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ABSTRACT Here, we report the draft genome sequence of Salmonella enterica
subsp. enterica serovar Typhimurium strain Q1. The draft genome contains 4,793,493
bp in 149 contigs.

The genus Salmonella comprises a heterogenous group of enteric pathogenic bac-
teria that are considered to belong to either a specialist or a generalist class. The

specialists are strongly host adapted and confer a pathology that goes beyond self-
limiting gastrointestinal infections, leading to abortive and/or systemic clinical pathol-
ogies. Typical representatives are the human-specific S. enterica subsp. enterica serovars
Typhi (the causative agent of typhoid fever) and Paratyphi, as well as bovine-adapted
S. enterica subsp. enterica serovar Dublin and pig-restricted S. enterica subsp. enterica
serovars Choleraesuis and Parasuis. In contrast, nontyphoidal S. enterica subsp. enterica
(NTS) serovars, such as S. Typhimurium and S. Enteritidis, are routinely isolated from a
variety of different warm- and cold-blooded host species (1, 2). Infections with NTS
serovars generally lead to local and self-limiting gastrointestinal infections in
immunocompetent patients, as well as to typhoid-fever-like symptoms in immuno-
compromised individuals, neonates, and infants (1, 3–5). Thus, due to its zoonotic
potential and exceptional role as a foodborne pathogen, NTS serovars are a
paradigm for the (https://www.cdc.gov/onehealth/).

Despite the large number of Salmonella serovars, clinical pictures, and disease severity,
the pathogenic mechanisms are very similar and depend in large part on virulence
factors encoded within two large genomic islands, termed Salmonella pathogenicity
islands 1 and 2 (6–8). It is widely accepted that horizontal gene transfer (HGT) is the
main driver of Salmonella pathogenicity evolution, bacterial fitness, and host adaption
and that lysogenic conversion of temperate phages has had a significant contribution.
The most prominent examples of lysogenic phages in the genus Salmonella are the
P2-like phages SopE�, Fels-1, and Fels-2 and the lambdoid prophages Gifsy-1, Gifsy-2,
and Gifsy-3 (9–11).

Here, we provide the draft genome sequence of S. Typhimurium serovar Q1.
Serologically, Q1 is a strain of S. Typhimurium, which was isolated from the feces of a
human patient suffering from food poisoning and later cured of endogenous prophage
(12). Q1 was believed to be phage and plasmid free (13), rendering it an excellent
candidate strain for studies of HGT in vitro and in vivo. However, an uncharacterized,
inducible bacteriophage infective for S. enterica subsp. enterica serovar Gallinarum was
later observed (14). Using PHASTER, a Web-based online tool for identifying phage and
phage-like sequences in bacterial genomes, we identified Gifsy-2 in the genome of
S. Typhimurium Q1 (15, 16).

The 300 bp paired-end reads were generated using the Illumina MiSeq platform. The
reads were de novo assembled into contigs with a minimum size of 200 bp using MIRA
version 4.0 (17). A total of 149 contigs were generated ranging from 248 bp to
541,223 bp and resulted in a total genome size of 4,793,493 bp. The cumulative G�C
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content of the genome assembly was 52.2%. Gene annotation was performed using the
RAST annotation server (18), which predicted 4,667 coding DNA sequences, 91 tRNAs,
42 rRNAs, and 1 transfer-messenger RNA in the draft genome. Strain Q1 was assigned
to sequence type 19 using the multilocus sequence type service for total-genome-
sequenced bacteria from the Center for Genomic Epidemiology (19). Using ResFinder
(20) and PlasmidFinder (21), neither resistance genes nor plasmids were identified.
Consistent with this observation, no phenotypic resistance against 11 different antibi-
otics was noted using the bioMérieux Vitek 2 system.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number NNSK00000000. The version de-
scribed in this paper is the first version, NNSK01000000.
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