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Abstract: Acral naevi are benign melanocytic tumors occurring at acral sites. Occasionally they
can progress to become malignant tumors (melanomas). The genetics of acral naevi have not been
assessed in larger studies. In our study, a large cohort of 130 acral naevi was screened for gene
mutations known to be important in other naevi and melanoma subtypes by targeted next-generation
sequencing. Mutation status was correlated with clinicopathological parameters. Frequent mutations
in genes activating the MAP kinase pathway were identified, including n = 87 (67%) BRAF, n = 24
(18%) NRAS, and one (1%) MAP2K1 mutations. BRAF mutations were almost exclusively V600E
(n = 86, 99%) and primarily found in junctional and compound naevi. NRAS mutations were either
Q61K or Q61R and frequently identified in dermal naevi. Recurrent non-V600E BRAF, KIT, NF1,
and TERT promoter mutations, present in acral melanoma, were not identified. Our study identifies
BRAF and NRAS mutations as the primary pathogenic event in acral naevi, however, distributed
differently to those in non-acral naevi. The mutational profile of acral naevi is distinct from acral
melanoma, which may be of diagnostic value in distinguishing these entities.
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1. Introduction

Naevi are benign proliferations of melanocytes that usually appear in the first decades of life,
but may also be present at birth (congenital naevi). The most frequent naevi arising on the skin are
designated common acquired naevi. Naevi arising in acral sites can be located on the dorsal or volar
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aspect of the hands and feet. Acral naevi are generally acquired naevi. Whereas conventional naevi are
more common in fair-skinned individuals and associated with UV exposure [1], acral naevi are more
frequent in darker skinned individuals, the association with UV exposure less clear [2]. Both pigmented
lesions, lentigines have a modest melanocyte hyperplasia, whereas nevi demonstrate melanocytic nest
formation [3]. Naevi can progress to melanoma by acquiring additional gene alterations [4–6].

Histologically, naevi can be categorized into subtypes, depending on whether they are confined
to the epidermis (junctional naevi), the dermis (dermal naevi), or show both epidermal and dermal
components (compound naevi). Acral naevi differ somewhat histologically from their more common
non-acral cutaneous counterparts, and may demonstrate factors such as asymmetry, irregular
pigmentation, or nuclear hyperchromasia [7,8]. In particular, the presence of melanocytes above the
basal layer is common in acral naevi and not necessarily associated with malignant behavior, as is the
case in melanocytic tumors of other sites. Such factors can make it difficult to histologically distinguish
benign from malignant melanocytic proliferations at acral sites, bearing the risk of misdiagnosis [7–11].

Most naevi are epidermal-derived common acquired naevi, harboring activating BRAF V600E
mutations (80–90%) [12]. In contrast to acquired naevi, congenital naevi, arising in utero or shortly after
birth, primarily harbor NRAS mutations (approximately 80% of cases [13]). Other less common naevi
have signature mutation profiles. Spitz naevi frequently harbor translocations, i.e., in ALK, NTRK1,
ROS1, RET, NTRK3, MET, and BRAF [14–20] or HRAS mutations and copy number gains [21]. Activating
GNAQ, GNA11, and, less frequently, CYSLTR2 and PLCB4 mutations occur in blue naevi [22–24].
Blue naevi arising as part of Carney complex can harbor PRKAR1A mutations [25], which have also
been related to morphologically related pigmented epithelioid melanocytomas [26]. Deep penetrating
naevi frequently demonstrate CTNNB1 alterations in addition to MAPK-activating mutations [27].
In summary, many benign melanocytic proliferations have specific genetic alterations associated with
a clinico-pathologic phenotype.

The genetics of melanoma have been well studied [28–31]. Cutaneous melanoma is genetically
classified as BRAF-mutant (~50%), RAS-mutant (20–30%), NF1-mutant (10–15%), or triple wild-type
(10–15%). BRAF V600 mutations are relevant therapeutically in melanoma, enabling treatment with
BRAF and MEK inhibitors [32].

More recent genetic studies have focused on less frequent melanoma subtypes, such as acral
melanoma [28,33,34]. They have recognized that acral melanoma has more frequent chromosomal
alterations and a lower mutational burden than non-acral cutaneous melanoma [28]. In acral melanoma,
BRAF and NRAS are still the most frequent mutations present (although less frequent than in non-acral
cutaneous melanoma), followed by NF1 and KIT mutations. Two studies analyzing cohorts of 21 [33]
and 24 [34] acral naevi, both reported frequent BRAF mutations.

Understanding the genetics of naevi enables a better understanding of the pathogenesis of these
tumors and the genetic underpinnings of their progression to malignant tumors. This knowledge may
help design ancillary assays or algorithms predicting the clinical behavior of tumors difficult to classify
solely based on histomorphological evaluation.

The goal of our study was to investigate the frequency of activating mutations in a large cohort of
acral naevi (130 samples). A custom targeted next-generation sequencing approach was used to assess
various genes with high sensitivity, and associations of identified mutations with clinical pathologic
parameters were explored.

2. Results

2.1. Sample Cohort

The study cohort consisted of 130 acral naevus samples from 123 patients (91 females and 32 males)
with an average age of 41 years (range 10 to 79). The tumors included 20 (15.4%) junctional, 76 (58.4%)
compound, 17 (13.1%) primarily dermal, and 17 (13.1%) dermal naevi. All samples were primary
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tumors. Available clinical data are listed in Table 1. Additionally, associations of histological type with
size and volume of naevi are listed in Supplementary Table S1.

Table 1. Associations of BRAF and NRAS mutation status with clinical and pathological parameters.

Variable Specific
Variable

All
n = 130 % WT

n = 19 % BRAF-Mutant
n = 87 % NRAS-Mutant

n = 24 % p-Value *

Mean Age
(Years) 41 35 40 48 0.04

Sex +
Female 91 74% 14 † 73.7% 60 73.2 % 17 73.9%

0.08
Male 32 26% 5 26.3% 22 27.5% 6 26.1%

Sites of
Involvement

foot 121 93.1% 16 † 84.2% 81 93.1% 24 100%
0.34hand 7 5.4% 2 10.5% 5 5.7% 0 0

LND 2 1.5% 1 5.3% 1 1.2% 0 0 -

Sites of
Involvement

volar 41 31.6% 5 26.4% 29 33.3% 7 29.2%
0.11

dorsal 25 19.2% 7 † 36.8% 16 18.4% 2 8.3%

LND 64 49.2% 7 36.8% 42 48.3% 15 62.5% -

Histotype

junctional 20 15.4% 11 † 57.9% 7 8.1% 2 8.3%

<0.0001
compound 76 58.4% 8 52.1% 61 70.1% 7 29.2%

prim. dermal 17 13.1% 0 0 11 12.6% 6 25%

dermal 17 13.1% 0 0 8 9.2% 9 37.5%

WT = wild-type for BRAF and NRAS; prim. = primarily; * age Kruskal–Wallis test; all others: Fisher exact test; LND:
Localization not determined; † One patient having a MAP2K1 mutation (was included in the wild-type group);
+ one woman had three BRAF-mutant naevi, one woman had two BRAF-mutant naevi, one woman showed two
NRAS-mutant naevi, two men had two BRAF-mutant naevi, and one man showed one BRAF-mutant naevus and
one WT naevus (this man is represented in the “BRAF-mutant” column and in the “WT” column but counted once
in the “All” column).

2.2. Mutation Analysis for Activating Oncogene Driver Mutations

Targeted amplicon sequencing showed that BRAF alterations were the most frequent mutations
(n = 87, 67%), 86 (99%) being c.1799A>T, V600E, and 1 (1%) being a 1799_1801delTGA, V600E/K
alteration. NRAS Q61 mutations were identified in 24 cases (18%), comprising 13 (54%) c.182A>G Q61R
and 11 (46%) c.181C>A Q61K alterations. One MAP2K1 305_307delAGA, E102_I103V, c.309_311delCAA,
K104del mutation was detected. Recurrent KIT, HRAS, KRAS, or TERT promoter mutations were not
observed. All identified mutations were mutually exclusive of one another (Figure 1).
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Figure 1. Distribution of activating mutations identified in acral naevi. Distribution of activating
mutations identified in different oncogenes in the acral naevus cohort. The resulting amino acid
changes as well as naevus location (junctional, compound, primarily dermal, or dermal) are color-coded
according to the scheme underneath the illustration.
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2.3. Associations of Clinical and Pathological Parameters with Oncogene Mutation Status

An analysis with available clinico-pathological data was performed. Statistically significant
associations were found between oncogene mutation status and patient age, with BRAF-mutant
(mean 40 years) and NRAS-mutant (mean 48 years) tumors occurring at older ages than wild-type
tumors (mean 35 years; p = 0.04). Wild-type naevi were more often junctional than BRAF-/NRAS-mutant
tumors, while BRAF-mutant tumors were often compound and NRAS-mutant tumors were often
dermal (p < 0.0001). Complete details are presented in Table 1, and Figures 2 and 3.
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Figure 2. Associations of patients’ age, size, and volume of naevi with oncogene mutation status.
(A) Distribution of patients according to their age in wild-type cohort (black), BRAF-mutant cohort
(grey) and NRAS-mutant cohort (white) (mean age of cohort indicated by black line). (B) Medium size
of naevus surface (in mm2) depicted as columns for wild-type cohort (in black), BRAF-mutant cohort
(in grey) and NRAS-mutant cohort (in white) with standard deviation. Medium volume of naevi for all
three cohorts (WT, BRAF, NRAS) is depicted as a black line.
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3. Discussion

Applying a targeted next generation sequencing approach, we analyzed the largest cohort of acral
naevi reported to date, identifying highly recurrent BRAF and NRAS mutations.

The detected BRAF mutation frequency of 67% is lower than that described in non-acral cutaneous
naevi (78–82%) [12,35]. V600E c.1799T>A alterations accounted for 99% of BRAF mutations, with only
one exception, a single tumor with a 1799_1801delTGA, V600E/K alteration. This differs from melanoma,
in which around 20% of BRAF V600 mutations are non-V600E (mostly V600K, but also V600R or
others) [28,31,36]. While non-V600E BRAF mutations in melanoma were found to be more common in
older patients, these mutations consistently represented between 10 and 20% of BRAF mutations in the
20–29, 30–39, 40–49, and 50–59 age groups [36].

The 18% NRAS mutation frequency we identified in acral naevi is considerably higher than ~6%
NRAS mutations reported in cutaneous common acquired naevi, of which larger studies identified
NRAS mutations in around 6% of samples [35,37]. The mutation frequency of Q61K (54%) and Q61R
(46%) cannot be reliably compared to existing studies of conventional common naevi, as few NRAS
mutations (<5 per study) were identified [35,37]. However, the distribution is similar to what has been
described in larger melanoma cohorts [28,31,38], where the Q61K and Q61R mutations were the most
frequent NRAS mutations and distributed relatively equally.
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Sequencing the 19 tumors initially found to be NRAS- and BRAF-wild-type (15%) (applying the
primary smaller 16 gene panel), with a larger panel covering 29 genes recurrently mutated in cutaneous
or uveal melanoma [39], we only identified one MAP2K1 mutation (305_307delAGA, E102_I103V,
c.309_311delCAA K104del), highly reminiscent of E102_I103del mutations reported to be activating
with similar consequences to BRAF mutations [40]. In the genes analyzed in our study, no other
mutations were identified, making BRAF and NRAS mutations the most common activating mutations
detected in acral naevi.

Tumor suppressor genes, including CDKN2A and TP53, are not frequently altered in common
naevi [41]. In our study, these genes were sequenced in the samples analyzed by the 29-gene panel and
no alterations were identified. However, to reliably assess the presence of alterations in these genes,
a comprehensive analysis of mutations and copy number alterations would be required.

There was a statistically significant association (p < 0.0001) of mutation status with naevi location
(Table 1, Figures 2 and 3). BRAF mutations were more frequent in superficial melanocytic naevi
(junctional and compound). NRAS mutations were more frequent in deeper naevi (primarily dermal).
In addition, the estimated naevus volume also varied, depending on mutation status (Figure 2). This is
probably associated, at least partly, with naevus location, i.e., dermal naevi have a larger volume than
junctional naevi (Supplementary Figure S1). Our study included more acral naevi excised from women.
This is probably partially coincidental, however, a predominance for both acral naevi and melanoma in
women of different ethnicities has been reported [2,5,42]. The association of increased patient age with
the presence of BRAF or NRAS mutation will need to be confirmed in future studies.

Comparing the mutation profile identified in naevi to published data on acral and cutaneous
melanoma, a few findings are intriguing. The BRAF mutation frequency of 67% in naevi is far higher
than in acral melanoma (around 20%) [28,33,43]. However, the frequency of conventional c.1799C>A
V600E mutations in naevi was higher than in melanoma (99% vs. ~80%, respectively [17,22,31]).
NRAS mutation frequencies were relatively comparable between melanoma and naevi (both
approximately 20% [17,22,31]). There are several mutations occurring in acral melanoma that we did
not identify in acral naevi, including NF1, KIT, and TERT promoter alterations [28,31,33], recently
reported in 15%, 12%, and 11% of acral melanomas, respectively [43]. The strong differences in
gene mutations observed suggest that mutation type may be a diagnostic aid in distinguishing
histopathologically difficult-to-classify naevi from melanoma. The identification of non-V600E BRAF,
KIT, NF1, or TERT promoter mutations may warrant a higher level of suspicion for a potentially
malignant acral melanocytic tumor.

All of the identified mutations are assumed to have arisen somatically. UV-exposure is expected to
play a carcinogenic role, most likely more so in tumors arising on sun-exposed dorsal areas than palmar
or plantar areas. However, other mechanisms, such as sporadic non-carcinogen-induced mutations,
probably play a greater pathogenic role in these tumors than in non-acral cutaneous naevi.

Melanomas can arise with or without transformation from pre-existing naevi. Most naevi
do not transform into melanoma, and many melanomas arise without knowledge of a preexisting
naevus [8,44,45]. The genetic findings we have obtained do bring up some interesting aspects.
Considering we detected no recurrent non-V600E BRAF, KIT, or NF1 mutations in naevi, this may imply
that acral melanomas harboring these mutations arise primarily de novo, whereas BRAF V600E or
NRAS Q61 mutant acral melanomas may more frequently arise from pre-existing naevi. Larger studies
of acral melanoma with strong epidemiological data would be required to see if such an association
does exist.

Our study has some caveats. We analyzed a maximum of 29 genes, and rarer mutations may have
been missed. This also applies to translocations, which are rare in acral melanoma [28,43], but may
occasionally occur in naevi [15]. Our sequencing panel does not allow copy number alterations to
be reliably assessed; however, these have been shown to be very rare in naevi [46]. Strengths of our
study are the large number of tumors included (130 naevi) and the use of a next-generation sequencing
approach, simultaneously screening for many genes known to be important in melanocytic tumor
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pathogenesis. This differs from previous studies of naevi, in which Sanger-sequencing of individual
gene mutations was performed [12,35,37].

In summary, our study presents the most comprehensive genetic analysis of a large group
of acral naevi to date. BRAF V600E mutations were most frequent (66%), identified primarily in
superficial (junctional and compound) naevi. However, NRAS Q61 mutations were also detected (18%),
particularly in naevi with a more dermal location. The mutation profile identified in acral naevi differs
considerably from acral melanoma, which could prove to be of diagnostic value.

4. Materials and Methods

4.1. Sample Selection

Samples of acral naevi were obtained from the databases of the Department of Dermatology
University Hospital Essen and Dermatopathologie bei Mainz (n = 101), Germany. All cases were
screened by at least one experienced board-certified dermatopathologist (KGG or EH). The study
was done with the approval of the Ethics Committee of the University of Duisburg-Essen, under the
IRB-number 18-8426-BO. The study was performed with patient informed consent and conducted in
accordance with the Declaration of Helsinki.

4.2. Clinical and Histopathological Analysis

Available clinical information was taken from histology reports and patient records. Histological
assessment included distinction between junctional, compound, primarily dermal, and dermal
naevi. Primarily dermal was defined as naevi having primarily dermal melanocyte nests with up
to three epidermal melanocyte nests. The ratio of epidermal to dermal melanocytes had to be >5
to be classified as primarily dermal. Tumors with a lower ratio were classified as compounds.
Tumor thickness, tumor width, ratio of epidermal/dermal melanocytes, presence of superbasal
intraepidermal melanocytes, signs of dysplasia, fibrosis, pigmentation, and presence of lymphocytes
were assessed. The size of naevi was estimated by measuring the maximum width and height in mm
and multiplying these to estimate surface area. Estimated naevus volume was calculated as 1/2 × 4/3 ×
Pi × r3.

4.3. DNA Isolation

DNA was isolated from 10 µm thick sections, cut from formalin-fixed, paraffin-embedded
tumor tissues. The sections were deparaffinised and manually macrodissected. DNA isolation
was performed with the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), according to the
manufacturer’s instructions.

4.4. Targeted Sequencing

A custom amplicon-based sequencing panel covering 16 genes (Supplementary Table S2) was
designed and prepared, applying the GeneRead Library Prep Kit from QIAGEN® (19300 Germantown
Rd, Germantown, MD 20874, USA), according to the manufacturer’s instructions. Tumors not
demonstrating a mutation in the 16 genes were further sequenced by a 29-gene panel (Supplementary
Table S3) [47].

Adapter ligation and barcoding of individual samples were done, applying the NEBNext
Ultra DNA Library Prep Mastermix Set and NEBNext Multiplex Oligos for Illumina from New
England Biolabs. Up to 60 samples were sequenced in parallel on an Illumina MiSeq next-generation
sequencer. Sequencing analysis was performed, applying the CLC Cancer Research Workbench from
QIAGEN®, as described [47]. In brief, the following steps were applied. The workflow in CLC
included adapter trimming and read pair merging before mapping to the human reference genome
(hg19). Insertions and deletions, as well as single nucleotide variant detection, local realignment,
and primer trimming, followed. Additional information was obtained regarding potential mutation
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type, known single nucleotide polymorphisms, and conservation scores by cross-referencing varying
databases (COSMIC [48], ClinVar [49], dbSNP [50], 1000 Genomes Project [51] and HAPMAP [52]).
The resulting CSV files were further analyzed manually. Mutations affecting the protein coding portion
of the gene were considered if predicted to result in non-synonymous amino acid changes. Mutations
were reported if the overall coverage of the mutation site was ≥30 reads, ≥5 reads reported the mutated
variant, and the frequency of mutated reads was ≥1%. Access to raw sequencing data will be granted
upon request.

4.5. Associations of Oncogene Mutation Status with Clinical and Pathologic Parameters

We investigated associations of mutation status with available clinical and pathological parameters,
using chi-squared tests and Fisher exact tests, as appropriate. All statistical analyses were performed
using IBM SPSS Statistics software (version 25.0; International Business Machines Corp., Armonk, NY,
USA). A p-value of p ≤ 0.05 was considered statistically significant.

5. Conclusions

Acral naevi demonstrate frequent BRAF V600E mutations (66%), primarily in superficial (junctional
and compound) locations, and frequent NRAS Q61 mutations (18%), particularly in more dermal
localized tumors. Differences in mutation profile between acral naevi and melanoma may prove to be
of diagnostic value.
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