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A 3D‑CNN model with CT‑based 
parametric response mapping 
for classifying COPD subjects
Thao Thi Ho1, Taewoo Kim1, Woo Jin Kim2, Chang Hyun Lee3,4, Kum Ju Chae5, So Hyeon Bak6, 
Sung Ok Kwon2, Gong Yong Jin5, Eun‑Kee Park7 & Sanghun Choi1*

Chronic obstructive pulmonary disease (COPD) is a respiratory disorder involving abnormalities of 
lung parenchymal morphology with different severities. COPD is assessed by pulmonary‑function 
tests and computed tomography‑based approaches. We introduce a new classification method for 
COPD grouping based on deep learning and a parametric‑response mapping (PRM) method. We 
extracted parenchymal functional variables of functional small airway disease percentage (fSAD%) 
and emphysema percentage (Emph%) with an image registration technique, being provided as input 
parameters of 3D convolutional neural network (CNN). The integrated 3D‑CNN and PRM (3D‑cPRM) 
achieved a classification accuracy of 89.3% and a sensitivity of 88.3% in five‑fold cross‑validation. 
The prediction accuracy of the proposed 3D‑cPRM exceeded those of the 2D model and traditional 
3D CNNs with the same neural network, and was comparable to that of 2D pretrained PRM models. 
We then applied a gradient‑weighted class activation mapping (Grad‑CAM) that highlights the key 
features in the CNN learning process. Most of the class‑discriminative regions appeared in the upper 
and middle lobes of the lung, consistent with the regions of elevated fSAD% and Emph% in COPD 
subjects. The 3D‑cPRM successfully represented the parenchymal abnormalities in COPD and matched 
the CT‑based diagnosis of COPD.

Instances of chronic obstructive pulmonary disease (COPD), a respiratory disease related to pulmonary airflow 
obstruction, are rising  globally1. COPD causes several dangerous lung phenotypes, such as emphysema, chronic 
bronchitis, and even lung cancer. According to the 2020 chronic obstructive lung disease report, COPD has 
been the fourth leading cause of death, killing more than three million people (6% of the deaths worldwide) in 
 20122. Quantitative analyses based on computed tomographic (CT) images have explored the airway trees, lung 
parenchyma abnormalities, and other features related to  COPD3–5. These CT findings are useful for clarifying 
the lung anatomical features, enabling the prevention, early diagnosis, and management of COPD.

In regards to CT-based imaging findings, COPD is characterized by emphysematous lung, airway narrow-
ing, functional small-airway disease, and reduced lung  deformation5. In clinics, forced expiratory volume in 1 s 
(FEV1) and percentage of predicted value along with FEV1/forced vital capacity (FVC) have been used as criteria 
to identify the severity of  COPD6. Such pulmonary function tests (PFTs) are convenient and inexpensive, but are 
not always recommended for treatment decisions due to poor  stratification2,7. COPD risk can be more accurately 
stratified from visual CT  data5. Specific features extracted from visual CT scans, such as lung parenchyma, air-
ways, and pulmonary vessels, are effective screens for COPD. However, the visual assessment of COPD from large 
CT volumes is subjective, and accurately detecting COPD across large populations without manual extraction 
or without reviewing the specific clinical or radiographic features is burdensome to  physicians8,9.

An accurate computer-aided detection system is essential for an efficient and cost effective COPD screening 
workflow. Recently, deep-learning-based methods have gained popularity in medicine, owing to their power and 
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flexible use of the available  data5. A deep convolutional neural network (CNN) is a deep-learning approach that 
automatically extracts features from data. Advances in CNNs have greatly improved the performance of image 
classification and  detection10–13. A CNN can learn representative features from the data with multiple levels 
of abstraction and thus the design, extraction, and selection of handcrafted features are  unnecessary14. CNN 
techniques can potentially improve COPD risk modeling in the absence of pulmonary function tests (PFTs) or 
visual assessment of lung parenchyma. Some existing machine learning algorithms can recognize or distinguish 
COPD in CT images, but have not been studied in detail. Unfortunately, the image feature layers trained for 
classification by a deep neural network remain  unknown15. This problem might be resolved by gradient-weighted 
class activation mapping (Grad-CAM), which produces visual explanations from a CNN, allowing visualization 
of the areas focused by the  CNN15,16.

Recently, the classification, detection, and segmentation performances of CNNs in COPD detection have 
significantly improved. Using CNN models and four canonical CT slices at predefined anatomic landmarks in 
the COPDGene and ECLIPSE testing cohorts, González et al.17 achieved a COPD detection accuracy of 0.773. 
Du et al.18 applied a CNN on 2D multi-view snapshots of a 3D lung-airway tree, and classified COPD and non-
COPD cases. They reported an accuracy of 88.6% on grayscale snapshots. Feragen et al.19 applied a support 
vector machine (SVM) to the airway tree information of 1996 subjects, including 893 with COPD. Their highest 
accuracy was 64.9% in COPD classification tasks. Bodduluri et al.20 evaluated the ability of supervised learning 
to distinguish COPD patients from non-COPD subjects, applying image registration metrics to biomechanical, 
density, and texture feature sets. The best area under the curve (AUC) was 0.89 on texture feature sets.

In COPD subjects, airway structure and parenchymal function have been assessed with structural and func-
tional variables obtained from quantitative computed tomography (QCT) of lung, such as luminal diameter, wall 
thickness, air trapping (or functional small-airway disease), and  emphysema21. Air trapping in COPD at expira-
tion can characterize small-airway narrowing/closure at the parenchymal level, but may contain some portion of 
emphysema at  inspiration6. Accordingly, Galban et al.4 introduced parametric-response mapping (PRM), which 
dissociates the air-trapping effects of mixed air trapping and emphysema. Using this approach, we can character-
ize three features at the voxel level: emphysema (Emph), functional small-airway disease (fSAD), and normal 
lungs. Using expiration and inspiration CT scans and a voxel-wise image analysis technique, we can accurately 
distinguish COPD imaging phenotypes by visually assessing the PRMs of fSAD and  Emph6.

We hypothesize that a 3D-CNN with a PRM input (3D-cPRM) can represent the abnormalities of lung 
parenchyma and predict clinically relevant outcomes in COPD subjects without pre-specifying the features of 
interest. To test this hypothesis, we investigate whether the newly trained PRM imaging features can identify 
COPD. We also evaluate the potential correlations between PRM and 3D-CNN in patients with COPD. Our 
proposed approach was implemented as follows. First, we visualized the 3D PRM model combining fSAD, Emph, 
and normal portions in the lung by a mass-preserving image registration method. This visualization step is of 
major clinical significance, as clinicians can easily observe disease alterations in the lung parenchyma captured 
in one frame. Second, we input the CT-based imaging variables to a 3D fully convolutional architecture, thus 
realizing volume-to-volume learning and inference. The specially designed 3D-CNN model with PRM was hyper-
parametrized for filter-size, batch size, learning rate, and others, and further optimized for COPD identification 
by the Adam algorithm. Applying Grad-CAM, we finally highlighted the important regions in the images for 
predicting healthy control (non-COPD) or COPD. To our knowledge, our work is the first to use deep 3D-CNN 
and CT-based PRM to COPD classification.

Results
The lobar variables were computed from the CT images of 596 subjects with a 512 × 512 matrix and image reg-
istration, and the imaging metrics were derived from PRM. The lobar variables included the determinant of the 
Jacobian (J, a measure of volume change), the anisotropic deformation index (ADI, the magnitude of directional 
preference in the volume change), the slab rod index (SRI, the directional preference in the volume change), total 
lung capacity (TLC), functional residual capacity (FRC), change in air-volume fraction difference (ΔVair

f, i.e., air-
volume difference/voxel size). Imaging metrics obtained from lobar variables, raw 3D CT images [IN (inspiration) 
and EX (expiration)], and a concatenate of IN and EX were used for classification by CNN. As shown in Fig. 1, our 
procedure consists of two main steps: CT image processing and COPD/non-COPD classification by 3D-CNN.

Demographics and lung functions. Demographic, PFTs, and QCT-based lung functions were acquired 
from COPD and non-COPD subjects (Table  1). The COPD subjects included 84.8% males (average age 
72.9 years) with significantly reduced FEV1 and FVC, percentage predicted values, and FEV1/FVC. The percent-
ages of Stage I, II, III and IV subjects on the global initiative for chronic obstructive lung disease (GOLD) scale 
were 43.1%, 42.7%, 13.2%, and 1.0%, respectively. Meanwhile, the non-COPD subjects were younger females 
with normal pulmonary functions. The weights were significantly different between the two groups (p < 0.001). 
The mean (SD) radiation dose during the entire CT scanning (scout, IN, and EX imaging) was 9.15 (2.34) mSv 
per subject. Regarding the QCT-based air volumes, both TLC and FRC were lower in the COPD subjects than 
in the non-COPD subjects. The percent emphysema lung (Emph%) and functional small-airway disease lung 
(fSAD%) were significantly larger in the COPD subjects than in the non-COPD subjects (p < 0.001). The COPD 
patients also exhibited a significantly reduced Jacobian, indicating the degree of local  deformation22, and an 
increased SRI, indicating the preferential deformation  direction22.

3D parametric‑response mapping. Figure  1 also shows the spatial PRM distributions in a stage III 
COPD subject. The total fSAD% was much higher in COPD than in non-COPD subjects (p < 0.001) (Table 1). 
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Figure 1.  Study design and main experimental produces of 3D-cPRM, operating on a subject with stage III 
COPD. This figure was generated with ImageJ (version 1.53a, https ://image j.net/) and Microsoft PowerPoint 
2010 (version 13328.20292; https ://www.micro soft.com).

Table 1.  Demographics and lung functions derived from the PFTs and QCTs of COPD and non-COPD 
subjects. Values are presented as mean (SD). QCT, quantitative computed tomography; PFT, pulmonary 
function test; FVC, forced vital capacity;  FEV1, forced expiratory volume in 1 s; FRC, functional residual 
volume; TLC, total lung capacity; Emph%, percent emphysema; fSAD%, percent functional small-airway 
disease; ADI, anisotropic deformation index; SRI, slab rod index; J, Jacobian.

Non-COPD subjects
(n = 392)

COPD subjects
(n = 204) P value

Demographics

Male/females, n (%) 190/202 (48.5%/51.5%) 173/31 (84.8%/15.2%) < 0.001

Age, years 55.9 (16.3) 72.9 (7.4) < 0.001

Height, cm 161.3 (10.2) 161.3 (7.5) 0.992

Weight, kg 63.2 (12.0) 59.8 (9.8) < 0.001

Never/former/current
smokers, n (%)

262/54/76
(66.8%/13.8%/19.4%)

50/53/101
(24.5%/26.0%/49.5%) < 0.001

COPD stages (I, II, III, IV),
n (%) 0 88/87/27/2

(43.1%/42.7%/13.2%/1.0%)

PFT-based lung functions

FEV1, %predicted 100.0 (14.1) 75.0(20.0) < 0.001

FVC, %predicted 98.2 (13.6) 93.1(20.0) < 0.001

FEV1/FVC × 100 80.4 (6.0) 58.9 (8.0) < 0.001

QCT-based lung functions

TLC, litre 4.7 (1.3) 4.3 (1.0) < 0.001

FRC, litre 3.0 (1.0) 2.8 (0.9) 0.005

Emph% 1.7 (2.5) 8.5 (7.5) < 0.001

fSAD% 11.2 (13.4) 23.7 (13.6) < 0.001

ADI 0.4 (0.1) 0.3 (0.1) 0.074

SRI 0.5 (0.03) 0.6 (0.03) < 0.001

J 1.7 (0.4) 1.5 (0.3) < 0.001

https://imagej.net/
https://www.microsoft.com
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The PRM components were spatially distributed. Quantitative measurements on a PRM spatial model provide 
physicians with important insights into COPD progression levels (Fig. 1).

Training and testing results. Figure  2 illustrates the architecture of our nine-layer 3D-cPRM method 
(the 3D-CNN model is described in the “Methods” section). The accuracies, sensitivities, and specificities of the 
lung functional variables are presented in Table 2. Both ΔVair

f, concatenate of IN and EX, and PRM were better 
predicted than the other functional variables such as J, ADI, and SRI, the raw 3D CT images (IN and EX). The 
sensitivity was higher for concatenate of IN and EX (95.1%) than for PRM (88.3%) and ΔVair

f (80.4%), and far 
beyond that of the original IN image (71.8%). 

Figure 3 shows the accuracies and losses on the training and validation datasets of 3D-cPRM model as the 
iterations proceeded. The training loss decreased continuously, reaching approximately zero after 500 iterations; 
meanwhile, the training accuracy increased gradually to more than 0.95 after 500 iterations. Overall, the accuracy 
of the validation dataset reached ~ 90% and the corresponding loss was close to zero. When the IN, EX, ΔVair

f, J, 
ADI, SRI, concatenate of IN and EX, and PRM were input to the CNN, the prediction accuracy reached 85.1%, 
86.5%, 86.6%, 85.2%, 83.0%, 84.9%, 87.2% and 89.3%, respectively (Table 2). The CNN with PRM outperformed 
the CNNs with the other functional variables, suggesting that 3D images from PRM present more visual dif-
ferences between COPD and non-COPD lungs than other images. The concatenate of IN and EX and ΔVair

f 
also achieved relatively high accuracy (87.2% and 86.6%, respectively). Figure 4 shows the receiver operating 
characteristic (ROC) curves and AUCs of PRM, ΔVair

f, and IN. Consistent with the prediction accuracies, the 

Figure 2.  Architecture of the 3D-CNN model. This figure was generated with Microsoft PowerPoint 2010 
(version 13328.20292; https ://www.micro soft.com).

Table 2.  Performances of different 3D networks on the PRM dataset, the same 3D-CNN on different input 
datasets, and different 2D networks on the PRM dataset.

Accuracy Precision Sensitivity F1 Specificity AUC score

Different 3D networks with PRM dataset

3D-CNN—Naive model 89.3 82.6 88.3 85.1 93.6 0.937

3D-CNN—DenseNet121 86.9 78.1 85.8 81.2 92.3 0.904

3D-CNN—VGG16 77.4 69.8 58.5 57.4 84.0 0.827

3D-CNN—Resnet50 87.2 79.8 85.8 82.4 92.2 0.906

3D-CNN—InceptionV3 83.9 76.0 72.7 72.8 88.5 0.861

3D-CNN with different input datasets

IN 85.1 80.6 71.8 74.8 88.2 0.900

EX 86.5 75.5 86.9 80.3 93.7 0.907

ΔVair
f 86.6 80.0 80.4 79.9 90.1 0.897

J 85.2 76.4 83.3 79.4 91.1 0.895

ADI 83.0 74.1 78.0 75.2 88.8 0.862

SRI 84.9 76.8 80.4 77.7 90.2 0.886

Concatenate of IN and EX CT images 87.2 76.1 95.1 84.0 97.2 0.923

Different 2D networks with PRM dataset

2D-CNN—Naive model 84.8 78.6 71.0 74.6 87.3 0.861

Pretrained—DenseNet121 86.7 77.8 85.4 81.4 92.0 0.899

Pretrained—VGG16 87.5 74.1 97.6 84.2 98.5 0.938

Pretrained—Resnet50 88.3 84.6 80.5 82.5 90.1 0.901

Pretrained—InceptionV3 88.3 80.0 87.8 83.7 93.3 0.923

https://www.microsoft.com
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AUC was highest for PRM (0.937), followed by IN and ΔVair
f (with AUCs of 0.900 and 0.897, respectively). The 

confusion matrix of PRM (Fig. 5) reveals 40 false positives (FP, meaning that non-COPD was wrongly predicted 
as COPD) and 24 false negatives (FN, meaning that COPD was wrongly predicted as non-COPD). Therefore, 
the sensitivity of the model on the PRM dataset was 88.3%. The FP:FN ratios of ΔVair

f and IN were 40:40 and 
31:43, respectively, implying sensitivities of 80.4% and 71.8%, respectively.

3D gradient‑weighted class activation mapping (3D Grad‑CAM). Figure 6 presents some 3D PRM 
views of TP, TN, FP, and FN samples in three representative planes (axial, sagittal and coronal) (Fig. 6), obtained 
by ImageJ open-source software (version 1.53a, National Institute of Health). The four cases show different char-
acteristics of PRM structure: clearly dispersed disease with significant distributions of fSAD and emphysema 
(TP), unnoticeable disease (TN), clustered disease dominated by fSAD (FP), and dispersed disease with substan-
tial fSAD and negligible Emph (FN). The correctly predicted COPD subjects (first row of Fig. 6) presented more 
significant fSAD% and Emph% in their lobes than non-COPD subjects (second row of Fig. 6). The appearance 
differences between FP and FN were very difficult to represent, even by computer vision techniques.

To overcome the lack of transparency in CNN classification and the drawing of simple conclusions in human 
diagnosis, we applied Grad-CAM to the trained CNN. The Grad-CAM algorithm visualizes the feature extrac-
tion during the learning process of CNN as heatmaps. From the altered images of COPD versus non-COPD, 
we can extract the useful discriminative features. Different images from the axial, sagittal and coronal views 
corresponded to different maps in both groups. Abnormal regions in the lung manifested as increased values 
in the Grad-CAM results, implying that zero values in the heatmap correspond to normal regions in the lung. 
The heatmaps highlighted the PRM features that discriminated between COPD and non-COPD (Fig. 7). Most 
of the regions in the non-COPD lung were blue (Fig. 7A), whereas many hot colors appeared in the COPD lung 
(Fig. 7B). The class-discriminative regions were mainly observed in the upper and middle lobes in the COPD 
subjects (where the fSAD% and Emph% were also elevated), and at the local parenchyma near the airways in 
non-COPD subjects. Visualization of the learning process by Grad-CAM revealed that PRM became more 
focused by CNN as the training progressed.

Figure 3.  The loss and accuracy of the PRM training and validation datasets.

Table 3.  Previously published classification results of COPD versus non-COPD datasets.

Related work Data Methods Accuracy (%)

González et al.17 Original CT slices of COPDGene testing 
cohort (n = 1000) 2D-CNN 77.3

Ran Du et al.18 Multi-view snapshots of 3D lung-airway tree 
(190 COPD—90 Non-COPD) 2D-CNN 88.6

Ran Du et al.18 3D airway trees (190 COPD—90 Non-
COPD) 3D-CNN 78.6

Feragen et al.19 Airway trees (980 COPD and 986 Non-
COPD subjects) SVM 64.9

Xu et al.27
1/6 of the total height (z) of the original 
CT sequences (190 COPD and 90 healthy 
control subjects)

Deep CNN transferred multiple instance 
learning (DCT-MIL) 99.3

Our work 3D PRM 3D-CNN 89.3
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Comparing CNN models. The classification performance of our 3D-CNN was compared with those of four 
successful CNN models:  DenseNet12123,  VGG1624,  ResNet5025 and  InceptionV326. For a fair comparison, we 
converted these 2D models into the 3D domain and trained them on the same input dataset. The DenseNet121, 
VGG16, ResNet50, and InceptionV3 models consist of many deep convolutional layers, and involve significantly 
more network parameters than our model. The accuracies of DenseNet121, VGG16, ResNet50, and InceptionV3 
in PRM classification were 86.9%, 77.4%, 87.2%, and 83.9%, respectively, confirming that our 3D-CNN model 
outperforms other typical CNN networks.

Although 2D-CNN with multi-slice representation has been a popular choice in medical image analyses, it 
unavoidably loses information. Here, we compared the performances of the proposed model to an alternative 
2D-CNN model. The accuracy of our 2D-CNN model was 84.8%, versus 86.7%, 87.5%, 88.3%, and 88.3% for 
pretrained DenseNet121, VGG16, ResNet50, and InceptionV3, respectively. In a natural CNN, the proposed 3D 
approach significantly outperformed the 2D approach. Therefore, the 3D context is important for differentiating 
between COPD and non-COPD structures, necessitating the development of 3D pretrained models.

Discussion
This study developed a deep 3D-CNN model that identifies COPD from CT imaging data of current, former 
smokers and normal subjects. Among the lung functional variables, the PRM was especially useful for identi-
fying COPD. The PRMs extracted from CT images present distinct and abnormal morphological differences 
between COPD and non-COPD lungs. A deep CNN better represents these abnormalities from 3D PRM images 
than from 2D PRM images; in the former case, the classification accuracy of COPD versus non-COPD reached 
89.3%. To our knowledge, our method identifies COPD patients at least as accurately as previous classification 
 approaches17–19,27. A strong positive correlation was found between some combinations of PRM phenotypes 
and 3D CNNs.

As a COPD abnormality manifests in various forms and severity, it is not easily representable in the 
complex 3D structure of a human lung. COPD-induced abnormalities in the lung functional variables are 
 multidimensional28 and vary with anatomical location. Furthermore, quantitative measurements of the lung 
functional variables of COPD are non-standardized. The uncertainties and difficulties are enhanced by the 
different acquisition and reconstruction protocols of different CT  scanners29–31. Our 3D-cPRM method avoids 
these difficulties by efficiently distinguishing PRM abnormalities in COPD. The developed CNN fully exploits 
the available CT data, rather than pre-selecting 2D slices or snapshot images for 2D  CNNs18, or directly input-
ting CT slices to a 2D-CNN17.

Figure 4.  ROC curves of the COPD indices PRM, ΔVair
f, and IN.

Figure 5.  Confusion matrices of PRM, ΔVair
f, and IN.
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Table 3 overviews the datasets, methods, and classification results of some recent deep-learning studies that 
distinguish COPD from non-COPD subjects. The use of different datasets and methods precludes a fair com-
parison, but all models yielded satisfactory results. The advantage of the proposed 3D-cPRM approach, which 
achieved a detection accuracy of 89.3%, was confirmed above. Our result is comparable to that of a previous CNN 
 study17 and far exceeded that of multi-view snapshots of a 3D lung-airway tree (24/596 FPs in our method, vs. 
26/280 FPs and an accuracy of 88.6%18). Therefore, a 3D-CNN can effectively eliminate the false-positive results 
generated by 2D-CNN. The 3D-cPRM method (with a sensitivity of 88.3%; see Fig. 5) reduced the number of FPs 
from 43 in the 2D-CNN to 24. The accuracy of the pretrained models approached that of the 3D-CNN model, 
and surpassed that of the natural 2D-CNN model. This implies that a pretrained 3D model can improves the 
prediction accuracy of future COPD cases. This significant improvement again demonstrates that 3D-cPRM 
can clinically distinguish between the PRM characteristics of COPD and non-COPD subjects. When inputted 
with the combined 3D IN and EX images, our model achieved 95.1% sensitivity and 97.2% specificity, exceeding 
that of the PRM input (88.3% sensitivity and 93.6% specificity; see Table 2). However, this input combination 
slightly reduced the accuracy from that of PRM (87.2% vs. 89.3%), and doubled the computational cost from 
that of PRM (42 min vs. 80 min).

Our model was supported by the Grad-CAM implementation, which distinguished between the COPD and 
non-COPD imaging features in the PRM input. The heatmap images of Grad-CAM were of limited usefulness 
when the highlighted class-discriminative regions were unclear. This can be explained by the low resolution of 
our convolutional layer (32 × 32 × 32 voxels). Smaller kernels in Grad-CAM yield poor contrast and visualiza-
tion. Most of the regions in non-COPD lungs were blue, whereas hot-color regions were observed in the COPD 

Figure 6.  Classification samples of TP (first row), TN (second row), FP (third row), and FN (fourth row) in the 
axial (left), sagittal (center), and coronal (right) views of 3D PRM images. This figure was generated with ImageJ 
(version 1.53a, https ://image j.net/) and Microsoft PowerPoint 2010 (version 13328.20292; https ://www.micro 
soft.com).

https://imagej.net/
https://www.microsoft.com
https://www.microsoft.com
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subjects. This result reveals that (unlike humans) deep CNNs can memorize large volumes of CT image infor-
mation. Regardless of the classification method, the CNN identified the PRM as an important imaging feature 
of COPD. The PRM was more significantly correlated with COPD than the other functional variables (ΔVair

f, 
SRI, ADI, and J), affirming that this variable both discriminated and predicted the clinical features of COPD. 
The trained CNN automatically and objectively identified the PRM as an important feature during the COPD 
versus non-COPD discrimination. By visualizing the classification target of the CNN, Grad-CAM overcame the 
common drawback of deep-learning models, namely, the non-transparent interpretation. Unlike current image 
processing methods that require the summary statistics on a feature of interest, deep learning uses all data avail-
able in the image, and predicts the clinical relevance at the large-population level.

Our study has several limitations. First, our datasets were sourced from two hospitals adopting similar imag-
ing protocols and the same image analysis. However, various restructured kernels are mainly responsible for 
changes in Hounsfield (HU) values. These variations affect the PRM classification maps and the subsequent 

Figure 7.  Axial (top), sagittal (center), and coronal (bottom) views of PRM images (gray) and their Grad-CAM 
heatmap images (color), generated from non-COPD (A) and COPD (B) subjects. This figure was generated with 
Microsoft PowerPoint 2010 (version 13328.20292; https ://www.micro soft.com).

Table 4.  Scanners and scanning protocols used on the COPD and non-COPD subjects. JNUH, Jeonbuk 
National University Hospital; KNUH, Kangwon National University Hospital; mAs, milliampere-seconds.

Institution (subjects, n) JNUH (296/596) KNUH (300/596)

Scanner manufactory Siemens definition flash 128 slices Siemens definition AS 64 slices

Scan type Spiral Spiral

Rotation time(s) 0.5 0.5

Detector configuration 128 × 0.6 mm 64 × 0.6 mm

Pitch 1 1

Peak kilo voltage, kVp 120 140

Exposure (mAs) 110, Effective for inspiration 50, Effective for expiration 100, Effective for both inspiration and expiration

Dose modulation Care dose OFF Care dose OFF

Reconstruction algorithm B35f. B30f.

Thickness (mm) 1 0.6

https://www.microsoft.com
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calculation results. The scanners in our study used the same B3_f kernel, differing only in the 0th and 5th gen-
erations. If the reconstruction kernels and scanners are inconsistent (a common complication of multi-center 
data), the input parameters must be normalized into a similar data range for accurate classification. Second, the 
image noise and registration errors may also affect the accuracy of PRM map prediction. Errors in the registration 
technique are a common problem for all CT-based quantitative  methods32. Here we employed a mass-preserving 
registration method that maintains the same tissue volume between two inflation levels. This approach has 
been rigorously validated in lungs undergoing large  deformations33. An image registration algorithm using this 
approach achieved sub-voxel  accuracy33. After downsampling our imaging data, the resampled voxel size was 
much larger than the spatial accuracy, reducing the likely impact of the image registration accuracy on the pre-
diction accuracy of our deep-learning model. Finally, in a clinical setting, the classification of using CT-based 
features may not be used directly, because we did not associate any implication of CT-based features with clinical 
measures. This limitation should be supplemented with a well-designed prospective study that collect clinical 
and therapeutic information, as well as CT images.

In this study, we demonstrated that 3D PRM is a versatile imaging biomarker of phenotypic COPD. In par-
ticular, 3D PRM localizes the COPD disease states (fSAD and emphysema) in high volume. Unlike other meth-
odologies, 3D PRM easily provides the detailed spatial information on the distribution and location of COPD 
disease. By studying the unique structural and functional features between the two population groups, physicians 
can tailor their therapeutic interventions to individual patients with COPD, complementing standard clinical 
techniques. Especially when a PFT diagnosis is uncertain, COPD is commonly detected by QCT. Our diagnostic 
3D-cPRM method is a useful initial tool for investigating COPD in a limited number of patients. However, a 
good deep diagnostic model should be able to distinguish COPD from other lung diseases (such as asthma and 
lung cancer), and assess the severity of COPD (GOLD stages I–IV). In the next phase of our study, we will enroll 
more patients from different centers and update the dataset to achieve stable model performance. By adapting 
more advanced methodological strategies based on CNN models, we could precisely distinguish COPD from 
non-COPD in CT  images34. Furthermore, the high extraction ability of 3D PRM imaging ensures good contrast. 
In recent CNN studies, the accuracy has been enhanced by combining different imaging  modalities35,36. Although 
the 3D-CNN inputted with PRM CT images performed comparably to previous findings, its accuracy might 
be enhanced by combining ultrasound, X-ray, magnetic resonance imaging, single photon emission computed 
tomography, or positron emission tomography. The effectiveness of these modality combinations should also 
be considered in future work.

In conclusion, alongside the worldwide prevalence and impact of COPD, quantitative image visualization has 
become a cornerstone of clinical investigation. We proposed a deep 3D CNN that automatically identifies COPD 
from the lung functional variables, and visualizes the results. COPD manifests as abnormal appearances of the 
lung parenchyma, which were well represented by the deep CNN. The proposed method will enable early-stage 
identification of COPD, thereby reducing the missed-diagnosis rate. It can also elucidate the underlying disease 
pathogenesis and improve the management of COPD, especially in a time-constrained clinical environment. Our 
results clarified the potential of the PRM extraction features in COPD classification. The analysis of deep training 
processes, combined with specific imaging characteristics, can facilitate the discovery of new medical features.

Methods
Dataset. All methods complied with the guidelines and regulations of the participating centers. Informed 
consent was obtained from all participating subjects. All procedures were approved by the Institutional Review 
Board of Kangwon National University Hospital (KNUH) and Jeonbuk National University Hospital (JNUH) at 
the individual sites (KNUH 2019-06-007 and CUH 2016-03-020-005). The 596 subjects (204 COPD, 392 non-
COPD) were enlisted from subjects who underwent CT scans in KNU and JNU Hospitals. The KNUH subjects 
had a clinically tested disease history of asthma, pneumonia, and abnormal pulmonary function. The acquisi-
tion and reconstruction parameters of the two CT scanners are given in Table 4. The KNUH subjects included 
50/53/101 COPD subjects with never/former/current-smoker status accompanied by cement dust effects. Their 
data were supported by a Korean research project called the Chronic Obstructive pulmonary disease in Dusty 
Areas near cement plants (CODA), which monitored this cohort over 10 years. The JNUH subjects (control 
group) included 262/54/76 non-COPD subjects with never/former/current-smoker history, and no or little 
exposure to cement dust. Their data were collected by JNUH during 3  years37. Both CT scanners had similar 
specifications and imaging protocols (see Table 1) and used the same filtered back-projection reconstruction 
kernel (Siemens Definition Flash 128 slices B30f. and Siemens Definition AS 64 slices B35f.).

Registration. By registering the images of two or more lung CT images obtained at different static lung 
volumes (typically, the inspiration volume and one or more expiratory lung volumes), we obtain the functional 
variables of the images, such as the regional ventilation variable (distribution of the inspired air bolus). The pul-
monary registration technique calculates the optimal local-to-local correspondence between images captured 
with different modalities or collected at different  times38. The similarity measure of the sum of squared tissue 
volume difference (SSTVD)38 has been demonstrated to successfully improve registration of lung images with 
large deformation. This approach computes the changes in the reconstructed HUs caused by the inflationary 
lung motions. For reference, the attenuation values of air, water, and tissue are − 1000, 0 HU, and 55 HU respec-
tively. Prior to registration, lung parenchyma, airway, and vessel analyses were automated using VIDA Pul-
monary Workstation and Apollo software (VIDA Diagnostics, Coralville, IA) for extracting their binary-mask 
segmentation images. The binarized images were registered using a segmentation and registration toolkit ITK 
(https ://itk.org/) implemented in a homemade C++ program. In this paper, the paired CT data were registered 
with  SSTVD22,38–40. The parenchymal/global functional variables (ΔVair

f, J, ADI, and SRI), were extracted by an 
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imaging registration technique applied between the inspiration and expiration images. The Emph%, fSAD%, and 
ΔVair

f of the lungs were assessed by a CT density-threshold method, whereas the ADI, J, and SRI were assessed by 
the mechanical strains estimated in the image registration (Table 4). The PRM images were trained to compare 
the raw inspiration and expiration CT images, and the ΔVair

f, ADI, J, and SRI values were generated from the 
lung function parameters.

Parametric response mapping. The COPD phenotypes were classified by their topological properties 
obtained by PRM analysis of the inspiratory (reference)/expiratory (floating) lung CT images. The PRM created 
from the paired CT lung images improves the COPD phenotype detection by allowing visualization and quanti-
fication of the fSAD and Emph  components4. The registered image voxels (discrete 3D image units consisting of 
the inspiratory and expiratory attenuations in HUs) within the segmented lung volume were classified into three 
categories by imposing two thresholds: − 950 HU on the inspiratory CT and − 856 HU on the expiratory CT. The 
PRM components were colored as follows: 32 (fSAD, color-coded green; >  − 950 HU on IN and ≤  − 856 HU on 
EX) for functional small-airway disease; 64 (Emph, color-coded red; ≤  − 950 HU on IN and ≤  − 856 HU on EX) 
for emphysema clusters, and 8 (normal, color-coded blue; > − 950 HU on IN and >  − 856 HU on EX) for healthy 
lung parenchyma and unclassified voxels.

3D convolutional network model. When selecting a 3D-CNN for medical imaging classification prob-
lems, one must consider the high computation time, large size of the training datasets, and lack of pretrained 
models. These difficulties have been ameliorated by different CNN architectures. Unlike 2D CNNs, a 3D-CNN 
can encode representations of volumetric fields, and therefore extract more discriminative features via the 3D 
spatial information. Our 3D-cPRM mainly consists of 3D convolutional layers, 3D pooling layers, and fully 
connected layers, which are successively stacked into a hierarchical architecture. Each channel in a 3D-CNN is 
a 3D feature volume rather than a 2D feature map. The convolutions and max-pooling layers of a 3D-CNN are 
operated in a cubic manner. In a 3D max-pooling operation, the maximum value in the cubic neighborhood 
is selected and input to the subsequent feature map. After the pooling operation, the resolution of the feature 
volumes is reduced by an amount corresponding to the pooling kernel size. Theoretically, the pooled learned 
features are invariant to local translations in 3D space, which is eminently useful for image  processing41.

CNN architecture. Considering the three-dimensional processing, size of our training data, and available 
GPU computational power, we constructed a simple architecture for computational efficiency without overly 
compromising the accuracy. The network was built within the deep-learning framework Keras, and the input 
images were read by SimpleITK, an open-source multi-dimensional image analysis program. Our 3D deep net-
work (see Fig. 2) consisted of 9 layers: 3 convolutional layers, 3 batch normalization layers, and 3 max-pooling 
layers. The datasets were resampled to 32 × 32 × 32 voxels using the linear interpolation method, and the HU 
of each pixel was normalized within the range [0, 1]. After each convolutional layer of kernel size 3 × 3 × 3, the 
feature volumes were down-sampled by a max-pooling layer with a 2 × 2 × 2 voxels window. Finally, three fully 
connected layers (two with 128 neurons and one with 2 neurons) preceded the classification layer. As the acti-
vation function, we employed a rectified linear unit (ReLU) in each fully connected and convolutional layer. 
The model was trained from scratch with weights initialized from a normal distribution with mean μ = 0 and 
standard deviation σ = 0.1. The number of filters was determined as 32, 64, and 128 according to experiences. The 
COPD and non-COPD labels were then distinguished by a softmax function. The neural network was trained 
with the binary cross-entropy between the predicted and true diagnoses as the loss function. The convolution 
network structure was optimized by an Adam optimizer with the default learning rate (0.0001)14,42. Our CNNs 
were trained over 2500 iterations on a batch size of 50 samples. The iterative accuracies and losses on the training 
and testing datasets were plotted to validate the iteration number.

For comparison with other 3D-CNN models, we also implemented a 2D-CNN model by extracting one 
slice per subject at the 50% location of all slices. The 2D images were augmented with randomly rotated, scaled, 
sheared, and translated images within a defined range. The original size of the 2D CT image (512 × 512 pixels) 
was down-sampled to the input size of the 2D-CNN model (256 × 256 pixels). The number of filters was imposed 
as 32, 64, and 128, consistent with the 3D model, and the original HU value was normalized to between zero and 
one. We also assessed the 2D pretrained CNN models on the imaging data. For predicting COPD cases among 
our imaging data, we replaced the fully connected layer of the pretrained DenseNet121, VGG16, ResNet50, and 
InceptionV3 CNNs with a new fully connected layer, which was trained only on our 2D imaging data.

3D gradient‑weighted class activation mapping (3D Grad‑CAM). The classification conclusions of 
CNN models are non-transparent and cannot provide intuitive reasoning and explanations like human diagnos-
tic  experts42. Here, we adopted a Grad-CAM approach for visualizing the CNN learning process. This method 
creates a 2D spatial heatmap of the image indicating the focal points of the CNN predictions. The heatmap tracks 
the spatial attention of the 3D-CNN when predicting COPD disease.

Training and performance evaluation methods. The performances of the CNNs were evaluated by 
five-fold cross-validation. One-fold was reserved as the test dataset and the other four folds were used as the 
training dataset. The CNNs were implemented on an Intel, Xeon, CPU E5-2640 v4 @ 2.40 GHz (20 CPUs) with 
an NVIDIA GeForce RTX 2080Ti. The classification performance was assessed by the accuracy, precision, sensi-
tivity, F1 score, specificity, confusion matrix, ROC curve, and AUC. These metrics were computed from the true 
positive (TP), true negative (TN), false negative (FN), and false positive (FP)  results24. Statistical comparison of 
the demographics and lung functions was performed by two-sample t-test.
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