ 9.8%, and an air pressure of 914 £ 7 hpa. In general, a temperature range of 20 to 22
°Cin a cool, dry environment (<50% humidity) is considered comfortable for exercise testing [43].

2.6. Calculation of METmax and Estimation of Energy Expenditure

METmax was calculated in two modes, which are the ratio of (1) VO,max (mL-min~!) over VO,
during RMR measurement (METmax_ind), and (2) the VO,max (mL-min~1') over the conventional
1-MET value (3.5 mL‘kg_1 ‘min~!, METmax_fix). For calculating activity energy expenditure (AEE)
activities, different MET intensities were chosen: light (<3 METs), moderate (3-5.99 METs), vigorous
(6-8.99 METs), and very vigorous (=9 METs) activity [44]. MET values for the different activities were
achieved by using the Compendium of Physical Activities [9]. AEE of the different activities was
estimated by multiplying the MET value (1) with the individual 1-MET value (AEE_ind), (2) with
the conventional 1-MET value (AEE_fix), and with the predicted RMR by using the Harris-Benedict
equation (AEE_pred). For estimating the total energy expenditure (TEE), three different physical activity
levels (PAL) were chosen including a sedentary or light activity lifestyle (PAL 1.53), a moderately active
or active lifestyle (PAL 1.76), and a vigorously active lifestyle (PAL 2.25) [45]. The different PAL values
were then multiplied (1) with the individual 1-MET value (TEE_ind), (2) with the conventional 1-MET
value (TEE_fix), and (3) with the predicted RMR by use of the Harris-Benedict equation (TEE_pred).

2.7. Physical Activity Level (PAL)

The PAL of the participants was assessed using a combined HR and movement sensor (Actiheart;
Cambridge Neurotechnology Ltd., Papworth, UK). The Actiheart was clipped onto two standard
ECG electrodes (3M™ Red Dot™ Electrode 2560; 3M Health Care, St. Paul, USA) on the chest of the
participant, according to the manufacturer’s instructions, and worn day and night [46]. The device was
calibrated for each participant using a standard step test, which is a built-in function of the Actiheart
software version 4.0.92 (Cambridge Neurotechnology Ltd., Papworth, UK). AEE was estimated by
analyzing 6 full-day (24 h) recordings of HR and body movement with a 15-s averaging epoch setting.
Participants were requested to continue their habitual life routine and physical activities during the
recording period. TEE was calculated as the sum of RMR, AEE, and diet-induced thermogenesis
(estimated as 10% of TEE [47]). PAL was then calculated as TEE/RMR. The Actiheart was shown
to give accurate estimations of AEE during a wide range of activities in male and female subjects of
various ages, body mass, and fitness levels [48-52].

2.8. Statistics

Statistical analyses were performed with SPSS statistics version 24 for MS-Windows (IBM Corp.,
Chicago, IL, USA). Mean values and standard deviations (SD) were calculated and data was checked for
normality using the Shapiro-Wilk-test. All parameters were normally distributed with the exception of age,
body mass, body mass index (BMI), body fat (%), fat-free mass (FFM; kg), RMR (kcal-day’l), VO,max
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(L-min1), RQrest, and AEE/TEE calculated either by use of the conventional, predicted, or individual
1-MET value. Group differences were tested by independent t-tests and Mann-Whitney-U-tests (o« = 0.05).
The relationship between the two modes for calculating METmax and the relationship between VO,max
and RMR were first investigated using the Pearson’s Product moment correlation analysis. The correlation
coefficients (r) were classified, according to Cohen [53]. An r between 0.10-0.29 was considered small,
between 0.30-0.49 was considered moderate, and between 0.50-1.0 was considered showing a strong
association. The data were further analyzed using dependent ¢-tests. In addition, the mean absolute error
(MAE) and the mean absolute percentage error (MAPE) of METmax_fix compared to METmax_ind were
calculated. Since no standardized threshold exists for high or low MAPE, a MAPE >10% was considered an
indicator of inaccuracy as suggested by other authors [54-57]. The standard error of the estimate (SEE) was
calculated by linear regression, where METmax_ind was entered as a dependent variable and METmax_fix
as an independent variable. For differences in estimating AEE/TEE by use of the individual, predicted,
and conventional 1-MET value, the Wilcoxon signed-rank test for dependent samples was applied.

3. Results
3.1. Participants

Nine participants who did not meet the pre-defined inclusion criteria (e.g., BMI <18.5 or
>25.0 kg-m 2, age <18 or >40 years, not weight stable), 9 participants with invalid RMR tests (e.g., RQ
<0.70 or >1.00, CV of VO, and VCO, >10%), and 7 subjects without a valid VO,max test (e.g., no
plateau or other criteria for the maximal effort reached) were excluded from the analysis. One
participant withdrew from the study due to personal reasons. In total, data of 57 women and 48 men
were included in the analysis. The subjects were grouped, according to their aerobic fitness level
(METmax_ind). Male and female participants with a METmax_ind above the 50th percentile were
classified as endurance trained participants (END, n = 24 and n = 28, respectively). Subjects with
a METmax_ind below the 50th percentile served as healthy, non-endurance trained active controls
(CON, 24 men and 29 women). In Table 1, anthropometric data, body composition, RMR, and VO,max
of the participants are displayed. Women END had a significantly lower body fat percentage and BMI
and higher PAL than CON (p < 0.05). In men, no significant differences between groups were obtained
for body composition, RMR, and PAL (p > 0.05). The individual 1-MET value was significantly higher
than 1 1<ca1-kg_1 -h~! in men and women CON, and men END (p < 0.05). When RMR was predicted
by the use of the Harris-Benedict equation, the RMR was significantly lower than 1 kcal-kg~!-h~!
in women CON, and higher in men CON and END (p < 0.05). The range of VO,max was 2.2-3.9
L-min~! or 34.4-62.0 mL-kg~!-min~! for women and 2.5-5.3 L-min~! or 42.8-78.4 mL-kg~!-min~!
for men, respectively. Men and women END had significantly higher aerobic capacity compared to
CON (p < 0.01). In Figure 1, the relationship between VO,max and RMR is displayed. There was a
significant positive relationship between VO,max and RMR in all subgroups (p < 0.0001).

Table 1. Overview about included endurance trained participants (END) and healthy controls (CON)
with a valid resting metabolic rate (RMR) and maximum oxygen consumption (VO,max) measurements.
Data are presented as Mean + SD.

Women Men
CON (#n=29) END (n=28) CON (n = 24) END (n = 24)

Age (years) 27.6 + 4.1 39.0 £ 6.1 27.0+52 26.6 +5.0
Body mass (kg) 60.7 + 6.7 59.6 + 6.3 720 +74 708+ 7.3
Height (cm) 167 + 6 169 + 6 178 + 6 180 + 6
BMI (kg-m~2) 21.7+1.6 2084152 227422 21.8+1.8
Fat mass (%) 271+55 237 +44°2 159 +£55 152 +4.7
FFM (kg) 45.0+49 4624+ 4.9 61.3 +5.7 60.8 + 7.2
PAL! 1.8+02 21+02% 1.8+03 19403
RMR

(kcal-day~1) 1505 =+ 155 1457 + 148 1873 + 186 1824 + 198

(kcalkg~l-day~1) 249+ 19 245+21 261+ 1.8 259 +£25
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Women Men

CON (=29 END@=28  CON (n=24) END (1 = 24)
(kcal-kg=1-h~1)  1.04 +0.08° 1.02 £ 0.09 1.09 +0.077 1.08 +0.10°
RMRpred 5 5 7
(keal-kg~1-h1) 0.98 + 0.05 0.99 + 0.05 1.03 4 0.05 1.04 & 0.04
RQrest 0.76 + 0.04 0.76 %+ 0.04 0.76 %+ 0.06 0.75 4 0.04
VO,max

(L-min~1) 29+04 3340473 41405 454053

(mL-kg~lmin~1) 483 £5.1 553 +£4.14 56.8 & 5.7 641 +614

BMI = body mass index, FFM = fat-free mass, PAL = physical activity level, RMRpred = RMR predicted by use of the
Harris-Benedict equation, RQrest = respiratory quotient at rest. 1 Valid Actiheart data available for 46 females (22 CON
and 24 END) and 35 males (16 CON and 19 END). ? Significantly different from CON of the same sex group (p < 0.05).
3 Significantly different from CON of the same sex group (p < 0.01). 4 Significantly different from CON of the same sex
group (p < 0.0001). 5 Significantly different from the value of 1 kcal-kg~!-h~! (p < 0.05). © Significantly different from
the value of 1 keal-kg~!-h~! (p < 0.01). 7 Significantly different from the value of 1 kcal-kg~*-h~! (p < 0.0001).
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Figure 1. Resting metabolic rate (RMR) and maximum oxygen consumption (VO,max) in (a) women

and (b) men who were endurance trained subjects (END) and healthy controls (CON).
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3.2. Calculation of METmax

METmax_ind and METmax_fix in women and men CON correlated (r = 0.69 and r = 0.78,
respectively, p < 0.0001, Table 2). The MAE, MAPE, and SEE are presented for all groups in Table 2.
In women and men CON, and men END METmax_fix significantly overestimated METmax (p < 0.01),
whereas, in the women END, there was no difference (p > 0.05). When looking at the total sample,
METmax_fix significantly overestimated METmax, compared to the use of the individual 1-MET value
for its calculation (16.0 & 2.2 vs. 15.1 &= 1.6, p < 0.0001). The range of MAPE was 6.6% to 11.3% across all
groups. METmax_ind was significantly higher in men and women END compared to their non-athletic
counterparts (p < 0.0001, Figure 2).

Table 2. Values and concurrent validity of the maximum metabolic equivalent of tasks (METmax) by
use of the individual (METmax_ind) and conventional (METmax_fix, 3.5 mL-kg~!-min~!) 1-MET-value
for calculating in endurance trained participants (END) and healthy controls (CON). Data are presented

as Mean =+ SD.
Women Men
CON (n=29) END (n = 28) CON (n=24) END (n =24)
METmax_ind 13.3+0.92 155+1.0! 149 +0.83 16.9 + 0.7 12
METmax_fix 13.8 £ 14 159+ 121 163 £ 1.6 183+ 1.81
r value 0.694 0.24 0.784 0.10
MAE 0.9 +0.8 1.0 £ 0.9 15+09 19+13
MAPE (%) 6.6 +6.2 6.8+62 103 +5.9 113+ 7.6
SEE 0.63 1.03 0.52 0.70

! Significantly different from CON of the same sex group (p < 0.0001). ? Significantly different from METmax_fix of
the same sex and experimental group (p < 0.01). 3 Significantly different from METmax_fix of the same sex and
experimental group (p < 0.0001). * Correlation significant at p < 0.0001.

20 OCON MEND 80 0CON mEND
18 — 70
J
c
16 T € 60
14 T :
< T 50
%12 b T
g :
&= 10 40
S} 8 E
p= ( éso
’ g, 20
4 o
10
0 0
women men women men

(a) (b)

Figure 2. (a) Maximum metabolic equivalent of task (METmax) and (b) maximum oxygen consumption
(VOymax) in women and men who were endurance trained subjects (END) and healthy controls (CON).

3.3. Estimation of AEE/TEE

The conventional 1-MET value significantly underestimated the energy expenditure of all activities
in men and women CON and men END (p < 0.05), whereas, in women END, no difference was
observed (p > 0.05, Table 3). For example, when the energy expenditure during one hour of running
was estimated by use of the individual 1-MET value, the AEE was in the mean 32 kcal-h—1,97 kcal-h 1,
and 84 kcal-h~! higher in women and men CON, and men END, respectively, compared to the use
of the conventional 1-MET value for its calculation. When AEE was calculated based on an RMR
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estimated by use of the Harris-Benedict equation in all subgroups, estimated AEE was significantly
lower than AEE_ind for all activities (p < 0.05).

Table 3. Calculation of activity energy expenditure (AEE) for one hour of activity (either light, moderate,
vigorous, and very vigorous) by multiplication of the individual (AEE_ind), conventional (AEE_fix),
and predicted (AEE_pred) 1-MET value with published MET values of specific activities [9]. Data are
presented as Mean + SD.

Women Men
CON (n=29) END (n = 28) CON (n=24) END (n = 24)

Light activity (e.g., sitting tasks, Code 11580, 1.5 METs)

AEE_ind (kcal-h™1) 94 +10 91+9 117 + 12 114 + 12
AEE_fix (kcal-h—1) 91+10! 89 + 10 108 £ 113 106 + 112
Mean difference AEE_ind—AEE_fix (kcal-h~1) 3+7 2+8 9+8 8+ 10
AEE_pred (kcal-h™1) 89 +52 88+51 110 + 82 110 + 82
Mean difference AEE_ind—AEE_pred (kcal-h~—1) 617 3+8 7+8 4+38
Moderate activity (e.g., organizing room, Code 05125, 4.8 METs)
AFE_ind (kcal-h~1) 301 + 31 291 + 30 375 + 37 365 + 40
AEE_fix (kcal-h™1) 292 +321 286 + 30 346 + 363 340 + 352
Mean difference AEE_ind — AEE_fix (kcal-h~1) 10 £ 23 5424 29 + 26 25 4+ 33
AEE_pred (kcal-h™1) 283 + 162 281 + 171 353 + 262 352 + 272
Mean difference AEE_ind—AEE_pred (kcal-h—1) 18 24 11+24 22 +24 13 +£27
Vigorous activity (e.g., stair climbing, Code 17130, 8.0 METs)
AEE_ind (kcal-h—1) 502 4 52 486 + 49 625 =+ 62 608 =+ 66
AEE_fix (kcal-h™1) 486 + 541 477 4+ 51 576 & 603 566 =+ 58 2
Mean difference AEE_ind—AEE_fix (kcal-h—1) 16 +38 9441 48 £43 42 £55
AEE_pred (kcal-h™1) 472 + 272 468 +£291 589 + 432 587 + 442
Mean difference AEE_ind—AEE_pred (kcal-h—1) 30 + 39 18 + 40 36 + 41 21 + 45
Very vigorous activity (e.g., running 11 mph, Code 12130, 16 METs)
AEE_ind (kcal-h™1) 1004 + 103 971 4+ 99 1249 + 124 1216 + 132
AEE_fix (kcal-h™1) 972 +£ 1071 953 + 101 1152 + 119 3 1132 + 1172
Mean difference AEE_ind—AEE_fix (kcal~h*1) 32+75 18 + 81 97 + 85 84 + 110
AEE_pred (kcal-h™1) 944 + 542 934 + 571 1177 + 852 1174 + 892
Mean difference AEE_ind—AEE_pred (kcal-h—1) 59 +78 36 = 80 72 £ 81 42 £ 89

! Significantly different from AEE_ind of the same experimental and sex group (p < 0.05). 2 Significantly different
from AEE_ind of the same experimental and sex group (p < 0.01). 3 Significantly different from AEE_ind of the
same experimental and sex group (p < 0.0001).

TEE was significantly underestimated in men and women CON, and men END when the
conventional 1-MET value was used for estimating RMR and a PAL of 1.53, 1.76, or 2.25 was applied
for calculating TEE (p < 0.05, Table 4). The range of the mean difference between TEE_ind and TEE_fix
was 41-222 kcal-day ! for a PAL of 1.53, 47-255 kcal-day ! for a PAL of 1.76, and 60-326 kcal-day !
for a PAL of 2.25 across all groups. When TEE was calculated based on an RMR estimated by use of
the Harris-Benedict equation, estimated TEE was still significantly lower than TEE_ind for all PAL
values in all subgroups (p < 0.05).

Table 4. Total energy expenditure (TEE) calculated with the individual (TEE_ind), conventional (TEE_fix),
and predicted (TEE_pred) 1-MET value for a sedentary or light activity lifestyle (PAL 1.53), an active or
moderately active lifestyle (PAL 1.76), and a vigorous or vigorous active lifestyle (PAL 2.25) [45].

Women Men
CON (n=29) END (n = 28) CON (n=24) END (n = 24)

Sedentary or light activity lifestyle (PAL 1.53)

TEE_ind (kcal-day~!) 2303 + 237 2229 + 226 2866 + 285 2790 + 303
TEE_fix (kcal-day~1) 2230 + 2461 2188 + 232 2645 + 2733 2598 + 268 2

Mean difference TEE_ind—TEE_fix (kcal-day_l) 73 £ 173 41 4+ 186 222 + 196 192 £+ 253
TEE_pred (kcal-day ') 2167 + 1242 2146 + 1311 2702 + 1952 2694 + 204 2

Mean difference TEE_ind—TEEpred

(kcal-day 1) 136 £ 180 83 £ 183 164 + 186 96 & 205
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Table 4. Cont.

Women Men
CON (n=29) END (n = 28) CON (n =24) END (n = 24)

Active or moderately active lifestyle (PAL 1.76)

TEE_ind (kcal-day~!) 2649 + 272 2564 + 260 3297 + 327 3210 + 348
TEE_fix (kcal-day 1) 2565 + 283 1 2517 4 267 3042 + 3143 2989 + 308 2

Mean difference TEE_ind—TEE_fix (kcal-dayfl) 84 + 199 47 + 214 255 + 225 221 £+ 291
TEE_pred (kcal-day 1) 2493 + 1432 2468 + 1511 3108 + 2242 3099 + 2342

Mean difference TEE_ind—TEEpred

(kcal-day 1) 157 £ 207 95 £ 211 189 £+ 215 111 £+ 236

Vigorous or vigorous active lifestyle (PAL 2.25)

TEE_ind (kcal-day 1) 3387 + 348 3277 + 332 4215 + 418 4102 + 445
TEE_fix (kcal-day 1) 3279 + 361! 3217 + 342 3889 + 4023 3821 + 3942

Mean difference TEE_ind—TEE _fix (kcal-dayfl) 108 + 254 60 + 273 326 + 288 282 + 372
TEE_pred (kcal-day 1) 3186 + 1832 3156+ 1931 3974 + 2872 3962 + 300 2

Mean difference TEE_ind—TEEpred
(kcal-dayfl)

1 Significantly different from TEE_ind of the same experimental and sex group (p < 0.05). 2 Significantly different
from TEE_ind of the same experimental and sex group (p < 0.01). 3 Significantly different from TEE_ind of the same
experimental and sex group (p < 0.0001).

201 £ 265 122 + 270 241 + 274 141 £+ 301

4. Discussion

Aims of the study were to quantify the absolute and relative errors when the conventional 1-MET
estimated value (defined as a constant viz. 1 kcal-kg~!-h~!) was compared to an individualized RMR
value measured by indirect calorimetry. Both values were used as the baseline for calculating METmax
and they were compared to determine whether the use of a measured (rather than predicted) RMR
would reduce the relative and absolute error of prediction of METmax.

In endurance trained men of the present study, METmax was significantly overestimated and
predicted that the resting energy expenditure was slightly underestimated when the conventional
standard 1-MET value was used for their calculation. In the endurance trained women, no differences
between the conventional vs. individual 1-MET value were found so that the estimation of METmax
was marginally higher by 0.4 METs only, as compared to the measured value (Table 2).

In men and women controls, and endurance trained men, the individual 1-MET value was
significantly higher than the conventional and fixed 1-MET value (p < 0.05). Therefore, it can be
concluded that the use of the conventional 1-MET value is inappropriate for determining the aerobic
metabolic capacity and estimating the daily activity related energy expenditure (using a METs table) in
active people and endurance trained athletes.

These findings are in contrast to the majority of published studies, where the measured individual
1-MET value in women was mostly lower than 3.5 mL-kg~!-min~! or 1 kcal-kg~!-h~!. For example, in
a study of Byrne et al., the mean resting energy cost was 2.56 mL-kg~!'min~! or 0.84 kcal-kg~!-h~1 [17].
However, they measured RMR in a large, heterogeneous sample, comprising many women and less
men, with a wide age range (18-74 years) as well as the BMI range (13.8-57.5 kg-m~2). Indirect
calorimetry measurements were made (1) with a comfortable hood system (and not with face mask
or mouthpiece, which are known to generate slightly higher RMR values, [58]), (2) under strictly
standardized conditions with participants fasting for at least 12 h and no exercise allowed the day
preceding testing, and (3) a 25-min period at steady state of a total 45 min RMR measurement was
chosen for analysis. They also found that fat mass and FFM accounted for 62% of the variance in resting
VO,. In a review of McMurray et al. examining RMR in healthy adults, the mean value for RMR was
0.86 kcal-kg~!-h~1, as expected, which is higher for men than women, decreases with increasing age,
and is less in overweight/obese than normal weight adults [20]. Adults with a BMI >30 kg-m 2 had
the lowest RMR (<0.74 kcal~kg’1 hh.

In a previous study, the RMR of adolescents, pregnant and post-pregnant women, and active men
was measured [19]. A significantly higher relative RMR in adolescents compared to the conventional
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1-MET value was found, whereas, in the other subgroups, no differences were observed. When
reviewing data on endurance trained men and women whose RMR was measured using indirect
calorimetry, similar results to the present study were obtained: women were expending, on average,
1.11 kcal-kg'-h~1, and men 1.13 kcal-kg~!-h~! [59-67]. In these experimental studies, the use of
the conventional fixed 1-MET value led to considerably greater error in endurance trained men and
women compared to the measured RMR value. In the present study, endurance trained men also
demonstrated a significantly higher individual RMR value compared to the conventional theoretical
1-MET value. In addition, participants in the control groups also had significantly higher individual
1-MET values. Incidentally, it should be noted that the participants who were assigned to the control
group are not representative of the general population of Switzerland, which comprises a majority of
moderately active and sedentary individuals. In other words, the individuals of the present sample
were more physically active and had a “normal” BMI. For comparison purposes, Swiss men with a
mean age of 42 years had a relative body fat percentage of 21.0% [68], which is a slightly elevated value.
In a sample of Swiss women (1 = 64) with a mean age of 27 years, more than two-thirds (70.3%) had a
body fat percentage >30% [69], which indicates the presence of a high percentage of plump women.
Since fat mass is the strongest predictor of the variability of resting VO, [17], such differences in body
composition (higher relative FFM in the present study) might explain the higher individual 1-MET
value of the controls compared to the values reported in the literature. In any case, these findings
underline the limits of using a fixed standard 1-MET value.

4.1. Calculation of METmax

The present study addressed how much relative and absolute error the use of the conventional
1-MET value would introduce when used for calculating METmax. In 79% of the women and 88%
of the men CON, and 83% of the endurance trained men (END), the conventional 1-MET value
overestimated METmax, which resulted in a significant overestimation of the mean aerobic metabolic
capacity in these groups. The MAPE was 6.6%, 10.3%, and 11.3% in both women and men CON, and
men END, respectively, and 35%, 50%, and 46% of the women and men CON, and men END had a
MAPE >10%, respectively. Generally, a MAPE >10% can be considered to be a marker for inaccurate
measurements [54-57]. Therefore, the authors of the present study strongly encourage researchers and
any other person, who wants to determine the aerobic metabolic capacity of active subjects, to measure
RMR before a maximum exercise test is conducted. Since proper assessment of RMR requires further
expertise, equipment, and time, and is somewhat cumbersome for the participant, RMR should be at
least estimated using established equations, such as the Harris-Benedict [27] or the Cunningham [28]
formulas. Another possibility would be the direct assessment of resting VO, of the subject prior to
exercise testing while standing still on the treadmill or sitting quietly on a bike. However, it is unclear
whether this resting VO, is more appropriate for calculating METmax than using a conventional or
estimated value for RMR.

4.2. Estimation of AEE, TEE, and Physical Activity Level (PAL = TEE/RMR)

As the second purpose, the error when the conventional 1-MET value was used for estimating
daily energy expenditures was investigated. Large differences using the individual and conventional
1-MET values for estimating energy expenditures were observed. In women and men CON, and
men END, the conventional 1-MET value significantly underestimated the energy expenditure of
several physical activities and total daily energy expenditure. For example, using a PAL of 2.25 for
estimation of TEE, reflecting a rather active lifestyle, led to an underestimation of energy requirements
of 108 kcal~day’1, 326 kcal~day’1, and 282 kcal-day’1 for women and men CON, and men END,
respectively, when the conventional 1-MET value of 1 kcal-kg~!-h~! was used. In the endurance
trained women of this study, no difference between the individual and conventional 1-MET value
was found when energy requirements were calculated. This is because the difference between the
individual and conventional 1-MET value was not significant.
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PAL and MET values are frequently used for estimating energy requirements in athletes. However,
using the conventional 1-MET value for their calculation might underestimate (true) energy costs of
their activities and might promote insufficient energy intake, especially in situations when athletes wish
to control their energy balance (e.g., for weight loss or maintenance). Besides the possible undesirable
effects on body mass and body composition, the underestimation of energy costs and further advised
erroneous energy intakes might also lead to a higher risk of suffering from Relative Energy Deficiency
in Sport (RED-S), its concomitant symptoms, and a decrease in endurance performance [70]. Therefore,
it can be recommended to either (1) measure directly the energy costs of physical activities or daily
energy requirements using validated and objective measures, (2) measure RMR and use the individual
1-MET value for estimating energy requirements, or, in the case that both options are not possible,
to (3) estimate RMR using established formulae and use a corrected 1-MET value for estimating the
energy expenditure.

Most often in the general population, the individual 1-MET value is significantly lower than the
conventional 1-MET value [19-26]. Therefore, in the general population, the use of the conventional
1-MET value is mostly overestimating energy costs of activities, as shown previously by others [21,23].
This overestimation of energy requirements might, thus, promote a positive energy balance and could
contribute to a higher risk for obesity and concomitant diseases. Several authors recommend the
use of corrected MET values to account for personal variation in sex, body mass, height, and age in
order to estimate the individual physical activity level more accurately [17,18]. Hereby, the standard
1-MET value of 3.5 mL-kg~!-min~! is divided by a predicted RMR obtained from the Harris-Benedict
equation [27]. The authors found a significant reduction of underestimation and misclassification of the
MET values when a corrected 1-MET value was used. Howley (2011) stated that the ratio of the work
metabolic rate to measured RMR should not be called “METs,” since METs are, by definition, restricted
to a denominator of 3.5 mL-kg~!-min~! [71]. In the present study the use of a predicted 1-MET value
by using the Harris-Benedict equation reduced the mean difference in energy expenditure estimation
between the use of a measured and estimated RMR in men, whereas, in women, the mean difference
was even higher than the use of the conventional 1-MET value. Therefore, the use of corrected METs
might be useful for estimating individual energy costs in some cases, whereas the standard MET values
can help classify the intensity of physical activities, when different studies are compared. Lastly, it
must be stated that neither the standard nor the use of a corrected 1-MET value can replace the direct
assessment of energy expenditure by either measuring oxygen consumption during physical activities
or by using the doubly labeled water technique.

4.3. Strengths and Limitations

This is the first study with the purpose to assess the individual 1-MET value in endurance
trained athletes. Expressing aerobic capacity as a ratio of maximum oxygen consumption divided
by oxygen consumption at rest is a suitable measure in endurance trained athletes and healthy,
active controls. A big advantage of the METmax calculation is that the denominator (RMR) already
takes into account the metabolic and physiological characteristics of the individual at the baseline,
so that inter-individual (e.g., comparisons between groups of different age, sex, body composition,
physiological status, ethnicity) and intra-individual (e.g., change of body composition throughout
different observation time points) comparisons of METmax will not be biased by a difference or change
of these characteristics. The readjustment of RMR (upward or downward) will not bias the validity of
the new METmax recalculation. Another advantage of the present study is the focus on strict protocols
for assessment of the variables, e.g., RMR was measured in the early morning after an overnight
fast with subjects abstaining from vigorous exercise for >24 h. Assessment of body composition was
performed with a gold standard method viz. dual x-ray absorptiometry.

However, some limitations must be addressed. First of all, the control participants do not
reflect the typical, less physically active Swiss population. For example, the METmax of the control
participants was “only” two units less when compared to their endurance-trained counterparts.
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In addition, the fat mass percentage might be lower in the control participants compared to the general
population. On the other hand, the physical activity level, body composition, and the aerobic capacity
of the control participants might reflect the recommended “normal” human phenotype, i.e., physically
active and “normal” BMI. Nevertheless, inclusion of a sedentary overweight (or obese) control group
would give additional insights about the error when using the conventional 1-MET value for both
determining the aerobic metabolic capacity and estimating the energy expenditure in these populations.
Generally, it must be stated that estimating the energy expenditure using published MET values of
the Compendium of Physical Activities must be taken with caution since the published MET values
are often based on only one reference. Therefore, it can be expected that there is a wider variance in
estimated AEE compared to the direct assessment of oxygen consumption during various physical
activities [9]. In the present study, the dietary intake data (diary) were not analyzed, since the validity
of self-reported energy intake data is highly questionable [72]. However, assessment of the total energy
expenditure by use of objective validated tools (e.g., doubly labelled water) would have given further
information about the interplay with energy requirements and aerobic metabolic capacity.

5. Conclusions

The use of a conventional 1-MET value appears inappropriate for determining the aerobic
metabolic capacity and estimating the daily energy expenditure in active and endurance-trained
persons. When the conventional standard 1-MET value was used, the predicted resting energy
expenditure was slightly but significantly underestimated (above all in men). As a result, the calculation
of METmax was significantly overestimated due to the underestimation of the denominator.
Furthermore, the energy costs of non-maximal physical activities should also be underestimated
when the conventional 1-MET value is used and this might lead to an underestimation of energy
requirements for a given physical activity. For valid assessment of METmax (calculated from VO,max),
measuring RMR by indirect calorimetry is recommended or, if not possible, estimating RMR is
recommended using published validated equations tailored to the characteristics of the group studied
in terms of age, gender, body composition (FFM), physiological status (i.e., pregnancy), and ethnicity.
For estimating energy requirements, it can be recommended to (1) either measure directly the energy
expenditure by use of validated tools, or (2) measure (or at least estimate) RMR and use appropriately
adjusted MET values published in the literature [9] for estimating the energy costs of various structured
exercises as well as free-living daily physical activities.
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