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Abstract

Oxidative stress is known to be involved in and possibly a key driver of the development of numerous chronic diseases, including
cancer. It is highly desired to have a capability to reliably estimate the level of intracellular oxidative stress as it can help to identify
functional changes and disease phenotypes associated with such a stress, but the problem proves to be very challenging. We present a
novel computational model for quantitatively estimating the level of oxidative stress in tissues and cells based on their transcriptomic
data. The model consists of (i) three sets of marker genes found to be associated with the production of oxidizing molecules, the
activated antioxidation programs and the intracellular stress attributed to oxidation, respectively; (ii) three polynomial functions
defined over the expression levels of the three gene sets are developed aimed to capture the total oxidizing power, the activated
antioxidation capacity and the oxidative stress level, respectively, with their detailed parameters estimated by solving an optimization
problem and (iii) the optimization problem is so formulated to capture the relevant known insights such as the oxidative stress level
generally goes up from normal to chronic diseases and then to cancer tissues. Systematic assessments on independent datasets
indicate that the trained predictor is highly reliable and numerous insights are made based on its application results to samples in
the TCGA, GTEx and GEO databases.
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Introduction
Oxidative stress is an essential component and possibly a
driving force of many chronic diseases, including cancer,
Alzheimer disease and diabetes [1]. In cancer, oxidative
stress is believed to be involved in multiple phases of
the disease development, such as cancerous transforma-
tion from normal cells, angiogenesis and metastasis [2].
Generally, the development of any chronic disease may
involve multiple types of stressors like oxidative stress,
hypoxia and pH imbalance. Each of these stressors may
contribute to the development of a disease in distinct
ways. Hence, sorting out the stress types and their levels
present in a disease tissue is highly desired; and having
such a capability could prove to be essential to the full
elucidation of key drivers of many diseases, including
cancer.

The level of oxidative stress refers to the gap between
the total oxidizing power and the antioxidation capacity
available in a cell. Under stressful conditions of any kind,
oxidizing molecules such as reactive oxygen [3, 4] or/and
nitrogen [5, 6] species will be produced intracellularly
and/or by local immune cells. Throughout evolution,

most, if not all cells have developed capacities to cope
with the excessive oxidizing molecules by designated
processes or via moonlighting by certain molecular
species to protect the essential cellular components from
being oxidatively damaged. For example, the glutathione
(GSH) system is the designated antioxidation capability
in human cells. Under severe stressful conditions,
the oxidizing molecules produced may overpower the
designated reducing capacity, leading to oxidative stress.
Our goal here is to develop an algorithm and software for
predicting the level of oxidative stress in a human tissue
or cell based on its gene-expression data.

Several researchers have attempted to tackle this pre-
diction problem, but the issue has proven to be very
challenging [7, 8]. Published studies generally focus on
the prediction of specific biomarkers for oxidative stress
instead of the oxidative stress level, such as carbonylated
proteins [9], oxidized low-density lipoproteins, oxidized
products of lipids like 4-hydroxynonenal and malondi-
aldehyde [10, 11] and protein thiols [12]. These biomark-
ers have two general limitations: (i) they reflect the oxi-
dation level due to specific molecules; and (ii) more
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importantly, they are not suited for large-scale data anal-
yses to study cellular changes associated with oxidative
stress [13].

One key reason for the challenging nature is that some
functional but non-essential molecules could be used to
neutralize the persistently produced oxidizing molecules,
such as lipids, enzymes and ribonucleic acid (RNA) when
the designated antioxidation capacity reaches its limit.
The oxidized levels of such molecules are rather difficult
to estimate based on omic data. Another challenge is that
no omic data with matching experimentally measured
oxidative stress data are publicly available, to the best
of our knowledge, making computational model devel-
opment and validation difficult. Those are probably the
reasons that there are no publicly available computer
servers for making such predictions.

To overcome these challenges, we have taken a broad-
brush systems-level approach. We consider three classes
of marker genes and their expressions to estimate the
levels of the total oxidizing power (O), the activated
antioxidation capacity (R) and the intracellular stress
level attributed to oxidation (OS), respectively. Under
the assumption of OS ≈ O – R, we have estimated
the parameters for integrating the expressions of the
selected marker genes to determine each of the three
quantities through solving an optimization problem. To
reliably assess the quantity of O, we have collected as
many proteins as possible, whose functions are known
to produce oxidizing molecules. To estimate R, we have
considered multiple molecular species known to be
oxidized in cancer tissues, such as lipids, enzymes and
RNA, in addition to the GSH level. For OS, we have
assessed several pathways whose levels reflect the
oxidative stress level. A non-linear model is developed,
which is most consistent with the expressions of the
marker genes in normal tissue samples, non-cancerous
disease and cancer tissues as well as our knowledge
about the general stress levels across these tissue types.

Systematic analyses and validation of the trained pre-
dictor on transcriptomic data of normal, human disease
tissues and cancer tissues of different types indicate
that the predictor represents a reliable tool for accurate
prediction of the oxidative stress level in human tissues,
diseased or normal, which should be useful for studies
of a wide range of biological problems associated with
oxidative stress.

Results
Model construction
We use the following to model the (intracellular) level of
oxidative stress:

OS = O − R, (1)

where O is the average production rate of all the major
oxidizing molecules in a tissue, R is the activated antiox-
idation capacity in the same tissue and OS denotes the
oxidative stress level. Our first goal is to identify three
sets of marker genes: MG-O, MG-R and MG-S whose

integrated expression levels well reflect the above three
quantities, O, R and OS, respectively, so that either side of
Equation (1) can be regarded as an estimate of the overall
oxidative stress level.

We have examined and collected all genes whose pro-
teins are known to produce oxidizing molecules, includ-
ing immune cell genes whose proteins produce superox-
ide [14] and H2O2 that can diffuse into cells via chloride
channels and aquaporins [15]; electron transport chain
complexes I and III [16] that can diffuse into cytosol via
VDACs [17]; intracellular NADPH oxidases [2]; nitric oxide
synthases, which catalyze nitric oxide-generating reac-
tions [18]; genes relevant to lipid peroxidation, a process
that produces reactive intermediates when electrons are
taken away from lipids [19]; cytosolic Fenton reaction,
known to be a major electron sink that drives continuous
Fenton reaction [20] and the other oxidase genes such as
the cytochrome P450, monoamine oxidase, D-amino acid
oxidase, myeloperoxidase, protein-methionine sulfoxide
oxidase and lysyl oxidase [2].

As for the antioxidation capacity, we consider both the
designated antioxidative enzymes, such as SOD, CAT, GPX
and PRDX, enzymes crucial in the syntheses of GSH and
TXN1/2, the two designated antioxidation systems, and
other molecular species known to serve as moonlighting
scavengers for oxidizing molecules such as lipids [21, 22],
proteins [23–25] and RNA [26, 27], which have different
levels of reductive propensities and hence been used
when the oxidative stress reaches beyond certain levels,
resulting in their damages. Considering that there are no
direct marker genes for reflecting the levels of damages
of these molecular species, we have used the expression
levels of the degradation and/or repair genes for each
class of such biomolecules to approximate their damage
levels and hence the level for scavenging of oxidizing
molecules.

To assess the oxidative stress level, we have collected
all the genes annotated to be stress-related, including
genes related to the ER stress [28, 29], unfolded protein
response [30], apoptosis [30, 31] and necrosis [32, 33]. The
expressions of these genes may reflect stresses due to
other reasons such as hypoxia or pH imbalance. To deal
with this issue, we have applied a set of selection criteria
(Materials and Methods) to choose the gene list MG-S.
To check the validity of this selection, we note that the
first principal component of the selected genes correlates
with 96% of MG-S genes having Pearson Correlation Coef-
ficient (PCC) > 0.5, providing strong evidence that the
selected gene set is highly coherent and hence possibly
due to the same cause. The detailed gene lists MG-O, MG-
R and MG-S, along with the biological function of each
gene, are summarized in Supplementary Tables S1 and
S2 available online at https://academic.oup.com/bib.

Now, Equation (1) for each sample can be written as

F1 (x1, . . . , xr) = F2
(
y1, . . . , ym

) − F3 (z1, . . . , zn) (2)

where {xi}, {yj} and {zk} are the expressions of the marker
genes in MG-S, MG-O and MG-R, with r, m and n being
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the numbers of genes in the three gene sets, respectively;
and F1(), F2() and F3() are (to be determined) functions for
integrating the expression levels of the selected genes
for oxidative stress, oxidizing molecule production and
antioxidation molecules, respectively.

Model parameterization
Our goal here is to train a model for predicting the
oxidative stress level in each given sample based on the
genes selected above and their expressions in the training
dataset. Let {xi}, {yk} and {zp} be the expressions of the
marker genes in MG-S, MG-O and MG-R, respectively, and
X be the set of normal tissues, Y be the cancer-adjacent
control tissues and Z be the cancerous tissues in our
training data. Assume that F1(), F2() and F3() can each be
reliably approximated using a quadratic function defined
over MG-S, MG-O and MG-R, respectively:

F1
({ai} ,

{
bi,j

}) = ∑
0<i≤r aixi + ∑

0<i,j≤r,i �=j bi,jxixj

F2
({ck} ,

{
dk,l

}) = ∑
0<k≤m ckyk + ∑

0<k,l≤m,k�=l dk,lykyl

F3
({

ep
}

,
{
fp,q

}) = ∑
0<p≤n epzq + ∑

0<p,q≤n,p �=q fp,qzpzq

(3)

with {ai}, {bi,j}, {ck}, {dk,l}, {ep} and {fp,q} being unknown
parameters to be determined through solving the
following optimization problem over the training data.
Now the goal is to select values for these parameters
that minimize the following function:

min
α, β,

{ai},
{
bi,j

}
, {ck},

{
dk,l

}
,
{
ep

}
,
{
fp,q

}

∑

s∈X∪Y∪Z

(F1(s) − (αF2(s) − βF3(s)))2

subject to:

1. 0 < F1(s) ≤ C1 for s ∈ X,
2. C1 < F1(s) ≤ C2 for s ∈ Y,
3. C2 < F1(s) ≤ C3 for s ∈ Z,
4. 0 < α, β,
5. 0 ≤ ∂F1(s)

∂xi
for each xi and s ∈ X ∪ Y ∪ Z,

6. 0 ≤ ∂F2(s)
∂yj

for each yj and s ∈ X ∪ Y ∪ Z,

7. 0 ≤ ∂F3(s)
∂zk

for each zk and s ∈ X ∪ Y ∪ Z,

where α and β are two to-be-determined scaling
factors. Constraints 1–3 enforce that the to-be-derived
F1() should have higher values for cancer samples than
those for cancer-adjacent disease samples, which should
have higher values than normal samples. Constraints 5–
7 require that Fi () should be a monotonic function with
respect to each variable for i = 1, 2, 3.

In the current study, F1() has 36 variables, F2() has 49
and F3() has 58, giving rise to a total of 143 constraints
under Constraints 5–7. The three functions are trained
using gene-expression data of a total of 16 718 samples,
consisting of 5620 normal tissues from 18 organs in
the GTEx database, 742 cancer-adjacent control samples
and 10 356 cancer samples, both from TCGA. This opti-
mization problem is solved as a quadratic programming
problem using Python software package SciPy optimize
[34].

The trained parameters α, β, {ai}, {bi,j}, {ck}, {dk,l}, {ep}
and {fp,q} that give rise to the minimum solution to
the above objective function are given in
Supplementary Table S3 available online at https://
academic.oup.com/bib. To demonstrate the stability of
our solved parameters, we have randomly partitioned
the training dataset into two halves and solved the
minimization problem over each half of the dataset; and
repeated this 50 times. Figure 1A shows the 100 min-
imum values for the 100 different datasets, indicating
that our trained predictor is highly stable. Figure 1B–D
and Supplementary Figure S1A–H, available online
at https://academic.oup.com/bib, show the predicted
oxidative stress levels in 3658 normal tissues, 667 cancer-
adjacent tissues and 6762 cancer tissues from GTEx and
TCGA, respectively.

Model validation
We have applied the trained predictor to several tissue/
cell-based gene-expression datasets, not involved in our
model training, whose (relative) levels of oxidative stress
are known.

Cell samples treated with H2O2 versus controls

H2O2 is an oxidizing molecule commonly associated with
oxidative stress. We have tested our predictor on gene-
expression data in dataset GSE143155 retrieved from
the GEO database, which consists of 12 neuron samples
treated with 800 μM H2O2 for 17 h and 18 untreated
samples. Our predictor accurately predicted that the 12
treated samples have considerably higher levels of oxida-
tive stress than the untreated samples, as shown in
Figure 2A. We also carried out similar validations on
other two datasets (GSE6607 and GSE10896) to show that
our predictor performs equally well on datasets indepen-
dently collected under different levels of oxidative stress,
as shown in Figure S5.

Tissue samples from smokers versus non-smokers

It is known that long-time cigarette smoking leads to
oxidative stress in lung airways [35, 36]. We have tested
our predictor on gene-expression data in GSE10006, also
from GEO, which consists of 20 large-airway and 18
small-airway tissues of smokers and nine large-airway
and 13 small-airway tissues of non-smokers. Our model
predicts that the smoker samples have significantly
higher levels of oxidative stress than those of the non-
smokers, as shown in Figure 2B. We also tested the
predictor on gene-expression data in GSE37768 from GEO,
consisting of peripheral lung tissues from 11 smokers
and 9 non-smokers. Again, the smoker samples have a
significantly higher level of oxidative stress than those
of the non-smokers, as shown in Figure 2C.

Early versus advanced chronic obstructive pulmonary
disease tissues

Chronic obstructive pulmonary disease (COPD) is a pro-
gressive lung disease and oxidative stress is a known con-
tributing factor [37, 38]. We have applied our predictor to
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Figure 1. Model validation. (A) The density distribution of the 100 minimum values of the objective function for 100 simulations. The x-axis is for the
minimized objective value achieved over randomly selected 50% of the training data and the y-axis is for the density of each achieved objective value
over 100 runs (Note: the pink color has no special meaning). Heatmaps for predicted production rates of oxidizing molecules (O), activated capacity
for antioxidation molecules (R) and the oxidative stress level (OS) across normal, cancer-adjacent, and cancer tissue samples of different organs: (B)
Liver tissues, (C) stomach tissues and (D) colorectal tissues. Results for eight other organs are shown in Supplementary Figure S1 available online at
https://academic.oup.com/bib.

Figure 2. (A) Boxplots of predicted oxidative stress levels on samples treated with H2O2 versus untreated. (B) Boxplots of the predicted oxidative stress
levels on airway samples of smokers versus non-smokers. (C) Boxplots of the predicted oxidative stress levels in lung tissues of smokers versus non-
smokers. (D) Boxplots of the predicted oxidative stress levels in early versus advanced COPD samples. (E) Boxplots of the predicted oxidative stress levels
in Barrett’s esophagus (BE) versus esophageal adenocarcinoma (EA) tissues. (F) Boxplots of predicted oxidative stress levels in IBD versus CRC samples.
(G) Boxplots of predicted oxidative stress levels in HBV versus HCC samples. (H) Boxplots of predicted oxidative stress levels in gastritis versus gastric
neoplasia samples.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac206#supplementary-data
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Table 1. PCCs between the predicted oxidative stress levels and Cys-p and Cys-t across each of the four types of tissue samples

Normal Cancer-adjacent Primary cancer Metastatic cancer

PCC between Cys-t and OS level 0.5 0.4 0.77 0.79
PCC between Cys-p and OS level 0.52 0.35 0.43 0.31

Table 2. PCCs between cysteine statistics and estimated
oxidative stress levels across different organs

Organ Cys-p Organ Cys-t

Brain 0.937 Pancreas 0.763
Adrenal gland 0.908 Adrenal gland 0.692
Kidney 0.905 Stomach 0.688
Thyroid 0.743 Liver 0.686
Breast 0.715 Brain 0.686
Bladder 0.701 Prostate 0.674
Esophagus 0.697 Esophagus 0.663
Bone marrow 0.692 Colorectal 0.644
Ovary 0.685 Lung 0.607
Cervix 0.677 Breast 0.538
Uterus 0.586 Lymph nodes 0.509
Stomach 0.57 Ovary 0.483
Testis 0.539 Bladder 0.441
Liver 0.501 Kidney 0.404
Prostate 0.487 Cervix 0.25
Colorectal 0.232 Bone marrow 0.195
Lung 0.191 Testis 0.149
Pancreas -0.724 Thyroid 0.119

the gene-expression data in GSE10006 in GEO, consisting
of 13 small-airway tissues of early COPD patients and 14
samples of advanced COPD patients. Figure 2D displays
our prediction results, showing that the oxidative stress
levels in early disease samples are consistently lower
than the advanced ones as expected.

Oxidative stress versus cysteine metabolism

Amino acid cysteine plays key antioxidation roles
since its sulfur atom can donate up to eight electrons
[39]. We have assessed the relationships between the
predicted oxidative stress levels and the intracellular
levels of cysteine over the 16 718 tissues discussed
earlier, with 5620 normal, 742 cancer-adjacent, 9962
primary cancer tissues and 394 metastatic cancer
tissues (Supplementary Tables S4B and C available
online at https://academic.oup.com/bib). We have used
the following two quantities to reflect the intracellular
cysteine level: Cys-p for the total number of cysteine
residues in all the expressed proteins and Cys-t for the
total expression level of cysteine importers (Materials
and Methods). Tables 1 and 2 list the PCCs between the
predicted oxidative stress levels and Cys-p and Cys-t
across each of the four types of tissue samples.

We note that (i) the predicted oxidative stress levels
strongly correlate with both Cys-p and Cys-t; (ii) when
the oxidative stress level increases, different organs uti-
lize different ways to use cysteine as a response. Some
organs, like thyroid and testis, produce more cysteine-
containing proteins, while some organs, such as pancreas

and lung, import more cysteines into the cells, which
could be used for GSH syntheses. Most organs, including
brain and adrenal gland, do both.

Overall, these validation results provide strong sup-
porting evidence that our predictor is a reliable tool for
estimating the oxidative stress level in both cell and
tissue samples.

Model application
We have applied the validated predictor to numerous
disease tissues of different types and made a number of
discoveries.

Oxidative stress in chronic diseases versus corresponding
cancers

We have studied the oxidative stress levels in a few
chronic diseases and cancers in the same organ types.
The following summarizes our findings.

Barrett’s esophagus versus esophageal adenocarcinoma

Barrett’s esophagus is known to be precancerous. We
have applied our predictor to the gene-expression data in
GSE26886 of GEO, which consists of 20 Barrett’s esopha-
gus tissues and 21 esophageal adenocarcinoma tissues.
The esophageal adenocarcinoma tissues have signifi-
cantly higher levels of oxidative stress than Barrett’s
esophagus tissues, as predicted by our predictor and
detailed in Figure 2E. This result is consistent with pub-
lished studies [40–42].

Inflammatory bowel disease (IBD) versus colorectal cancer
(CRC)

A similar study was conducted between IBD and CRC
tissues. We have applied our predictor to the gene-
expression data in GSE4183 of GEO, consisting of 15 IBD
samples and 15 CRC samples. As expected, CRC tissues
have higher oxidative stress levels than the IBD samples,
as shown in Figure 2F.

Chronic hepatitis B virus (HBV) infection versus
hepatocellular carcinoma (HCC)

We have compared the oxidative stress levels between 21
pairs of HCC and non-neoplastic HBV-infected liver tis-
sues using gene-expression data in GSE94660 from GEO.
As shown in Figure 2G, the oxidative stress levels of HCC
samples are significantly higher than the HBV-infected
non-cancerous samples, as predicted by our predictor.

Gastritis versus gastric neoplasia

We have predicted and compared the oxidative stress lev-
els between 31 pairs of precancerous gastric lesions and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac206#supplementary-data
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non-neoplastic gastritis samples using gene-expression
data in GSE130823 from GEO. As shown in Figure 2H,
the oxidative stress levels in precancerous samples are
significantly higher than in the non-cancerous samples.

Oxidative stress levels across different cancers

We have estimated the levels of oxidative stress over
10 336 tissue samples of 33 cancer types and 742 cancer-
adjacent control samples from TCGA and 5620 normal
samples of 18 organs from GTEx and derived the follow-
ing information.

Oxidative stress level versus survival rate

We have considered all samples of 16 of all the
33 cancer types in TCGA, each having at least 100
samples with survival data to study the relation-
ship between the oxidative stress level and the sur-
vival rate (Supplementary Table S5 available online at
https://academic.oup.com/bib). For each cancer type, we
divide all its samples into two groups: samples whose
predicted oxidative stress levels are among the top
50% of all cancer samples and the remaining 50%. Our
finding is that for 11 of the 16 cancer types, the more
oxidatively stressed cancer tissues have significantly
lower survival rates compared to the less oxidatively
stressed tissues (P-value < 0.1), as shown in Figure 3A
and B and Supplementary Figure S2A–N available online
at https://academic.oup.com/bib.

We have predicted the oxidative stress levels for
all cancer tissues of all cancer types in TCGA with
matching organs in GTEx, resulting in 22 cancer types
(Supplementary Table S6 available online at https://
academic.oup.com/bib). For each of these cancer types,
we have used the median of the oxidative stress levels
predicted for the GTEx samples of each organ as the
baseline oxidative-stress level, Bc of the organ. We note
that the ratio OS/Bc provides a strong indicator for 5-year
survival as shown in Figure 3C and D, where OS is the
average oxidative stress level across all cancer tissues of
each cancer type under consideration.

For the considered 22 cancer types, we have conducted
regression analyses of the average 5-year survival rate
against OS and OS/Bc, respectively. As shown in Figure 3C
and D, the normalized oxidative stress level (with respect
to Bc of the organ) is a better predictor for survival com-
pared to the absolute oxidative stress level. The linear
regression analysis against OS/Bc achieves R2 = 0.33 with
a P-value of 0.005, while the linear regression analysis
against OS is not as good with P-value being 0.33.

For each of the 22 cancer types, we have conducted a
regression analysis of its average 5-year survival rate y
against v1 = OS/Bc of the cancer type and v2 = Bc of the
organ, as below:

y = 2.49 − 0.30v1 − 6.56v2 + 9.63v2
2 − 4.45v3

2

which achieves R2 = 0.46 with a P-value of 0.03.

Oxidative stress level versus cancer stage

We have examined how the oxidative stress level changes
as a cancer progresses. Specifically, we have considered
all cancer types in TCGA having at least 10 tissue samples
for each of the four stages, resulting in a total of 10
cancer types (Supplementary Table S7 available online at
https://academic.oup.com/bib). Our results revealed that
in 8 of the 10 cancer types except for KIRC and SKCM, the
oxidative stress level averaged over all samples generally
increases with stage, with at most one stage out of order,
as shown in Figure 4A–C and Supplementary Figure S3A–
G available online at https://academic.oup.com/bib.

Oxidative stress level versus cancer grade

A similar analysis is conducted between oxidative stress
levels versus cancer grades. Out of all cancer types in
TCGA, 11 types have grade information, totaling 2976
samples (Supplementary Table S8 available online at
https://academic.oup.com/bib). For each cancer type, we
divide all samples into two groups: low-grade (G1 and
G2) and high-grade (G3 and G4). We note that the level of
oxidative stress goes up from the low-grade to the high-
grade group in 8 of the 11 cancer types with exception
of ESCA, KIRC and STAD, as shown in Figure 4D–F
and Supplementary Figure S4A–H available online at
https://academic.oup.com/bib. The result suggests that
the oxidative-stress level may play an important role in
dictating the grade of a cancer, a novel insight into the
best of our knowledge.

Oxidative stress versus cancer metastasis

It has been suggested that metastasis represents a sur-
vival strategy for cancer cells to escape from the exces-
sive reactive oxygen species in their primary sites [43].
We have calculated the first principal component of the
expression data of all epithelial–mesenchymal transition
(EMT)-related genes (Supplementary Table S9 available
online at https://academic.oup.com/bib) across all 10 336
cancer samples in TCGA and noted that the PCC between
the first principal component of the EMT genes and the
predicted oxidative stress levels is 0.80 with a P-value of
<10−5.

We have then studied three cancer types in TCGA, each
having at least five non-metastatic primary cancer sam-
ples and at least five samples known to have metasta-
sized to a distant organ (Supplementary Table S10 avail-
able online at https://academic.oup.com/bib). We note
that the predicted oxidative stress levels for samples
known to have metastasized are considerably higher
than the samples not metastasized yet in all three cancer
types (Figure 4G–I). This and the above result strongly
suggest that oxidative stress is highly involved in cancer
metastasis.

To further support this postulation, we have applied
our predictor to another independent dataset GSE7553 in
GEO, with 40 melanoma samples known to have metas-
tasized and 14 that have not metastasized. Again, the
samples that have metastasized have a considerably

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac206#supplementary-data
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Figure 3. Oxidative stress level versus survival rate. Survival curves for patients in the low oxidative stress group (blue) and in the high oxida-
tive stress group (pink) for (A) UCEC and (B) LGG. Results for 14 other cancer types are shown in Supplementary Figure S2 available online at
https://academic.oup.com/bib. (C) Relationship between the absolute oxidative stress and five-year survival rate across 22 cancer types. The x-axis
is for the median values of the predicted oxidative stress (OS) for 22 cancer types, and the y-axis is for the 5-year survival rate. (D) Relationship between
the normalized oxidative stress and the five-year survival rate across 22 cancer types. The x-axis is for the ratio between the median values of the
predicted oxidative stress for 22 cancer types and the baseline oxidative stress in each organ: OS/Bc, and the y-axis is for the 5-year survival rate.

higher level of oxidative stress than those that have not
metastasized (Figure 4J).

Discussion
A novel and general framework for estimating the intra-
cellular oxidative stress level in human tissue or cell
samples is presented, the first of its kind based on the
best of our knowledge. The novel idea lies in estimating
three main quantities: the total oxidizing power, the acti-
vated antioxidation capacity and the intracellular oxida-
tive stress through the selection of three sets of marker
genes and integrating them via solving an optimization
problem.

To accurately estimate each of the three quantities, we
have methodically gone through all the human protein-
encoding genes and assessed their relevance to any of
the three quantities for inclusion. Under the assump-
tion that each of the three quantities can be reliably
approximated as a quadratic function of its contributing
genes, we have formulated the problem of estimating
the oxidative stress level as a quadratic programming
problem and solved it rigorously. The validity of the
predictor is assessed over a large number of validation
and application problems as the prediction results are
highly consistent with numerous published experimen-
tal datasets and our general understanding about the
relevant biology.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac206#supplementary-data
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Figure 4. Boxplots of the predicted oxidative stress levels for different cancer stages, grades and primary versus metastatic cancers. Boxplots of
predicted oxidative stress levels for different cancer stages in (A) COAD, (B) KIRP and (C) LUAD. Results for seven other cancer types are shown in
Supplementary Figure S3 available online at https://academic.oup.com/bib. Boxplots of predicted oxidative stress levels for different cancer grades in (D)
LGG, (E) LIHC and (F) UCEC. Results for eight other cancer types are shown in Supplementary Figure S4 available online at https://academic.oup.com/bib.
Boxplots of predicted oxidative stress levels in primary and corresponding metastatic cancers in (G) BRCA, (H) SKCM, (I) THCA and (J) GSE7553.

A key reason that we have modeled the three quan-
tities as quadratic functions instead of higher-degree
polynomial functions is largely limited by our computing
power as the number of constraints under Constraints 5–
7 will be considerably increased if cubic or higher-degree
polynomial functions are used, making direct applica-
tions of the quadratic programming solver infeasible. We
anticipate that this is not an unsolvable issue as two
approaches are currently being undertaken, with one
through simplification of the current model via ana-
lytic methods to reduce the number of constraints and
another through seeking collaboration with labs with
more powerful computing power.

A few discoveries are made, enabled by this new pre-
dictor. Human cells seem to have a great capacity to cope

with oxidative stress for survival through employing non-
designated molecules to neutralize the increasing oxi-
dizing power when the designated antioxidation systems
are saturated as in the case of utilizing increasingly more
cysteine-containing proteins when coping with increas-
ing oxidative stress levels. There have been numerous
studies on metabolic reprogramming (MR) in cancer [44]
and other diseases but there have not been any system-
atic studies on MRs driven by oxidative stress. We antic-
ipate that the new predictor will enable such studies.

A highly unexpected result is the observation that
oxidative stress may play a driving role in cancer metas-
tasis, a hypothesis postulated by a previous study [45].
This is also consistent with a well-known observation
that more hypoxic cancer tends to have poorer prognosis

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac206#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac206#supplementary-data
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[46] as hypoxia is essentially the other side of the same
coin of oxidative stress since the main reason for hypoxia
in cancer is the large consumption of O2 for producing
oxidizing molecules. We anticipate that systematic stud-
ies to identify all MRs associated with the oxidative stress
could lead to a novel understanding about the cellular
processes leading to metastasis.

We speculate, based on data here and previous studies,
that improved understanding could be enabled by this
new predictor: we could use this model to study the
association between oxidative stress and other issues,
such as cancer occurrence, drug resistance and so on, by
exploring whether oxidative stress is involved and what
roles it plays in these issues [47, 48]. It would facilitate
a better understanding of many biological processes in a
redox perspective.

Compared to related studies, our model represents the
only predictor for predicting the level of intracellular
oxidative stress based on given omic data except for
one predictor our group published two years ago, which
is basically an infant version of the current predictor
[13]. To the best of our knowledge, other predictors are
all for predicting biomarkers for specific types of oxida-
tive stressors such as the carbonylated proteins [9], oxi-
dized low-density lipoproteins and oxidized lipids [10, 11]
rather than predicting the levels of oxidative stress.

It is noteworthy that our predicted stress level is a
numerical value without a physical ‘unit’. This prob-
lem could be potentially resolved through (i) collect-
ing samples with experimentally measured stress lev-
els and matching transcriptomic data; and (ii) calibrat-
ing our predicted stress levels against such measured
stress levels. Unfortunately, there is no publicly available
transcriptome data with matching experimentally mea-
sured oxidative stress, to the best of our knowledge. Also,
the current predictor treats the intracellular stress as a
whole and does not distinguish among stresses in indi-
vidual cellular compartments as some compartments
such as mitochondria may have higher levels of oxidative
stresses compared to other compartments in cancer. This
will be one of the areas that our future work will focus on
to improve.

Materials and methods
Data
RNA-seq data of 11 098 tissue samples of 33 cancer types
were retrieved from the TCGA database, along with those
of 5620 samples from 18 organs from GTEx and 366
samples from eight additional datasets in GEO, which are
detailed in Supplementary Table S4 available online at
https://academic.oup.com/bib.

The recount3 program in the R package was used
for normalization of the RNA-seq data from TCGA and
GTEx [49], so cross-platform gene-expressions can be
compared directly. In addition, GEOquery in R was used
for downloading gene-expression data from GEO.

Molecular Signatures Database and published studies
[1, 2, 20] were used for selecting oxidative stress-related
genes.

Selection of oxidative stress-related genes
We have selected a subset of human genes known to
associate with oxidative stress using the following cri-
teria: (i) they are involved in oxidative stress-induced
processes as collected above and (ii) their expressions
correlate with at least 50% genes involved in the produc-
tion of oxidizing molecules across all the TCGA and GTEx
samples.

Cysteine statistics
We have estimated the intracellular level of cysteine
using two indicators: Cys-p for the total number of cys-
teines present in the expressed proteins and Cys-t for
the total expression level of cysteine importers. For each
expressed protein p, let C(p) be the number of cysteines
in the protein and E(p) be the gene-expression level of
p. Then, Cys-p is defined as follows across all expressed
proteins in each sample:

Cys-p =
∑

p

E(p)C(p)

Cys-t is defined as the total expression level of three
major cysteine importers, namely, SLC7A11, SLC1A4 and
SLC1A5.

Significance test
t-test is used to assess if the oxidative stress levels
between two groups of samples are significantly dif-
ferent. The R function ‘t.test’ is used to calculate the
P-value. The ANOVA test is used to assess if the oxidative
stress levels among more than two different groups are
significantly different. The R function ‘aov’ is used to
calculate the P-value.

Kaplan–Meier survival analysis
The Kaplan–Meier survival analysis is conducted to eval-
uate the difference in survival rates between the group
with high oxidative-stress levels and the group with low
oxidative-stress level using R function ‘survfit’.

Key Points

• The paper presents a novel model for quantitatively
estimating the level of oxidative stress in human tissues
and cells based on their transcriptomic data.

• The novel idea lies in estimating three main quantities:
the total oxidizing power, the activated antioxidation
capacity and the intracellular oxidative stress through
the selection of three sets of marker genes and inte-
grating them via solving an optimization problem. Sys-
tematic assessments indicate that the predictor is highly
reliable.

• Several discoveries have been made, enabled by the new
predictor, such as that oxidative stress may play a driving
role in cancer metastasis.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac206#supplementary-data
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Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.

Data availability
The data used in this study are openly available in
TCGA (https://portal.gdc.cancer.gov/), GTEx (https://
GTExportal.org/home/) and GEO (https://www.ncbi.nlm.
nih.gov/geo/). The code to conduct the simulations and
reproduce the analyses is available at https://github.
com/zaihebian/OXIS-oxidative-stress-predictor.
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