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Background and Aims: Identifying unruptured intracranial aneurysm instability is crucial

for therapeutic decision-making. This study aims to evaluate the role of Radiomics and

traditional morphological features in identifying aneurysm instability by constructing and

comparing multiple models.

Materials and Methods: A total of 227 patients with 254 intracranial aneurysms

evaluated by CTA were included. Aneurysms were divided into unstable and stable

groups using comprehensive criteria: the unstable group was defined as aneurysms

with near-term rupture, growth during follow-up, or caused compressive symptoms;

those without the aforementioned conditions were grouped as stable aneurysms.

Aneurysms were randomly divided into training and test sets at a 1:1 ratio. Radiomics

and traditional morphological features (maximum diameter, irregular shape, aspect ratio,

size ratio, location, etc.) were extracted. Three basic models and two integrated models

were constructed after corresponding statistical analysis. Model A used traditional

morphological parameters. Model B used Radiomics features. Model C used the

Radiomics features related to aneurysm morphology. Furthermore, integrated models of

traditional and Radiomics features were built (model A+B, model A+C). The area under

curves (AUC) of each model was calculated and compared.

Results: There were 31 (13.7%) patients harboring 36 (14.2%) unstable aneurysms,

15 of which ruptured post-imaging, 16 with growth on serial imaging, and 5

with compressive symptoms, respectively. Four traditional morphological features, six

Radiomics features, and three Radiomics-derived morphological features were identified.

The classification of aneurysm stability was as follows: the AUC of the training set and

test set in models A, B, and C are 0.888 (95% CI 0.808–0.967) and 0.818 (95% CI

0.705–0.932), 0.865 (95%CI 0.777–0.952) and 0.739 (95%CI 0.636–0.841), 0.605(95%

CI 0.470–0.740) and 0.552 (95% CI 0.401–0.703), respectively. The AUC of integrated
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Model A+B was numerically slightly higher than any single model, whereas Model A+C

was not.

Conclusions: A radiomics and traditional morphology integrated model seems to

be an effective tool for identifying intracranial aneurysm instability, whereas the use of

Radiomics-derivedmorphological features alone is not recommended. Radiomics-based

models were not superior to the traditional morphological features model.

Keywords: intracranial aneurysm, computed tomography angiography, machine learning, Radiomics, risk

assessment

INTRODUCTION

Intracranial aneurysms have a prevalence of 3–5% in the adult
population worldwide (1, 2), however, the annual rupture
incidence is 9 in 100,000 cases (2). Ruptured intracranial
aneurysms with subarachnoid hemorrhage cause a mortality rate
approaching 50% (3, 4). In order to prevent the catastrophic
consequences of aneurysm rupture, predicting intracranial
aneurysm rupture risk is a need.

Current risk stratification of intracranial aneurysms relies
heavily on traditional factors such as aneurysm size, morphology,
and certain demographic risk factors (5–7). Although aneurysm
size on imaging is one of the important features regarding
rupture risk, many aneurysms rupture at diameters <7mm
(8), the threshold for surgical intervention proposed by The
International Study of Unruptured Intracranial Aneurysms
(ISUIA) (9). Therefore, other aneurysm features related to
rupture risk have been explored. Advanced morphological
parameters have drawn great attention and multiple
mathematical calculational methods have been developed
to define them. Proposed features included NSI (non-sphericity
index), UI (undulation index), EI (ellipticity index) and AR
(aspect ratio) (10). Manual extraction of these features, however,
was limited. The quantitative features and patterns of target
lesions in medical images can be extracted automatically with
high throughput (11).

Radiomics is an emerging analytical method with the ability
to screen thousands of features through specific algorithms.
The systematic approach by Radiomics to extract, screen, and
verify more advanced parameters pixel-by-pixel has the potential
to reveal new biomarkers for aneurysm risk prediction, which
has been proved valuable in medical fields especially in tumor
research in recent years (11), but its application in intracranial
aneurysms remains preliminary. Some recent Radiomics studies
explored DSA (digital subtraction angiography) data to identify
aneurysm instability (12). As a technique, however, the
invasiveness of DSA limits its use, especially in serial follow-
up of aneurysms. CTA is an economical and non-invasive
examination and the first-line imaging modality for aneurysm
characterization, assessment and longitudinal evaluation. Ou et
al. used Radiomics of CTA data to discriminate ruptured and
unruptured aneurysms to characterize aneurysm instability (13),
however, a limitation of this approach is cerebral aneurysm
morphologies differ significantly before and after rupture (14),
and the features of ruptured aneurysms may not accurately

represent those of the unstable aneurysms before the rupture
event. A meta-analysis found that the risk of rupture of
symptomatic aneurysms was 4.4 times higher than that of
asymptomatic aneurysms (15). This subgroup of symptomatic
and unstable aneurysms, however, have not been included in
Radiomics analysis yet. Multiple studies suggested that growing
aneurysms have significantly increased risk of aneurysm rupture
(7, 16, 17), but previous studies employing Radiomics barely
included longitudinal data of cerebral aneurysms. In addition, a
direct comparison between Radiomics analysis and established
traditional morphological features are lacking in the literature
(13, 18, 19).

This study aims to employ more comprehensive criteria
for unstable unruptured intracranial aneurysms, evaluate the
performance of Radiomics for aneurysm risk stratification,
and compare that with the performance of traditional
morphological features.

MATERIALS AND METHODS

Study Population
Consecutive patients imaged at Sichuan Provincial People’s
Hospital from November 2015 to December 2019 who were
diagnosed as having intracranial aneurysms on CTA were
retrospectively reviewed. Among these patients, the study
population was selected based on the following inclusion criteria:
(1) confirmed diagnosis of one or more unruptured saccular
cerebral aneurysms at baseline by CTA (positive diagnosis in
the clinical record by experienced radiologist); (2) aneurysm
maximum diameter >2mm and lesion morphology that is
differentiable from infundibulum; (3) image quality allowed
detailed depiction of aneurysm morphology and parent vessels,
and was sufficient for the segmentation without substantial
artifacts. Exclusion criteria: (1) fusiform, dissecting, traumatic, or
infectious aneurysms; (2) the presence of concomitant cerebral
vascular diseases, such as high-flow arteriovenous malformation,
Moyamoya disease, arteriovenous fistula, dissection, vasospasm
and inflammatory vasculopathy; (3) acute aneurysm rupture
with presence of subarachnoid hemorrhage; (4) aneurysm
endovascular treatment prior to CTA imaging.

Included aneurysms were divided into two groups according
to their stability, following the criteria of a previous study
(12) and supported by multiple studies (20, 21). The positive
group (unstable aneurysms, considered with high risk of rupture)
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FIGURE 1 | Flowchart of the patients’ inclusion and exclusion process. Subgroup1, aneurysms with a ruptured post-imaging; Subgroup2, aneurysms with growth on

serial imaging; Subgroup3, aneurysms with compressive symptoms.

consists of 3 subgroups. The first subgroup is aneurysms with
a near-term rupture event that occurred after CTA image
acquisition (within 4 days). This category included patients who
presented with sentinel headaches, negative non-contrast CT
head, and presence of aneurysm on CTA. Aneurysm rupture
was subsequently diagnosed on follow-up non-contrast CT
head, with presence of hyperdense subarachnoid hemorrhage.
We did not include ruptured aneurysms because aneurysm
morphology changes after rupture (14). The second subgroup in
the positive group is growing aneurysms. Growing aneurysms
were identified on sequential angiographic imaging where the
maximum diameter increased by more than 1mm between
two imaging exams according to the ELAPSS criteria (22).
The third subgroup is symptomatic aneurysms, defined as
patients with aneurysms causing compressive symptoms (ex.
oculomotor nerve compression confirmed intraoperatively)
(12). Other less specific symptoms including dizziness and
headaches which could not be definitively attributed to aneurysm
were not included in the symptomatic group. The negative
group (stable aneurysms, considered to have low rupture risk)
included incidentally discovered asymptomatic aneurysms or
those undergoing follow-up without rupture or growth. When
multiple aneurysms were identified, those that met the inclusion
and exclusion criteria were included in the analysis, and each
aneurysm was assessed and classified into the positive or negative
group, respectively. For instance, if a patient with multiple
aneurysms had near-term SAH and underwent intervention, the
ruptured aneurysm was classified as previously unstable (at the
time of the prior CTA), and the remaining unruptured aneurysms
were classified as stable.

A flowchart of the patients’ inclusion and exclusion process
was shown in Figure 1.

Clinical Data
Demographic and clinical information were collected from the
medical record which included age, sex, history of hypertension,
hyperlipidemia, diabetes, smoking and alcohol use. Hypertension
is diagnosed if the mean blood pressure at rest is ≥130 mmHg
systolic or ≥80 mmHg diastolic. Hyperlipidemia is generally
diagnosed at a fasting serum (or plasma) TG (triglyceride) level of
≥150 mg/dL (1.7 mmol/L). FPG (fasting plasma glucose) values
≥126 mg/dL (7.0 mmol/L) can be diagnosed as diabetes, where
fasting is defined as no caloric intake for at least 8 h.

Imaging Techniques
The imaging protocol included standard CT angiography of the
head or head and neck acquired on SOMATOM Definition AS
+ (Siemens Healthineers, Erlangen, Germany) from Sichuan
Provincial People’s Hospital. The scans employed the following
parameters: kV, 100; mA, 250–300; section thickness, 0.75mm;
reconstruction interval, 0.5mm; scanning direction, from the
second cervical vertebra to the vertex. Iohexol non-ionic contrast
agent (Shanghai General Electric Pharmaceutical Co., Ltd,
Shanghai, China) was injected through elbow vein with double
syringe at an injection rate of 4.5 ml/s. An automatic fluoroscopic
bolus–triggered system was set to determine the timing of
data acquisition. The scanning was started when contrast agent
concentration reached threshold levels at the C2-C3 level of the
internal carotid artery.
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Extraction of Traditional Morphological
Features
Traditional morphological features identified from the included
CTA images were as follows:

Dmax (Maximum diameter) was defined as the largest
distance between any two points along the surface of
the aneurysm.

Shape was considered as regular or irregular (aneurysms with
daughter sacs, multiple lobes, or other types of wall protrusions).

Dn (Neck diameter) was computed as twice the average
distance from the neck centroid to the neck border.

Height (Aneurysm maximum height) was defined as the
largest distance between the center of the neck (geometric center)
and the aneurysm surface.

Dv (Parent vessel diameter) was computed as twice the average
distance from the parent vessel cross section centroid to the
parent vessel plane border.

AR (Aspect ratio) was defined as the ratio between Maximum
height and Neck diameter.

SR (Size ratio) was defined as the ratio between Maximum
height and Parent vessel diameter (23).

Location of aneurysms was divided into 4 categories:
intracranial intradural carotid artery and posterior
communicating artery, middle cerebral artery, anterior cerebral
artery circulation (anterior cerebral artery and anterior
communicating artery), and posterior circulation (vertebral
artery, basilar artery, and posterior cerebral artery).

All features of IAs were evaluated and measured by two
raters (R.L. and P.Z.) and confirmed by one senior radiologist
with 10 years of clinical imaging experience (Y.W.). Two raters
measured all samples, respectively. The inter-rater reliabilities
of the traditional morphological features were performed by
evaluating intra-class correlation.

Image Segmentation, Preprocessing, and
Radiomics Features Extraction
Accounting for the variation in slice thickness, before feature
extraction, B-spline algorithm was used to re-slice the images
to standard template of voxels with 1 × 1 × 1mm
size. Radiomics software (Prototype, Siemens-healthineers,
Erlangen, Germany) was used for identifying Regions of interest
(ROIs). The two raters drew manual ROIs slice-by-slice on
the original sagittal, reconstructed axial, and coronal CTA
images, outlining the aneurysm boundary to cover the entire
lesion volume. Each rater drew half the samples in order
independently and an additional 20% of the patients for
reliability testing. ROIs included as few peripheral structures
(adjacent blood vessels or soft tissues) as possible. After the
ROI segmentation was completed, Radiomics features were
extracted automatically by using the calculation function of the
software, and the features were extracted according to the feature
guidelines of the Image Biomarker Standardization Initiative
(IBSI) (24).

First-order statistics, shape (2D), shape (3D), gray-level
co-occurrence matrix (GLCM), gray-level size-zone matrix
(GLSZM), gray-level run-lengthmatrix (GLRLM), neighborhood

gray-tone difference matrix (NGTDM), and neighboring gray-
level dependence matrix (GLDM) were the eight feature groups
that were extracted. Advanced filters including Laplacian of
Gaussian (LoG; sigma, 2.0 and 3.0mm), wavelet decompositions
with all possible combinations of high- (H) or low- (L) pass
filter in each of the three dimensions (HHH, HHL, HLH, LHH,
LLL, LLH, LHL, HLL), and local binary pattern (LBP; level, 2;
radius, 1.00) were also applied. Definitions and calculations of
the Radiomics features used in this study can be found in the
PyRadiomics documentation (24, 25).

Model Construction and Evaluation
Stratified random sampling technique was applied to create two
random samples of training and independent testing sets within
studied classes. Given the relatively low percentage of unstable
aneurysms (36/254 = 14.2%), we used a ratio of 1:1 for samples
size allocation for two sets. If the training vs. test ratio was larger,
such as 6:4 or even 7:3, the sensitivity and specificity of the
model would swing disproportionately by the misjudgment of
one single positive case in the test set. In consideration of this
issue, increasing the proportion of test sets was suggested from a
statistic perspective (26).

The training set was used to train the model based on least
absolute shrinkage and selection operator (LASSO) regression
model with tuning parameter of lambda. Since there was class
imbalance that might affect the model tuning, synthetic minority
over-sampling technique (SMOTE) was applied to the training
sets before formal model training. The lambda was tuned across
multiple values between 0.01 and 2. The optimal value of lambda
was decided when the model gained the highest AUC based on
5 repeats 10-folds cross-validation. Subsequently, the importance
of the features based on this model with optimal lambda were
ranked. Next the conventional logistic multivariate regression
model was fitted. To ensure both the inferential and prediction
performance of this statistical model, we only enrolled a limited
number of features based on the above mentioned importance
rank list. The number was decided by obeying the rule suggested
by Green (27), that N ≥ 50 + 8m, where m is the number of
features and N is the number of samples.

The model performance was evaluated in training and testing
sets, respectively. These two apparent performances were shown
in terms of receiver operator curves. Sensitivity, specificity, and
accuracy were also illustrated using a confusion matrix. In
addition, to allow for the estimation of the model generalizability,
bootstrapping resampling methods were applied to SMOTE
training sets to generate 5 samples for model evaluation.

Three basic prediction models were built using selected
features to predict aneurysm stability. Model A was constructed
using traditional morphological parameters measured directly
from images. Model B was based on the selected Radiomics
features calculated by the software. Among different categories of
Radiomics features, morphological features, especially advanced
ones, such as flatness and elongation, have gained considerable
attention in the literature as potential novel biomarkers for
aneurysm stability (18). In order to specifically assess the
performance of these features, Model C was constructed with
only Radiomics features related to morphology. It has been
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TABLE 1 | Traditional morphological characteristics of included patients and aneurysms.

Variable Total Unstable group Stable group p-value

No. of patients 227 31 (13.7%) 196 (86.3%) NA

No. of aneurysms 254 36 (14.2%) 218 (85.8%) NA

Age in years, median (IQR) 61 (49–68) 62 (53–67) 58 (48–67) 0.26

Female gender 149 (65.6%) 23 (74.0%) 126 (64.3%) 0.38

Hypertension 50/95 (52.6%) 7/9 (77.8%) 43/86 (50.0%) 0.11

Hyperlipidemia 8/95 (8.4%) 1/9 (11.1%) 7/86 (8.1%) 0.76

Diabetes 9/85 (10.6%) 1/9 (11.1%) 8/76 (10.5%) 0.94

Smoking 29/114 (25.4%) 3/9 (33.3%) 26/105 (24.8%) 0.57

Alcohol use 26/94 (27.7%) 3/9 (33.3%) 23/85 (27.1%) 0.27

AR 1.21 ± 0.70 1.79 ± 0.71 1.11 ± 0.65 <0.01

SR 1.61 ± 1.13 2.07 ± 1.36 1.53 ± 1.01 <0.01

Dn, median (IQR, mm) 2.8 (2.3–3.8) 2.1 (1.7–2.7) 3.0 (2.4–3.9) <0.01

H, median (IQR, mm) 3.0 (2.4–4.0) 3.6 (2.5–4.7) 3.0 (2.2–3.9) 0.22

Dmax, median (IQR, mm) 3.9 (3.1–5.5) 4.3 (2.8–5.2) 5.0 (3.1–5.6) 0.03

Dv, median (IQR, mm) 2.4 (1.9–2.8) 2.2 (1.6–2.6) 2.4 (2.0–2.8) 0.84

Aneurysm location

ICA/PCOM 190 23 (63.9%) 167 (76.5%) 0.31

AC 21 3 (8.3%) 18 (8.3%)

PC 8 2 (5.6%) 6 (2.8%)

MCA 35 8 (22.2%) 27 (12.4%)

NO, Number; IQR, Inter Quartile Range; SR, Size ratio; Dv, Parent vessel diameter; Dmax, The maximal diameter of the aneurysm; AC, anterior circulation (anterior cerebral artery and

anterior communicating artery); MCA, Middle cerebral artery; AR, Aspect ratio; Dn, Aneurysm neck diameter; H, Hight; ICA/PCOM, intracranial intradural carotid artery and posterior

communicating artery; PC, posterior circulation (vertebral artery, basilar artery, and posterior communicating artery).

argued that the utility of grayscale image characteristics and
texture parameters in Radiomics features are limited in assessing
intracranial aneurysms, and morphological parameters are more
meaningful (18). Therefore, we separately analyzed and verified
the morphological parameters in Radiomics by Model C in
addition to the Radiomics model, Model B. Integrated models of
traditional and Radiomics features were also built (model A+B,
model A+C).

Model A, model B, model C and integrated models were
evaluated and compared by calculating the AUC on both the
training and test sets.

Statistical Analysis
The Shapiro-wilk test was used to test the normality of
continuous variables. Continuous variables were summarized
as means ± standard deviation if normally distributed, or
median and interquartile ranges (IQRs) if otherwise. Categorical
variables were presented as percentages. Fisher exact test or
chi-square test was used for comparisons between groups for
categorical variables, and Mann-Whitney U-test was used for
continuous variables. Univariate and multivariate analyses were
performed sequentially. Binary logistic regression was performed
with a backward stepwise method. Correlation of variables
was assessed by Pearson Correlation Coefficient for normally
distributed continuous variables, and by Spearman’s Rank-Order
Correlation otherwise. The statistical significance was defined
as p < 0.05 (two-tailed). To assess inter-rater variability, we
used the intra-class correlation coefficient (ICC) for each feature

(two-way random effects, single rater/measurement, absolute
agreement, with the value higher than 0.9 regarded as excellent).
For statistical analyses, SPSS (Statistics Version 26, Chicago, IL,
United States) was used.

RESULTS

Patients and Aneurysm Characteristics
A total of 227 patients [149 (65.6%) females] with 254 intracranial
aneurysms met the criteria and were included. There were 31
(13.7%) patients with 36 (14.2%) unstable aneurysms in the
positive group. Fifteen of the 35 unstable aneurysms had a near-
term rupture event, 16 had growth in sequential imaging follow-
up (median, 6.5 months; range, 0.5–35 months), and 5 had
compressive symptoms, respectively. The demographic, clinical,
and imaging characteristics of the unstable and stable groups
are shown in Table 1. No significant differences were present
in patients’ age, sex, history of hypertension, hyperlipidemia,
diabetes, smoking and alcohol use between the two groups (all
p > 0.05). After splitting, there were 120 patients allocated to
the training set, with the remaining cases placed in the testing
set. Considering the training set sample size, we could enroll 8
features maximum for each model.

Inter-Rater and Intra-Rater Agreement
Inter-rater reliability for traditional morphology measurements
was found to be good (mean ICC= 0.969; range 0.952–0.987).
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A total of 1,691 Radiomics features were extracted and
included in the intra-class correlation evaluation. Features with
ICC of <0.9 were excluded. A total of 460 features were
excluded for unsatisfactory inter-rater agreement. Ultimately,
1,231 features were selected for further analysis. The overall inter-
rater agreement of the 1,231 features was excellent (mean ICC =

0.966; range 0.900–1.000).

Construction and Evaluation of Traditional
and Radiomic Models
Model A-Traditional Morphological Features Model
Traditional morphological features that were significantly
different between the positive and negative groups were
employed in this model. The formula of model A is provided in
Equation (1):

Model A score

= (1.336) × AR+ (2.113) × Dmax+ (1.753)

×Height + (−0.480) × Dv− 1.474 (1)

Model A showed good performance in the classification of
aneurysm stability [AUC: 0.921 (95% CI: 0.862–0.981) and 0.909
(95% CI: 0.853–0.965) on training and testing sets, respectively].
On the training set, the accuracy, sensitivity and specificity
were 85.7, 82.4, and 86.2%, respectively. On the testing set,
the accuracy, sensitivity and specificity were 85.9, 77.8, and
87.3%, respectively.

The boxplots of the scores (The score of each patient on
training and testing sets showed the association of high scores
with the risk of aneurysm stability.) for the positive and negative
groups based on Model A are illustrated in Figure 2. The scores
of the negative group were 0.204 (0.05–0.419), and the scores of
the positive group were 0.695 (0.484–0.812), (p < 0.01). There
was little overlap between the two groups of boxplots.

Model B-Radiomics Derived Features Model
Of the 1,231 features included in the analysis, 853 features
were significantly different between the positive and negative
groups. After enrolling these features into LASSO, the lambda
was decided as 0.01 through the tuning process for features
importance ranking. And the top 8 features on this list
were included in the final conventional logistic regression
model. Ultimately, only the first 6 features showing statistical
significance (Figure 3) were used to build Model B. And the odds
ratio and 95% confidence interval of these features are showed in
Table 2. The formula for Model B is provided in Equation (2):

Rad score

= (1.576)× wavelet.HLL_glcm_Correlation+ (−0.904)

×wavelet.HLH_glszm_SizeZoneNonUniformityNormalized

+(1.952)× original_glszm_SmallAreaLowGrayLevelEmphasis

+(0.693)× wavelet.HLL_glszm_GrayLevelNonUniformity

+(−0.689)× wavelet.LHL_firstorder_Median+ (−1.663)

× wavelet.HHL_gldm_LargeDependenceHighGrayLevelEmphasis

−1.262 (2)

Five of the six features were wavelet characteristics, and the
corresponding connotations can be found in the PyRadiomics
documentation (24, 25). The performance of Model B in
classification of aneurysm stability: AUC: 0.865 (95% CI: 0.778–
0.951) on the training set and 0.739 (95% CI: 0.636–0.841) on
the testing set. On the training set, the accuracy, sensitivity and
specificity were 77.3, 82.4, and 76.5%, respectively. On the testing
set, the accuracy, sensitivity and specificity were 71.7, 61.1, and
73.5%, respectively.

The boxplot of the scores for the positive and negative groups
based on Model B are illustrated in Figure 2. The scores were
0.214 (0.054–0.519) in the negative group and 0.695 (0.398–
0.8865) in positive group (p < 0.01).

Model C-Radiomics Derived Morphological Features

Model
There were three Radiomics derived morphological
features that showed significant difference after analysis,
which were original_shape_Maximum2DDiameterSlice,
original_shape_LeastAxisLength and Flatness. The formula for
model C is provided in Equation (3):

Model C score

= (1.260) × original_shape_Maximum2DDiameterSlice

+ (−1.426) × original_shape_LeastAxisLength

+ (0.583) × Flatness− 0.347 (3)

Model C showed a barely satisfactory performance in
classification of aneurysm stability [AUC: 0.605 (95% CI:
0.470–0.739) on the training set and 0.552 (95% CI: 0.401–0.703)
on the testing set.] On the training set, the accuracy, sensitivity,
and specificity were 61.7, 44.4, and 64.5%, respectively. On the
testing set, the accuracy, sensitivity and specificity were 61.9,
41.2, and 65.1%, respectively.

The boxplot of the scores for the positive and negative groups
based on Model C are illustrated in Figure 2. The scores were
0.461 (0.342–0.516) for the negative group and 0.486 (0.399–
0.599) for the positive group (p= 0.073).

The ROC curves of the 3 models in the training and testing
sets are illustrated in Figure 4. The performance of model C
was lower than that of model A or model B, and model B was
not superior to model A. The performance of the 3 models for
training and testing sets is presented in Table 3.

The traditional and Radiomics features of demonstrative cases
of four categories are illustrated in Figure 5.

The Integrated Model
The performance of the integrated models of traditional and
Radiomics features as evaluated by ROC are shown in Figure 6.
The AUC value of the integrated model A+B was 0.868,
which was slightly higher than any single model, but not
statistically significant. The integrated model A+C failed to
improve diagnostic performance in AUC compared to model A.
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FIGURE 2 | The boxplots of corresponding scores of 3 models comparing negative and positive groups. Model A, model of traditional morphological features; Model

B, model of Radiomics derived features; Model C, model of Radiomics derived morphological features.
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FIGURE 3 | Top 20 features and feature coefficients (feature importance) in the Radiomics model (model B).

TABLE 2 | Six Radiomics features that were screened out to build model B.

Feature p-value OR 95% CI for OR

wavelet.HLL_glcm_Correlation <0.0001 4.837 2.566–9.117

wavelet.HLH_glszm_SizeZoneNonUniformityNormalized 0.0007 0.405 0.240–0.685

original_glszm_SmallAreaLowGrayLevelEmphasis <0.0001 7.041 3.624–13.682

wavelet.HLL_glszm_GrayLevelNonUniformity 0.0224 2.000 1.103–3.626

wavelet.LHL_firstorder_Median 0.0043 0.592 0.313–0.806

wavelet.HHL_gldm_LargeDependenceHighGrayLevelEmphasis <0.0001 0.190 0.088–0.408

OR, odds ratio; 95% CI, 95% confidence interval.

Correlation Between Flatness and
Traditional Morphological Features
Flatness was the only advanced morphological feature among
the selected features. The relationship between flatness and
traditional morphological features was evaluated as follows:

among traditional morphological features, including Height,
Dmax, Dn, Dv, AR, and SR, Flatness correlated best with Height
(p < 0.01, R2 = 0.19), followed by SR (p < 0.05, R2 = 0.13),

as shown in Figure 7. The correlation between flatness and each

traditional morphological feature is shown in Table 4.
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FIGURE 4 | The performance of 3 models in the training and testing sets. AUC, area under the curve; Model A, model of traditional morphological features; Model B,

model of Radiomics derived features; Model C, model of Radiomics derived morphological features.
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TABLE 3 | Diagnostic performance of models in training and testing set.

Model types Set types AUC

(95%CI)

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Model A Training 0.888

(0.808–0.967)

84.1 76.5 85.3

Testing 0.818

(0.705–0.932)

81.2 72.2 82.7

Model B Training 0.865

(0.777–0.952)

77.3 82.4 76.5

Testing 0.739

(0.636–0.841)

71.7 61.1 73.5

Model C Training 0.605

(0.470–0.740)

61.7 44.4 64.5

Testing 0.551

(0.401–0.703)

61.9 41.2 65.1

AUC, area under the curve; CI, confidence interval; Model A, model of traditional morphological features; Model B, model of Radiomics derived features; Model C, model of Radiomics

derived morphological features.

FIGURE 5 | The traditional and Radiomics features of demonstrative cases of four categories. *The aneurysm with a near-term rupture event.

DISCUSSION

In this study, multiple models (Radiomics-inclusive, Radiomics

derivedmorphological, traditional morphological) based on CTA
images were constructed and compared to identify features

associated with aneurysm stability. Significant differences in
both Radiomics features and traditional aneurysm morphology
between stable and unstable aneurysms were found. Most
characteristics of building model B were wavelet features.
Wavelet features were the intensity and texture features of the

original image obtained by wavelet decomposition calculation.
The features were concentrated in different frequency ranges
within the aneurysm volume, which could reflect the blood flow
in the aneurysm. The difference between the stable group and
the unstable group may come from the turbulent state in the
unstable aneurysm. Although the model based on Radiomics
features could predict aneurysm stability at a relatively high
level in both training and testing sets (AUCs of 0.865 and
0.739, respectively), it did not appear superior to the model
based on traditional morphological features (AUCs of 0.888
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FIGURE 6 | The receiver operator characteristic curves of the separate and

integrated models. Model A, model of traditional morphological features;

Model B, model of Radiomics derived features; Model C, model of Radiomics

derived morphological features.

and 0.818, respectively). The AUC of the model integrating
Radiomics and traditional morphological features appeared not
significantly higher, whereas the performance of Radiomics-
derived morphological features alone was not satisfactory.

Our results showed that Flatness was the only significant
advanced morphological parameter derived by Radiomics to
identify aneurysm instability, which is similar to results from
Liu et al. using DSA data (18). Ludwig et al. reported that
Radiomics-derived Elongation and Flatness were two significant
predictors of aneurysm rupture. But they also found the two
features were closely related (R2 = 0.75) (18), which could be the
reason that the two features were not preserved simultaneously
in multivariate analysis in this study. We also found that Flatness
was correlated to some traditional morphological parameters,
most strongly with Height (R2 = 0.19) and SR (R2 = 0.13).

Some clinical risk factors are considered to be related to the
development, growth, and rupture of intracranial aneurysms,
such as age, sex, race, family history, hypertension history,
smoking history, drinking history, and previous stroke history of
patients (17, 28). The results of each study are different, mainly
due to the differences of included study populations (17, 29).
No significant differences were present in these clinical risk
factors between the two groups in this study, probably due to the
study population.

Comparison Between Advanced Features
and Traditional Morphological Features
Our results show that the model performance based on
traditional morphological features is still good (AUCs of
0.888 and 0.818, respectively in training and testing sets). By
comparison, the Model A score had little overlap between the
two groups, as shown in the box plots (Figure 2). Features
defined by ratios such as AR were shown as strong factors

related to aneurysm rupture [also supported by our previous
large-sample study of a similar population (30)], which may
not be fully presented in the definition of Radiomics features.
A recent study using machine learning to classify intracranial
aneurysm rupture status on CTA also screened out mainly
traditional morphological features, such as irregular shape and
size ratio as the most important discriminators (31). Another
study also revealed that Radiomics were not obviously superior
to traditional morphological features (18), which is consistent
with our study. Although traditional morphological features and
Radiomics features can be integrated, only the model integrating
traditional features and overall Radiomics features (model A+B)
showed a marginal improvement in performance. The use of
Radiomics-derived morphological features alone (Model C),
however, showed poor performance.

Context and Novelty
This study has several novel features compared to previous
studies. The study by Liu et al. was based on DSA (12), which
is invasive and not used for screening and re-examination. CTA
was used in this study as it is the most frequently employed
imaging modality for aneurysm evaluation. Previous studies only
assessed the region of interest from a single image slice (32), while
we delineated the region of interest from all image slices with
a slice thickness of 0.75mm, and extracted three-dimensional
aneurysm volumes as the basis of radiomic and morphological
characteristic analysis.

Two previous Radiomics studies based on CTA images aimed
to distinguish ruptured and unruptured aneurysms, considering
already ruptured aneurysms as unstable ones (18, 19). Aneurysm
morphology, however, may change after rupture (14), and
the identified biomarkers and corresponding conclusions may
not be directly applied to predict the risk in the group of
unruptured aneurysms. In this study, more comprehensive and
representative criteria of aneurysm instability were used, and
all the included aneurysms were considered to have not yet
ruptured at the time of CTA imaging. The conclusions can
therefore be more directly interpreted and used clinically to
predict rupture risk.

As reported, the proportion of aneurysm growth in follow-
up studies was relatively low (mostly reported around 5%,
one study reported 12% in 2 years) (33–35). Aneurysms at
near-rupture status are difficult to obtain clinically. In this
study, categorized 14.2% (N = 36) aneurysms into the unstable
group, which reduced the limitations of data imbalance and
facilitated model construction. Radiomics calculation is a fast
and automatic process using one-station software. Once the
structures of interest have been semi-automatically delineated,
the selected Radiomics features and the calculation of Rad-
score can be readily employed in clinical practice with further
investigation and validation.

LIMITATIONS

There were several limitations in our study. First, it was
a retrospective analysis. Planned recruitment of patients
harboring intracranial aneurysms with sentinel headaches was
not conducted. Second, not all cases had follow-up data available,
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FIGURE 7 | Correlation between Flatness and the two traditional morphological features (height and size ratio, which showed significant correlations with Flatness).

TABLE 4 | Correlation between the advanced morphological feature flatness and traditional features.

Dn Dv AR SR Height Dmax

original_shape_Flatness Correlation

coefficient

0.08 0.114 0.113 0.128* 0.188** 0.102

p-value 0.202 0.07 0.073 0.042 0.003 0.105

*p < 0.05.

**p < 0.01.

and parts of the clinical demographic data were incomplete,
especially for outpatients. But as much data as possible was
collected thorough a search of the institutional database. Third,
the research was from a single medical center with a small sample
size of unstable aneurysms, and external validation of the results
could not be obtained. Prospective and multi-center studies with
larger numbers of cases could be used for further validation.

CONCLUSION

A radiomics and traditional morphology integrated model seems
to be an effective tool for identifying intracranial aneurysm
instability, whereas the use of Radiomics-derived morphological
features alone is not recommended. Radiomics-based
models were not superior to the traditional morphological
features model.
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