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Abstract: Polypharmacy is commonly used to treat psychiatric disorders. These combinations often
include drugs with sterol biosynthesis inhibiting side effects, including the antipsychotic aripiprazole
(ARI), and antidepressant trazodone (TRZ). As the effects of psychotropic medications are poorly
understood across the various tissue types to date, we investigated the effects of ARI, TRZ, and
ARI + TRZ polypharmacy on the post-lanosterol biosynthesis in three cell lines (Neuro2a, HepG2,
and human dermal fibroblasts) and seven peripheral tissues of an adult mouse model. We found that
both ARI and TRZ strongly interfere with the function of 7-dehydrocholesterol reductase enzyme
(DHCR7) and lead to robust elevation in 7-dehydrocholesterol levels (7-DHC) and reduction in
desmosterol (DES) across all cell lines and somatic tissues. ARI + TRZ co-administration resulted
in summative or synergistic effects across the utilized in vitro and in vivo models. These findings
suggest that at least some of the side effects of ARI and TRZ are not receptor mediated but arise from
inhibiting DHCR7 enzyme activity. We propose that interference with sterol biosynthesis, particularly
in the case of simultaneous utilization of medications with such side effects, can potentially interfere
with functioning or development of multiple organ systems, warranting further investigation.

Keywords: aripiprazole; trazodone; polypharmacy; 7-dehydrocholesterol; 7-dehydrocholesterol
reductase; cholesterol; desmosterol; sterols

1. Introduction

Physicians treating patients with schizophrenia, bipolar disorder or major depression
frequently encounter elaborate clinical cases that have to be managed by complex medica-
tion regimes. Some of these situations require psychotropic polypharmacy treatment [1,2].
Unfortunately, while polypharmacy can greatly benefit patients, it can also result in a higher
susceptibility for development of metabolic syndrome [1] or other adverse effects [3–9].

Many of the psychotropic polypharmacy combinations include drugs with sterol
biosynthesis inhibiting side effects. One of the commonly used combinations of psy-
chotropic medications is simultaneous utilization of the antipsychotic aripiprazole (ARI),
and antidepressant trazodone (TRZ) [10–12]. TRZ selectively inhibits neuronal serotonin
reuptake and is an antagonist of 5-HT2A receptors. In addition, TRZ shows antagonism at
5-HT2B, 5-HT2C, adrenergic alpha-1, and partial agonism at 5-HT1A receptors [13,14]. In
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contrast, ARI is a quinolinone antipsychotic that is a partial agonist at the D2 and 5HT1aA
receptors and an antagonist at the 5HT-2aA receptor. It has a high affinity for D2, D3,
5-HT-1aA, and 5-HT2aA receptors and moderate affinity for D4, 5-HT2C, 5-HT7, alpha-1
adrenergic, and H1 receptors [15].

ARI and TRZ have been also shown to increase 7-DHC in the CNS in various develop-
mental in vitro and in vivo models, as well as human biomaterials [16–20] but ARI and TRZ
treatment effects in adult peripheral organs remain unknown. Sterol biosynthesis inhibition
by ARI and TRZ is mediated through blocking the effect of 7-dehydrocholesterol reductase
(DHCR7) enzyme, which simultaneously blocks the conversion of 7-dehydrocholesterol
(7-DHC) to cholesterol, and conversion of 7-dehydrodesmosterol (7-DHD) to desmosterol
(DES) [21]. Ultimately, this results in two main effects of this DHCR7 inhibition—a sharp
increase in 7-DHC levels and a substantial decrease in DES levels. Notably, 7-DHC is
the most oxidizable lipid known to date, with a propagation rate constant of 2160 (this
is 200 times more than cholesterol and 10 times more than arachidonic acid) [22,23]. The
result of spontaneous 7-DHC peroxidation is formation of highly reactive autoxidation
sterols, called 7-DHC derived oxysterols [24,25]. 7-DHC derived oxysterols have multiple
bioactive effects, and these reactive electrophiles can affect cell viability, differentiation,
and growth [25–27].

Cholesterol biosynthesis occurs in all type of cells and is essential for cellular home-
ostasis and structural integrity [28]. As the effects of ARI and TRZ utilizations are poorly
understood across the various tissue types to date, we investigated the effects of ARI, TRZ
and ARI + TRZ polypharmacy on the post-lanosterol peripheral sterol biosynthesis in three
cell lines (Neuro2a, HepG2, and human dermal fibroblasts) and an adult mouse model.
Study design is presented in Figure 1.

Biomolecules 2022, 12, x FOR PEER REVIEW 2 of 16 
 

antidepressant trazodone (TRZ) [10–12]. TRZ selectively inhibits neuronal serotonin 
reuptake and is an antagonist of 5-HT2A receptors. In addition, TRZ shows antagonism 
at 5-HT2B, 5-HT2C, adrenergic alpha-1, and partial agonism at 5-HT1A receptors [13,14]. 
In contrast, ARI is a quinolinone antipsychotic that is a partial agonist at the D2 and 
5HT1aA receptors and an antagonist at the 5HT-2aA receptor. It has a high affinity for D2, 
D3, 5-HT-1aA, and 5-HT2aA receptors and moderate affinity for D4, 5-HT2C, 5-HT7, al-
pha-1 adrenergic, and H1 receptors [15]. 

ARI and TRZ have been also shown to increase 7-DHC in the CNS in various devel-
opmental in vitro and in vivo models, as well as human biomaterials [16–20] but ARI and 
TRZ treatment effects in adult peripheral organs remain unknown. Sterol biosynthesis 
inhibition by ARI and TRZ is mediated through blocking the effect of 7-dehydrocholes-
terol reductase (DHCR7) enzyme, which simultaneously blocks the conversion of 7-dehy-
drocholesterol (7-DHC) to cholesterol, and conversion of 7-dehydrodesmosterol (7-DHD) 
to desmosterol (DES) [21]. Ultimately, this results in two main effects of this DHCR7 inhi-
bition—a sharp increase in 7-DHC levels and a substantial decrease in DES levels. Nota-
bly, 7-DHC is the most oxidizable lipid known to date, with a propagation rate constant 
of 2,160 (this is 200 times more than cholesterol and 10 times more than arachidonic acid) 
[22,23]. The result of spontaneous 7-DHC peroxidation is formation of highly reactive au-
toxidation sterols, called 7-DHC derived oxysterols [24,25]. 7-DHC derived oxysterols 
have multiple bioactive effects, and these reactive electrophiles can affect cell viability, 
differentiation, and growth [25–27]. 

Cholesterol biosynthesis occurs in all type of cells and is essential for cellular home-
ostasis and structural integrity [28]. As the effects of ARI and TRZ utilizations are poorly 
understood across the various tissue types to date, we investigated the effects of ARI, TRZ 
and ARI + TRZ polypharmacy on the post-lanosterol peripheral sterol biosynthesis in 
three cell lines (Neuro2a, HepG2, and human dermal fibroblasts) and an adult mouse 
model. Study design is presented in Figure 1. 

 

Figure 1. Experimental design of the study. In vitro experiments: HepG2, Neuro2a and human der-
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lyzed with PTAD derivatization assay by LC-MS/MS. In vivo experiments: mice were treated with 
ARI (2.5 mg/kg), TRZ (10 mg/kg), ARI+TRZ (2.5 mg/kg + 10 mg/kg), or vehicle (VEH) for 8 days. 

Figure 1. Experimental design of the study. In vitro experiments: HepG2, Neuro2a and human
dermal fibroblasts were treated with ARI, TRZ or ARI+TRZ. CHOL, DES, 7-DHC, and LAN were
analyzed with PTAD derivatization assay by LC-MS/MS. In vivo experiments: mice were treated
with ARI (2.5 mg/kg), TRZ (10 mg/kg), ARI+TRZ (2.5 mg/kg + 10 mg/kg), or vehicle (VEH) for
8 days. Sera were collected and peripheral tissues were dissected (heart, lungs, pancreas, spleen,
liver, kidneys, adrenal glands) for measurements of sterols, ARI, TRZ and their main metabolites
by LC-MS/MS.
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2. Materials and Methods
2.1. Reagents

Majority of reagents used were purchased from Sigma-Aldrich Co (St. Louis, MO,
USA) unless noted differently. Solvents used for HPLC were purchased from ThermoFisher
Scientific Inc. (Waltham, MA, USA). ARI and TRZ were obtained from Selleckchem (Radnor,
PA, US) and were prepared in sterile DMSO solution. All sterol standards used, natural
and isotopically labeled, are available from Kerafast, Inc. (Boston, MA, USA).

2.2. Aripiprazole and Trazodone In Vivo Treatment

Three months old male mice, C57Bl/6J (stock number: 000664), were purchased
from The Jackson Laboratories. Mice were housed at 12 h light/dark cycle, at a constant
temperature (25 ◦C) and humidity (40–60%) in standard ventilated mouse cages with ad
libitum access to food (Teklad LM-485 Mouse/Rat Sterilizable Diet 7012) and water in
Comparative Medicine at the University of Nebraska Medical Center (UNMC), Omaha,
NE, USA. In humans, TRZ (Desyrel) is given at a starting dose 150 mg/day and may
be increased by 50 mg per day to a maximum dose of 400 mg per day. TRZ is often
prescribed as sleep aid at a starting dose of 50 mg/day. In case of a dose of 50 mg/60 kg
human body mass, this calculation leads to a dose of 0.83 mg/kg/day. Animal Equivalent
dose (AED in mg/kg) is calculated as human dose (mg/kg) 50 mg per day) × Km ratio
(12.3) = 10 mg/kg [29]. We used a low dose of 10 mg/kg for the experimental treatment
of mice. We applied the same calculations and literature data for the second drug, ARI
(Abilify) and decided to use it at 2.5 mg/kg for treatment in mice (this corresponds to ARI
dose of 10–15 mg/day in humans). Most commonly used doses of ARI in humans are
2 mg–30 mg/day [30]. We used 35 mice in our study with 9 animals assigned to all groups,
except for control group that consisted of 8 mice. Intraperitoneal injections were used for
drug (or vehicle) delivery, every day at 8.00 am. The treatment did not influence body
mass of animals during experiment. All procedures were performed in accordance with
the Guide for the Humane Use and Care of Laboratory Animals. The use of mice in this
study was approved by the Institutional Animal Care and Use Committee of UNMC.

2.3. Tissue Dissection and Preparation for Sterol Analysis

Mice were anesthetized with Isoflurane overdose (Forane® isofluranum, Abbott Labo-
ratories LTD; Lake Bluff, IL, USA) four to six hours after the last treatment was applied.
Seven organs were dissected: heart, lung, kidney, liver, spleen, pancreas, and adrenal gland.
Heart and serum were evaluated because of cardiovascular role, spleen because of the
role in immunity, liver, pancreas, and kidney because of their involvement in metabolic
syndrome, and adrenal gland because of stress response and steroid hormone synthesis. All
tissues were frozen in pre-chilled methyl-butane and stored at −80 ◦C. Blood was collected
and centrifuged for serum collection, all samples were frozen and stored at −80 ◦C.

Frozen samples were sonicated in pre-chilled PBS buffer containing butylated hy-
droxytoluene (BHT) and triphenylphosphine (PPh3). For sterol measurements (first set of
aliquots) we used 10 µL which corresponds to approximately150–250 µg of protein. For
protein measurements (second set of aliquots) we used 20 µL of the same sample solution,
diluted it 10 and 20 times and measured protein concentration in these diluted samples. For
drug level measurements (third set of aliquots) we used 100 µL of starting sample which
corresponds to approximately 1.5–2.5 milligrams of tissue. The protein was measured using
BCA assay (Pierce). Sterol levels were normalized to protein measurements and expressed
as nmol/mg protein. The third set of aliquots of homogenized tissue were used for drug
measurements. Sterol levels in serum were expressed as nmol/mL.

2.4. LC-MS/MS Sterol Measurements

Sterols were extracted and derivatized with PTAD as described previously [31] and
placed in an Acquity UPLC system equipped with ANSI-compliant well plate holder
coupled to a Thermo Scientific TSQ Quantis mass spectrometer equipped with an APCI
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source. After that, 10 µL of sample was injected onto the column (Phenomenex Luna
Omega C18, 1.6 µm, 100 Å, 2.1 mm × 100 mm) with 90% MeOH and 10% ACN (0.1% v/v
acetic acid) mobile phase for 1.7 min runtime at a flow rate of 500 µL/min. Natural sterols
were analyzed by selective reaction monitoring (SRM) using the following transitions: Chol
369→ 369, 7-DHC 560→ 365, DES 592→ 560, lanosterol 634→ 602, with retention times of
0.7, 0.4, 0.3 and 0.3 min, respectively. SRMs for the internal standards were set to: d7-Chol
376→ 376, d7-7-DHC 567→ 372, 13C3-DES 595→ 563, 13C3-lanosterol 637→ 605.

2.5. ARI and TRZ Measurements

Drugs were extracted from all sample types using methyl tert-butyl ether and am-
monium hydroxide as described previously [32]. ARI levels were acquired in an Acquity
UPLC system coupled to a Thermo Scientific TSQ Quantis mass spectrometer using an
ESI source in the positive ion mode. Ten µL of each sample was injected onto the column
(Phenomenex Luna Omega C18, 1.6µm, 100 Å, 2.1× 50 mm2) using water (0.1% v/v acetic
acid) (solvent A) and acetonitrile (0.1% v/v acetic acid) (solvent B) as mobile phase. The
gradient was: 10–40% B for 0.5 min; 40–95% B for 0.4 min; 95% B for 1.5 min; 95–10% B for
0.1 min; 10% B for 0.5 min. ARI, TRZ and their metabolites were analyzed by SRM using
the following transitions: ARI 448→ 285, dehydroaripiprazole 446→ 285, TRZ 372→ 176,
m-CPP 197→ 153. The SRM for the internal standards (d8-ARI and d8-m-CPP) were set to
456→ 293 and 205→ 157, respectively. Final medications levels are reported as ng/mg of
protein for analyzed organs and ng/ml for serum samples.

2.6. Cell Cultures

Human hepatocellular carcinoma HepG2 cells and mouse neuroblastoma Neuro2a
cells were purchased from ATCC (Rockville, MD, USA). Control human fibroblasts were
obtained from Coriell Institute for Medical Research (Camden, NJ, USA). HepG2 and
human dermal fibroblasts were maintained in DMEM with 10% fetal bovine serum and
Neuro2a were maintained in EMEM with 10% fetal bovine serum. To determine the effect
of drugs, cells were plated in 96-well plates and incubated at 37 ◦C in 5% CO2 for 48 h
in presence and absence of different concentrations of ARI, TRZ, and ARI + TRZ. The
treatment was performed in cholesterol deficient medium. HepG2 and human fibroblast
cultures were grown in DMEM with 10% delipidated fetal bovine serum, and Neuro2a
were grown in EMEM plus N2 supplement. At the end point of the incubation, Hoechst
dye was added to all wells in the 96-well plate, and the total number of cells was counted
using an ImageXpress Pico and cell counting algorithm using CellReporterXpress. After
removing the medium, wells were rinsed twice with 1× PBS and then stored at −80 ◦C for
sterol analysis. All samples were analyzed within 2 weeks of freezing.

2.7. Statistical Analyses

Statistical analyses were performed using GraphPad Prism 9 for Windows. Unpaired
two-tailed t-test was applied for individual comparisons between two groups. Discovery
was determined using the two-stage linear step-up procedure of Benjamini, Krieger, and
Yekutieli, with Q = 5%. Each analysis was performed individually, without assuming
a consistent SD. Statistical test showed a normal distribution in all comparison groups.
The p-values for statistically significant differences are highlighted in the figures and/or
figure legends.

3. Results
3.1. ARI + TRZ Polypharmacy Increases 7-DHC Levels in HepG2, Neuro2a and Human Fibroblast
Cell Cultures Compared to Single Drug Treatment

HepG2, Neuro2a, and human fibroblast cells were treated with ARI, TRZ, or ARI + TRZ.
HepG2 and Neuro2a cells were treated for 48h: HepG2 with five different concentrations
of ARI, TRZ, or ARI + TRZ and Neuro2a with six different concentrations. Control human
fibroblasts were treated with five different concentrations of ARI, TRZ, or ARI + TRZ for
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7 days. CHOL, DES, 7-DHC, and LAN were analyzed with PTAD derivatization assay
by LC-MS/MS. LC-MS/MS analysis revealed that treatment did not affect cell viability,
however sterol profile was significantly altered by the treatment. Figure 2 depicts 7-DHC
and DES levels, as well as 7-DHC/CHOL ratio for treatment with ARI, TRZ, or ARI + TRZ
in comparison to vehicle treated controls. The response of 7-DHC, DESM, CHOL, and
7-DHC fold change to all concentrations of ARI, TRZ, and ARI + TRZ drug treatments can
be found in Figures S1 (for HepG2), S2 (for Neuro2a), and S3 (for human fibroblasts).
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In our experiments, we refer to the combined effect of medication as summation when
the combination treatment (ARI + TRZ) exceeds the effects of the individual medications
(ARI or TRZ). Synergy is defined as a change by combination treatment (ARI + TRZ) that ex-
ceeds the mathematical sum of the two individual treatments (ARI and TRZ). Note that treat-
ment with ARI + TRZ had a synergistic effect on 7-DHC increase in HepG2 and Neuro2a



Biomolecules 2022, 12, 1535 6 of 16

cells (Figure 2A,B, denoted as fold-change of 7-DHC/vehicle treated in Figures S1 and S2)
and showed summation in human fibroblast cultures (Figures 2C and S3).

DES levels (Figure 2A–C, middle panel) were most profoundly decreased in Neuro2a
cells compared to control treatment, with ARI + TRZ having the strongest effect. In HepG2
cells, DES was significantly decreased compared to VEH-treated controls, with all three
treatments showing a comparable magnitude of DES change. DES was the least changed in
human fibroblasts, with only TRZ treatment reaching significantly decreased effect. Full
DES profile is presented in supplemental data (Figures S1–S3).

7-DHC/CHOL ratio (Figure 2A–C, right panel) was increased by 19-fold over vehicle-
treated controls upon ARI treatment (50 nM), 38-fold by TRZ treatment (250 nM), and
70-fold by co-administration of ARI + TRZ (50 + 250 nM) in HepG2 cells. In Neuro2a
7-DHC/CHOL ratio was increased by 5-fold by ARI (25 nM), 9-fold by TRZ (25 nM), and
50-fold by co-administration of ARI + TRZ (25 + 25 nM). In both HepG2 and Neuro2a
cells 7-DHC/CHOL ratio reached synergistic effect with ARI + TRZ co-administration.
In human fibroblasts combined treatment reached summation: ARI treatment (50 nM)
caused 25-fold increase in 7-DHC/CHOL ratio, TRZ (250 nM) an increase of 57-fold, and
ARI + TRZ 81-fold.

The observed effects were dose dependent to a large degree. The dose responses for
all tested drug concentrations are presented in Supplemental Figures S1–S3. We found
that 7-DHC was increased the most in Neuro2a cultures up to 250-fold for ARI (500 nM),
220-fold for TRZ (500 nM), and 284-fold for ARI+TRZ (500 + 500 nM) treatment compared
to vehicle treated controls. In Neuro2a cells, synergy in 7-DHC increase was present up
to 100 nM concentration of both drugs and their combined treatment. In HepG2 cells
synergistic effect of 7-DHC increase was present even at the highest concentrations of drug
treatments – it reached 5-fold increase for ARI (100 nM), 74-fold increase for TRZ (500 nM),
and 81-fold increase for ARI+TRZ (100 + 500 nM). 7-DHC increase in human fibroblasts
reached summation in all used concentrations and was 42-fold increased for ARI (100 nM),
62-fold increased for TRZ (500 nM), and 77-fold increased for ARI+TRZ (100 + 500 nM).

Significant reductions in CHOL were observed only in treated human fibroblasts and
this was similar across all three treatments and all concentrations used (Figure S3). The low
turnover rate of cholesterol [33,34] and a relatively short period of treatment under in vitro
conditions might explain that a similar effect on CHOL was not observed in HepG2 and
Neuro 2A cells. LAN concentrations were not affected by either treatment used. These
data suggest that under in vitro conditions the effects of ARI + TRZ polypharmacy are
synergistic or summative, and preferentially affect 7-DHC levels.

3.2. Baseline Sterols Levels Differ across Peripheral Tissues of Adult Mice

Baseline free sterol levels showed considerable differences across the serum and
seven analyzed organs of sham-treated adult mice (Figure 3A). We observed the highest
concentration of free CHOL and its two immediate precursors, 7-DHC and DES, in the
serum samples. These three tested analytes showed somewhat different distribution across
the organs: kidneys had the highest basal 7-DHC levels, spleen and lungs showed the
highest DES concentration, and lung revealed the highest free CHOL content. The lowest
basal 7-DHC and DES levels were observed in pancreas samples, while heart had the lowest
free CHOL. 7-DHC/CHOL and DES/CHOL ratios also confirmed the variability across
the investigated organs, with heart and adrenal gland having the highest DESM/CHOL
ratio and kidney having the highest 7-DHC/CHOL ratio (Figure 3B). This suggests various
sterol requirements and homeostasis in different peripheral organs, potentially related to
different rate of biosynthesis and/or turnover. Notably, our measurements focused on
free cholesterol only, and the observed relationships are potentially different for esterified
cholesterol content [35,36].
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represents a single LC-MS/MS measured sample. (B) DES/CHOL and 7-DHC/CHOL ratios across
the investigated organs and serum samples. Note the sterol content variability across the serum and
examined organs.

3.3. ARI, TRZ, and Their Metabolites Are Detectable in the Serum and Peripheral Organs of
Treated Mice

Experimental mice were treated with intraperitoneal injections of either VEH, 2.5 mg/kg
ARI, 10 mg/kg TRZ or combined medications (ARI + TRZ). Mice were injected daily for
8 days. To confirm that the drugs reached the peripheral tissues, ARI and TRZ concen-
trations were measured in serum and seven peripheral organs in the ARI + TRZ group
(Figure 4). ARI and its active metabolite—dehydro-ARI—were detected in the serum and in
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all seven examined peripheral organs. Dehydro-ARI was found in approximately 3–4-fold
lower concentrations than ARI in all samples. TRZ was detected in all peripheral tissues,
as well as its active metabolite meta-chlorophenylpiperazine (m-CPP), with very similar
concentrations in all sample types. ARI and its metabolite (dehydro-ARI) reached the
highest concentrations in serum and pancreas, while TRZ and its metabolite (m-CPP) were
less variable across different peripheral organs. Notably, serum contained the highest
absolute amounts of both medications and their metabolites. Corresponding data were
obtained in mice treated with a single drug (TRZ or ARI) (data not shown). No medications
or metabolites were detected in the vehicle-treated animals.
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Figure 4. ARI and TRZ are detected in the serum and seven peripheral organs. Polypharmacy
treatment ARI (2.5 mg/kg) + TRZ (10 mg/kg) data are reported. Symbols represents ARI, TRZ, or
metabolite concentration in a single ARI + TRZ-treated sample. Both drugs and their metabolites
were detected in serum and peripheral organs.

3.4. ARI and TRZ Increased 7-DHC in a Synergistic Fashion in Serum, Liver, and Spleen and
Decreased DES in All Sample Types

CHOL, 7-DHC, DES, and LAN levels were assessed in the serum and seven peripheral
organs of vehicle- and drug-treated mice. When compared to VEH-group, both ARI
and TRZ animal groups had significantly increased 7-DHC concentrations. Moreover,
ARI + TRZ treatment caused significant synergistic 7-DHC increase in serum, liver, and
spleen samples, when compared to single ARI and TRZ effects alone (Figure 5). In the
other tissues, the combined treatment of ARI + TRZ resulted in summation. Moreover, 7-
DHC/CHOL ratio was increased upon all treatments (Figure S4), with the highest increase
observed in serum, liver, and spleen.
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Figure 5. Combined ARI and TRZ treatment results in summative or synergistic increase in 7-DHC
levels. X axis represents treated groups, Y axis denotes 7-DHC concentration normalized to nmol/mL
(serum) or nmol/mg of protein (tissues). Black asterisk denotes significance compared to baseline
levels. ** p < 0.01, *** p < 0.001, **** p < 0.0001. 7-DHC fold changes over vehicle treatment are
presented in Figure S5, upper panel.

DES levels were significantly decreased in serum and all examined organs upon
single and combined treatments compared to VEH-treated group (Figure 6). In peripheral
organs, ARI increased 7-DHC concentrations 4–16-fold, TRZ caused 5–10-fold increase
while combined ARI + TRZ treatment caused 7–38-fold increase. DES decrease mirrored
7-DHC changes, with ARI + TRZ treatment causing the most prominent decrease in serum
and examined organs. ARI caused average overall DES to decrease by 39%, TRZ by 46%
and ARI + TRZ by 52% across serum and peripheral organs (Figure S5, lower panel).

Mean concentrations of 7-DHC and DES in all groups for serum and seven analyzed
peripheral organs are presented in Table 1. Serum and all organs were affected by all three
different treatments, however combined ARI + TRZ treatment caused synergistic 7-DHC
increase in spleen (38-fold increase), serum (34-fold increase), and liver (25-fold increase)
(Figure S5, upper panel). Strongest effect on DES was observed in serum (56% decrease)
and spleen (52% decrease), while the least affected was pancreas (16% decrease) (Figure S5,
lower panel). LAN or CHOL levels were unchanged (data not shown). Compared to
cell cultures which are actively dividing, cholesterol in organs did not change because
cholesterol synthesis is very tightly controlled due to its highly important metabolic and
structural role [25,26].
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Table 1. Sterol levels in serum and peripheral organs of mice treated with ARI, TRZ, or ARI + TRZ.
Serum levels are expressed as nmol/ml ± SEM, values for all organs are expressed as nmol/mg of
protein ± SEM.

Sample Treatment 7-DHC ± SEM DES ± SEM

Se
ru

m
(n

m
ol

/m
L)

VEH 0.136 ± 0.011 0.975 ± 0.050

ARI 1.754 ± 0.263 0.425 ± 0.010

TRZ 1.194 ± 0.107 0.388 ± 0.016

ARI + TRZ 4.616 ± 0.189 0.353 ± 0.008
Li

ve
r

(n
m

ol
/m

g)

VEH 0.012 ± 0.001 0.036 ± 0.003

ARI 0.115 ± 0.015 0.023 ± 0.002

TRZ 0.077 ± 0.006 0.024 ± 0.005

ARI + TRZ 0.311 ± 0.012 0.015 ± 0.002

Sp
le

en
(n

m
ol

/m
g)

VEH 0.007 ± 0.0004 0.101 ± 0.003

ARI 0.120 ± 0.013 0.049 ± 0.001

TRZ 0.076 ± 0.004 0.043 ± 0.001

ARI + TRZ 0.285 ± 0.015 0.036 ± 0.002

K
id

ne
y

(n
m

ol
/m

g)

VEH 0.053 ± 0.003 0.047 ± 0.002

ARI 0.252 ± 0.020 0.030 ± 0.002

TRZ 0.219 ± 0.013 0.026 ± 0.001

ARI + TRZ 0.357 ± 0.011 0.025 ± 0.002

Lu
ng

(n
m

ol
/m

g)

VEH 0.019 ± 0.001 0.100 ± 0.005

ARI 0.183 ± 0.014 0.052 ± 0.002

TRZ 0.184 ± 0.008 0.047 ± 0.002

ARI + TRZ 0.376 ± 0.015 0.041 ± 0.004

A
dr

en
al

gl
.

(n
m

ol
/m

g)

VEH 0.010 ± 0.003 0.074 ± 0.006

ARI 0.049 ± 0.004 0.045 ± 0.002

TRZ 0.059 ± 0.004 0.036 ± 0.002

ARI + TRZ 0.107 ± 0.004 0.035 ± 0.001

H
ea

rt
(n

m
ol

/m
g)

VEH 0.009 ± 0.0003 0.036 ± 0.001

ARI 0.032 ± 0.003 0.024 ± 0.002

TRZ 0.045 ± 0.008 0.024 ± 0.004

ARI + TRZ 0.061 ± 0.009 0.019 ± 0.001

Pa
nc

re
as

(n
m

ol
/m

g)

VEH 0.003 ± 0.0001 0.021 ± 0.001

ARI 0.022 ± 0.002 0.018 ± 0.001

TRZ 0.022 ± 0.003 0.014 ± 0.001

ARI + TRZ 0.048 ± 0.003 0.016 ± 0.001
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Figure 6. ARI and TRZ treatment effects on DES levels in the serum and seven peripheral organs of
mice. Each symbol represents a sample from a single mouse. X axis represents treatment groups, Y
axis represents DES concentration normalized to nmol/mL (in the case of serum) or nmol/mg of
protein. Black asterisk denotes comparison to untreated baseline levels. Two-tailed groupwise t-test
was used for statistical comparisons, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Note the
strong DES decrease by all treatments. Percentage of DES decrease for each sample type is presented
in Figure S5, lower panel.

4. Discussion

Psychiatric therapies often encompass simultaneous use of multiple psychotropic
medications due to complexity of symptoms, unresponsiveness, or symptom resistance
of patients to treatment [2]. Up to 30% of psychiatric patients are treated with two or
more psychotropic medications [37,38], with many side-effects reported. Unfortunately, the
majority of these studies were not able the address the underlying molecular mechanisms
resulting in the adverse effects.

The side-effects of antipsychotic polypharmacy treatments have been mostly attributed
to the molecular mechanisms related to their main effect, which is achieved by modulat-
ing the activity of membrane-embedded proteins in the brain (e.g., receptors and trans-
porters) [39]. Our study offers an alternative explanation for at least a subset of the side
effects of the ARI-TRZ polypharmacy: their sterol biosynthesis modulating effect through
inhibition of the DHCR7 enzyme activity. The DCHR7 inhibition leads to sharp rise in
7-DHC, which undergoes spontaneous peroxidation and gives rise to 7-DHC derived oxys-
terols, such as DHCEO. These 7-DHC derived oxysterols are biologically active compounds
and can affect cell viability and growth [24,40,41].

Notably, DHCR7 inhibition by ARI and TRZ affects all tissues of the body, and 7-DHC
elevation appears to be a hallmark in every organ we investigated. Thus, ARI and TRZ
side effects in the CNS can be related to their main receptor-targeting mechanism, or (at
least partially) could be explained by depletion of cholesterol, altered endocytosis and
trafficking of receptors [42]. We propose that their potential effects on the body organs
could be independent of their membrane protein binding, as the peripheral organs we
investigated showed a uniform sterol biosynthesis inhibiting response. ARI is partial
agonist of dopamine D2 receptors [43], while TRZ works through plethora of receptors
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and transporters (serotonin, histamine, adrenalin/noradrenalin) [44]. Nevertheless, many
of these receptors are found at the periphery [45,46], and we cannot fully exclude the
possibility that the sterol biosynthesis inhibiting effects arise by this mechanism.

Regardless of the exact mechanism of action, our data raise an important question:
What are the possible clinical side effects of these medications in the periphery and what a
clinicians can do to avoid them? To answer this question confidently, we first need to estab-
lish a catalogue of prescription medications with a 7-DHC elevating side effects [47–49],
and try to avoid their simultaneous use [2,50,51], especially in patients with the DHCR7+/-

genotype [52] (who already have a baseline elevation of 7-DHC). However, based on the
available data showing that concurrent use of 7-DHC elevating beta-blockers and psy-
chotropic medications [53,54] can have adverse cardiac effects in patients [55], we suggest
that clinical side effects could be related to heart muscle function [56]. Furthermore, the
organ-specific side effects might depend on the exact combination of prescription polyphar-
macy, defined by the medications’ target organ to a large degree [55,57–59].

A uniform sterol biosynthesis inhibiting response to ARI and TRZ at the periphery
also opens a question if the sharp rise in 7-DHC levels have ultimately unwanted effects
on the functioning of all somatic organ systems. At the current time, we cannot answer
this question with certainty, and this should be investigated in follow-up studies. However,
psychiatric patients treated with multiple psychotropic medications often develop different
metabolic disturbances [1,60,61], and we hypothesize that the 7-DHC elevation we observed
might be a contributing mechanism to this unwanted clinical outcome.

Potentially, pancreatic beta cell and glucose reabsorbing structures in the proximal
tubules are the two most reactive oxygen species (ROS) sensitive tissues related to the
development of metabolic syndrome, which can be damaged by 7-DHC [62,63]. Moreover,
there are reports that link the oxidative stress pathway and cholesterol-induced apoptosis
of beta cells [64], or proximal tubules acute stress response and dysregulation of cholesterol
synthesis [65]. The possibility that ARI and TRZ act directly on cholesterol metabolism in
macrophages, provoking a low-grade inflammation, and the development of metabolic
syndrome should not be ignored [66]. Here, should be emphasized that the greatest
increase in 7-DHC was found in the spleen. Due to the interconnectedness of glucose and
cholesterol metabolisms [67], and cholesterol imbalance in all observed organs, systemic
changes leading toward a vicious circle that ultimately results in metabolic syndrome
cannot be excluded. As a result, we propose that in patients with chronic ARI and TRZ use
the development of non-alcoholic liver steatosis, dyslipidemia, low-grade inflammation,
muscle insulin resistance and changes in the stress response should be monitored.

We and others have previously documented the strong sterol biosynthesis inhibitory ac-
tivity of ARI and TRZ on the developing and adult brain, neurons, and astrocytes [19,20,49,68]
across various in vitro and in vivo models. Furthermore, it is apparent that the same 7-
DHC elevating effects of TRZ can be also observed in human blood and postmortem
brain [18,19,54,69]. Our current findings raise the possibility that the 7-DHC elevating
effects of ARI and TRZ can impact the development of other tissues beyond the CNS. We
know that the developmental disorder known as Smith-Lemli-Opitz syndrome (SLOS),
a condition arising from two mutant copies of the DHCR7 gene, is characterized by mal-
formations in multiple organ systems. In SLOS, the sharp elevation of 7-DHC (together
with reduced cholesterol levels) disrupts systemic development of the offspring, potentially
through interference with the sonic hedgehog (Shh) signaling [26,70,71]. In addition, recent
human population studies suggest that DHCR7 inhibiting medications could be considered
teratogens [72]. Thus, one should consider the potentially harmful effects of maternal ARI
and TRZ utilization on the various organ systems of the offspring, not only the CNS.

In most of the somatic organs and tissues examined we observed a summation or
synergy on the 7-DHC elevating effects of ARI and TRZ polypharmacy. These findings,
although observed in mouse tissues, are likely to translate to human physiology: the ARI-
TRZ synergy/summation effect on DHCR7 inhibition is also seen in two human cell lines
(HepG2 and human fibroblasts) and one mouse cell line (Neuro2a). In particular, peripheral
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human dermal fibroblasts represent a very powerful tool to investigate the translation
potential of findings between mouse and human and has been successfully used to identify
many critical physiological and pathophysiological processes in CNS, cardiovascular, and
other research areas [73–76]. In addition, the translational value of our findings is further
underscored by the conserved sterol biosynthesis pathway between the two species [77].

Our findings also raise multiple other mechanistic questions. First, we observed
a synergistic effect of ARI-TRZ polypharmacy on 7-DHC in some tissues and in vitro
systems, while noted a summative effect in others. The reasons for the differences behind
the two responses remains unknown at the current time and can be related to differences
in local sterol biosynthesis, clearance, antioxidant mechanisms, gene expression profile,
epigenetic programming through ROS signaling, metabolic specificities, or other factors.
Similarly, while DHCR7 inhibition should theoretically affect both 7-DHD conversion
to DES and 7-DHC conversion to CHOL (Bloch vs. Kandutsch–Russell pathway), the
synergistic/summative effects are only observed in changes of 7-DHC amounts, and not
DES levels.

5. Conclusions

In conclusion, both ARI and TRZ, either alone or in polypharmacy, strongly inhibit
sterol biosynthesis and lead to elevation in 7-DHC levels and reduction in DES across
all the somatic tissues we investigated. This is perhaps not achieved by their receptor
binding action, but through inhibiting DHCR7 enzyme activity. This interference with
sterol biosynthesis can potentially interfere with functioning or development of multiple
organ systems, warranting further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12101535/s1, Figure S1. Dose-dependent effects ARI, TRZ
and ARI + TRZ on sterol levels in HepG2 cells; Figure S2. Dose-dependent effects ARI, TRZ and
ARI + TRZ on sterol levels in Neuro2a cells; Figure S3. Dose-dependent effects ARI, TRZ and
ARI + TRZ on sterol levels in human dermal fibroblasts; Figure S4. 7-DHC/CHOL ratio across serum
and peripheral organs of TRZ, ARI and TRZ + ARI treated mice; Figure S5. 7-DHC and DES changes
across the mice serum and organs as a result of ARI, TRZ and ARI + TRZ treatment.
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