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Abstract. In this paper we study the problem of clustering bacterial iso-
lates into epidemiologically related groups from next-generation sequenc-
ing data. Existing methods for this problem mainly use a single genotyp-
ing signal, and either use a distance-based method with a pre-specified
number of clusters, or a phylogenetic tree-based method with a pre-
specified threshold. We propose PathOGiST, an algorithmic framework
for clustering bacterial isolates by leveraging multiple genotypic signals
and calibrated thresholds. PathOGiST uses different genotypic signals,
clusters the isolates based on these individual signals with correlation
clustering, and combines the clusterings based on the individual signals
through consensus clustering. We implemented and tested PathOGiST
on three different bacterial pathogens - Escherichia coli, Yersinia pseu-
dotuberculosis, and Mycobacterium tuberculosis - and we conclude by
discussing further avenues to explore.

Keywords: Bacterial pathogens - Whole-genome sequencing -
Correlation clustering - Microbiology + Public health

1 Introduction

Partitioning the isolates of a bacterial pathogen into epidemiologically related
groups is an important challenge in public health microbiology. Specifically, such
a partitioning, which we will refer to as a clustering, can provide information on
particularly transmissible strains (super-spreaders) and identify where an inter-
vention such as active case finding may be particularly beneficial. In combination
with additional metadata, such as geography or time of observation, such a clus-
tering can also help identify rapidly growing groups (transmission hotspots),
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narrow down the potential origins of an outbreak (index case), and distinguish
between recent and historical transmissions.

The clustering problem can leverage a variety of genotypic signals. Histori-
cally, fairly coarse genotypes such as VNTR (variable-number of tandem repeats,
i.e. the number of copies of a set of pre-specified repeated regions in a strain) [29],
PFGE (pulsed field gel electrophoresis) [15] and MLST (multi-locus sequence
type, i.e. the alleles at a small number of pre-specified housekeeping genes) [18]
have been the predominant mode of genotyping bacterial pathogens. These low-
resolution signals, which we refer to as “fingerprints”, could lead to incorrectly
clustered strains [1] since unrelated bacterial isolates may happen to share identi-
cal fingerprints. With the advent of next-generation sequencing (NGS) [17], new
genotypic signals have become available. These include SNP (single-nucleotide
polymorphism) profiles [6], which can be identified at the whole-genome scale,
and also wgMLST (whole-genome multi-locus sequence type) [19], which con-
tains the alleles at all of the known genes in the organism of interest.

Methodologically, existing approaches fall into one of two categories. Some
methods - including those inspired by and used in metagenomics [24] - use a
pure distance-based approach, whereby a sequence similarity cutoff threshold
is chosen, and any pair of sequences whose similarity exceeds it are considered
to be in the same cluster, with a transitive closure operator applied to ensure
the result is a valid partition. Alternatively, such methods may simply apply
a standard clustering method, such as hierarchical clustering, to the pairwise
distance matrix; in this case, the number of clusters is typically specified in
advance [5]. Other methods - which tend to be more computationally expensive -
leverage a phylogenetic tree reconstructed from the data to define clusters [2,11].
They also typically require a similarity threshold, but may be less sensitive to
outlier isolates or to homoplasy, i.e. convergent evolution.

The majority of existing approaches for clustering bacterial isolates use a
single genotypic signal, typically one of the higher-resolution ones, in isolation
[12]. However, in this paper we argue for the principled combination of both
low-resolution as well as high-resolution genotypic signals. The framework we
propose here; called PathOGiST, innovates in several key ways. First, it lever-
ages multiple genotypic signals extracted from NGS data. They can be further
subdivided according to granularity into coarse and fine signals; the former get
penalized only for grouping together isolates with different genotypes, not for
splitting isolates with similar genotypes, while the latter get penalized for both
of these. Second, it is based on a distance threshold, but does not apply a tran-
sitive closure operator to the similarity graph, or require a pre-specified number
of clusters. Instead, it makes use of the correlation clustering paradigm, which
tries to minimize the number of pairs of distant isolates within clusters while
minimizing the number of pairs of close isolates between clusters. Third, it can
be calibrated to different bacterial pathogens and genotyping signals, although
we also provide an automatic threshold detector based on the distribution of
pairwise distances between isolates.
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Our results demonstrate that, when applied to a selection of three bacte-
rial pathogens with annotated datasets publicly available - FEscherichia coli,
Yersinia pseudo-tuberculosis, and Mycobacterium tuberculosis - PathOGiST per-
forms with a higher accuracy than recently published existing methods in most
cases, both in terms of its ARI (adjusted Rand index) as well as CP (cluster
purity). Our paper establishes that the use of calibrated thresholds and multi-
ple genotypic signals can lead to an accurate clustering of bacterial isolates for
public health epidemiology.

2 Methods

The goal of our approach is to cluster pathogen isolates from whole-genome
sequencing data by using different genotyping approaches, alone and in combi-
nation. Each cluster should ideally represent a set of isolates related by an epi-
demiological transmission chain. We assume that we are given as input several
matrices recording the pairwise distances between the isolates, one per genotyp-
ing signal. The algorithm proceeds in two stages. We first compute a clustering
of the isolates for each distance matrix, and then compute a consensus of these
separate clusterings. For the first step, we rely on correlation clustering [3],
which we describe in Sect. 2.1. For the second step, we use a modified approach
to the consensus clustering problem [4], also based on a correlation clustering
formulation, described in Sect. 2.2. The whole process is illustrated in Fig. 1.
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Fig. 1. PathOGiST starts by computing clusters based on single distance signals using
correlation clustering. Then we run consensus clustering on the outputs of the correla-
tion clustering.
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2.1 Correlation Clustering

Let G be an undirected complete weighted graph with vertices V' and edges E.
Let W : E — R be the edge-weighting function, which is positive for edges con-
necting vertices (representing isolates) that are similar and negative for those
connecting dissimilar vertices. Correlation clustering aims to partition the ver-
tices into disjoint clusters Cq, Co,...,Cy where N < n. Let I be the set of edges
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whose endpoints lie in the same cluster and let J = E — I be the set of edges
whose endpoints lie in different clusters. The goal of the minimum correlation
clustering problem is to find a clustering that minimizes the total weight of the
edges in I with negative weight minus the total weight of the edges in J with
positive weight:

CEM D W)= Y W(e)
ecl ecJ
W(e)<0 W(e)>0

In this work, we perform the construction of the weighted graph G from
a distance matrix. Given a distance matrix D on the input elements (graph
vertices) such that d;; is the distance between elements i and j, we define s;; =
T — d;;, where T' is a distance threshold, intuitively meaning that if d;; < T', i
and j are considered similar, while d;; > T means that ¢ and j are considered
dissimilar. We use s;; as the weight of the edge between vertices ¢ and j in G.

By defining binary variables x;; such that x;; = 0 if 4 and j are in the same
cluster and x;; = 1 otherwise, we can write the minimum correlation clustering
objective function as

f($) = Z SijTij — Z Sij(l - fz‘j) = Z«Sijxij - Z Sij-

Si.7‘>0 5ij<0 Sij <0
Since the second term is constant, the minimum correlation clustering problem
can be solved optimally with the following Integer Linear Program (ILP):
minimize Z 8i;%ij (1)

s.t. Tik < xyj +xj for all 4,5,k
zy; € {0,1} for all ¢,

Here, the inequality constraints (which we call the “triangle inequality” con-
straints) together with the binary constraints ensure that the assignment is
transitive [3]. Indeed, if z;; = 0 and xj; = 0, they enforce that z;; = 0.

C4: A Fast Parallel Heuristic for the Correlation Clustering Prob-
lem. Solving the ILP in Eq. (1) can be time consuming and can require a large
amount of memory due to the quadratic number of variables and cubic num-
ber of constraints. For this reason, we additionally implemented the faster C4
algorithm, a parallel algorithm that guarantees a 3-approximation ratio of the
optimal objective function of correlation clustering in the special case of metric
distances (i.e. when the s;; satisfy the triangle inequality s < s;; + s;1) [26].
Our results show that this algorithm is remarkably fast and quite accurate
on the input graphs we tested. However, it is non-deterministic, as it depends on
the initial permutation of the vertices. With this in mind, we run C4 multiple
times with random initial permutations and compute the objective value for
each solution. Then, among those solutions, we choose the one that minimizes
the objective function. Our experiments show that in practice, this works very
well and most of the time is able to find the optimum or near-optimum solution.
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Solving the Minimum Correlation Clustering Problem Exactly. In
order to solve the minimum correlation clustering problem exactly, while coping
with the cubic number of linear constraints, we employed two approaches.

First, recalling that we often get a near-optimum solution from C4, we use
it as a warm start to the problem by supplying it to the ILP solver.

Second, rather than creating the ILP with all the constraints right away, we
iteratively add the constraints as follows. According to Eq. (1), for every index
triple (¢, j, k) the ILP has 3 constraints on the decision variables x;;, =i, Ti:

Tik S Tij + Tjg, Tij < Tip + Tjg, Tip < Tig + T4

To provide the intuition for our second heuristic, assume that all three simi-
larities between elements 1, j, k are positive. This implies that the elements i, j,
and k are similar to each other, so are more likely to belong to the same cluster.
In this case, the three variables x;1, z;;, and z;;, will likely be assigned the value
0 and satisfy the inequalities. On the other hand, all three similarities being
negative implies that elements 4, j, and k are likely to be in different clusters,
which would set these variables to 1 and again satisfy the inequalities.

Taking this into account, we use an approach inspired by constraint gen-
eration [8], and start by only including constraints induced by element triples
whose set of similarities contain both positive and negative edges and solve this
trimmed-down ILP. We then check all the excluded constraints in the solution to
see whether any of them is violated. If none is violated, then the current solution
is also an optimum solution for the original ILP and we are done. Otherwise,
we add all the constraints that are not satisfied by the current solution to the
ILP and solve the modified ILP again. We repeat this process until no violated
constraint remains.

In most experiments (225 out of 235 experiments), we observe that no vio-
lated constraints have been found. Almost all of the other cases only required one
extra iteration to find a solution that satisfied all the constraints. The average
number of iterations was 1.102.

2.2 Consensus Clustering

Given a set of clusterings and a measure of distance between clusterings, the con-
sensus clustering problem aims to find a clustering minimizing the total distance
to all input clusterings. A simple distance between two clusterings m; and mo is
the number of elements clustered differently in m; and 7, that is, the number
of pairs of elements co-clustered in 7y but not co-clustered in 75, or vice versa.

Representing a clustering = by a quadratic number of binary variables (z;; =
0 if and only if 4, j are co-clustered), the distance between = and a clustering 7
is given by the formula

d(maﬂ-) = § wzy J)U § WijTq5 = § SijTij + § Wiy, (2)
mij=1 ;=0 zi;=1

where a weight w;; is assigned to each pair of elements ¢ and j penalizing any
clustering decision in x that differs from 7, and we define s;; := (—1)™ w;;.
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Notice that solving the minimum consensus problem for a given set of clus-
terings 7V, ..., 7(") is equivalent to solving a minimum correlation clustering
problem with the matrix S defined as

k k - 5 (k
CRED VRTINS SRRTES WE VLT IC

{k|ﬂ'x€):0} {k|7‘r§]’.€):1} k=1

Consensus Clustering with Different Granularities. An important fea-
ture of our problem is that the different genotyping signals we consider might not
cluster the isolates with the same granularity. For example, it was shown in [22]
that when clustering Mycobacterium tuberculosis isolates using SNPs, MLST,
CNVs and spolygotypes, the latter two genotyping signals result in coarser clus-
ters than the former two. For this reason, we assume that the input clusterings
can be of different granularities. In this setting, we want to avoid penalizing
the differences between a finer clustering m and a coarser clustering 7/, and we
introduce the following asymmetric distance: d(m,n’) = | — #’|. In this case,
assuming 7 is the coarser clustering and 7’ the finer one, we penalize only those
pairs that are co-clustered in 7 but not in 7’.

Then, given the clusterings 7(1), ... 7(™ and a subset F of these cluster-
ings, representing the clusterings with the finer resolution, the finest consensus
clustering problem is to find a clustering x that minimizes the total distance
between x and all input clusterings, where

Z wij(1 = i) + Z wijzij, ifmeF
d T, ) = mij=1 ;=0 4
o Z WijLij, otherwise (4)

mj:O

We can then reformulate this problem as a minimum correlation clustering again,
with matrix S defined by

YooY ®

sij =
{k\wg;?):o} {k\n§§>:1,ﬂ<k>eF}

Selecting Appropriate Weights for Consensus Clustering. There might

be many meaningful ways of defining the weights wl(;-c) used in the previous
equations. If we assume that a clustering m was inferred based on a distance

matrix D, normalized such that 0 < d;; <1, we can define w;; as

wij{ ! " (6)

1—d;;, otherwise

The reasoning behind this definition is that if w;; = 1 (4, j are not co-clustered
in ), then the distance d;; should be large, therefore it is a good penalty for
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co-clustering 7, j in . On the other hand, if 7;; = 0, d;; can be expected to be
small, which means that 1 —d;; is a better candidate for the penalty of choosing
x;; = 1. The distance between two clusterings (Eq. (2)) can then be written as

Z dij (1 — x;5) Z (1 —d;j)zij (7)

mi;=1 ;=0

and Eq. (3) becomes

Sij = Z (1 — dg;c)) — Z d(k) = 1] Dij (8)

{k|n (=0} {k|x (=1}

where H” =

{k“ﬂ'gc) = 0}’ and D=>"}_,d ).

We can naturally combine the Welghtmg with the different granularities
within a single formulation. In summary, the finest consensus clustering problem
with weights can be formulated as a minimum correlation clustering problem,
and thus solved by the algorithms described in Sect. 2.1.

2.3 Evaluation

To evaluate our methods for clustering, we compute two measures between our
clustering and a ground truth clustering: Adjusted Rand Index (ARI) and Clus-
ter Purity (CP).

The adjusted Rand index is a measure that computes how similar the clusters
are to the ground truth. It is the corrected-for-chance version of the Rand index
which is the percentage of correctly clustered elements. It can be computed using
the following formula:

%{Zi(“{)Jij(sz)}—{ (35 )] /6)

where n;;, a;, b; are values, row sums, and column sums from the contingency
table [13].

Cluster Purity is another measure of similarity between two data clusterings.
To compute, assign each cluster to the most common ground truth cluster in
it. Then, count the number of correctly assigned data points and divide by the
total number of data points. Formally:

ARI =

CP(C,G) = Zmax|ckﬂg]|

where N is the number of data points, C' = {¢1,¢a, ..., cx} is the set of clusters
and G ={¢1,92,...,9s} is the set of ground truth clusters [20].
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3 Results

3.1 Datasets and Genotyping Methods

We used three published datasets for three pathogens, Escherichia coli [14],
Mycobacterium tuberculosis [10], Yersinia pseudotuberculosis [30], and a simu-
lated dataset taken from [16]. Several genotyping signals were extracted from the
WGS data: multilocus sequence typing (MLST) using MentalLiST pipeline [7],
single nucleotide polymorphisms (SNP) using Snippy [28], copy number vari-
ants (CNV) using Prince [21], k-mer weighted inner products (KWIP) using
kWIP [23], and spacer oligonucleotide typing (Spoligotyping) using SpoTyp-
ing [31] (Table1).

Table 1. Datasets and genotyping summary

Dataset Number of isolates | Genotyping signals

SNP MLST kWIP CNV SpoTyping
E. coli 1509 v o/ 4 X X
M. tuberculosis (MTB) 1377 v o/ v v v
Y. pseudotuberculosis (Yp)| 163 v o/ 4 X X
Simulated Data (SD) 96 v o/ v X X

For each genotyping signal, in order to apply our correlation clustering algo-
rithm, we needed to determine a threshold 7" to decide which pairs of isolates
should be considered similar. To do so, we consider the pairwise distance distri-
bution for each signal, choosing a threshold range that covers the first valley in
the distribution, under the assumption that the first peak likely indicates dis-
tances between isolates belonging to the same cluster. The resulting threshold
ranges and steps are described in Appendix (Table4).

In our experiments, for each sample, each signal and each threshold, we
ran our two algorithms for solving the minimum correlation clustering problem,
the C4 approximation algorithm (with multiple runs) and the exact ILP using
delayed constraint generation. Then we ran the consensus clustering algorithm,
again using both methods.

3.2 Single Signal Genotyping

The E. coli dataset contains 1509 isolates collected from across England and
spans an 11-year period. The distance distribution for each genotyping signal
(MLST, SNP, kWIP) is shown in the Appendix (Fig. 2).

The second dataset contains 163 isolates of Y. pseudotuberculosis mostly
collected from New Zealand [30]. We applied the same genotyping methods as for
the E. coli dataset to this one. The results are presented in Appendix (Fig. 3). For
E. coli and Y. pseudotuberculosis, we consider the MLST groups determined in
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their respective studies [14,30] as the ground truth, and use them to calculate the
ARI and CP values. For the simulated data, since the authors suggest [16] BAPS
for building the true phylogenetic tree and clustering, we used the RhierBAPS
results as the ground truth for this dataset instead of MLST.

The isolates of the M. tuberculosis dataset were obtained from pediatric
patients in British Columbia, Canada, and were collected between 2005 and 2014.
We used a subset of 1377 isolates, all of which underwent WGS. In addition to
SNP, MLST and kWIP information, we considered two additional genotyping
signals, CNV and Spolygotyping. For M. tuberculosis, due to the lack of MLST
groups, we use the strain’s lineage, a proxy for its geographic origin [27]. For this
dataset, the ARI would not be informative since a lineage is a coarse grouping
largely uninformative of the underlying epidemiology, and should be split into
multiple clusters. Thus, we only calculate and report the CP in this case. The
results for this dataset are illustrated in Appendix (Fig.4).

We can observe that for all the pathogens and genotyping signals we consider,
there is a relatively clear threshold that falls within the chosen range which
results in high accuracy clusters, with ARI and CP values above 0.8, and often
close to 1. The only exceptions concern the M. tuberculosis dataset with SNPs,
MLST and kWIP, although the CP statistics is notoriously less robust than
the ARI. Moreover, most of the time, around the best thresholds, the clustering
obtained with the exact ILP method results in accuracy measures that are either
very close to those of the C4 method or slightly better.

3.3 Comparison of the C4 and Exact ILP Methods

The ILP generally gives more accurate results and is a deterministic method.
However, its running time and memory usage depend a lot on the size of the
dataset. For example, while it is able to cluster the smaller Y. pseudotuberculosis
dataset in less than a minute, it takes more than three hours to find clusters for
larger datasets at some threshold values. On the other hand, the C4 heusritic is
significantly faster and requires much less memory even on the larger datasets, as
shown in Table 2. However, it is not deterministic, and random restarts may give
slightly different, incompatible results. To evaluate the C4 heuristic performance,
we compared the objective values of solutions found by C4 and by the exact ILP.
In most cases, C4 performs very well and finds a solution whose objective value
is close to the optimal (Table 2).

Furthermore, the objective value of CPLEX is affected by the tolerance
parameter; when the gap between the lower and upper bound is less than a
certain fraction e, set to 107% by default, the optimization is stopped. In this
case, we see that because the magnitude of the objective function is fairly large, it
is possible for the C4 method to obtain a better objective function than CPLEX.
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Table 2. Average running time (in seconds) and memory footprint (in gigabytes); ILP
and C4 objective value comparison.

Dataset Time (s) Memory (GB)|Objective value

C4 ILP C4 ILP ILP C4: mean C4: std
E. coli 698 7282 0.22 193.72 | —1.9068 x 10'° —1.9074 x 10 3.8817 x 10°
M. tuberculosis 572 10437 0.20 298.87 |—2.9445 x 108 —2.8844 x 10® 2.4238 x 10°
Y. pseudotuberculosis | 14 15 0.13 0.81 —4.1601 x 107 —4.1594 x 107 1.3238 x 10°

3.4 Comparison with Existing Clustering Methods

The results from PathOGiST were compared to those generated by two recent
methods developed for clustering WGS datasets, Phydelity [11] and TreeClus-
ter [2]; both of them are based on phylogenetic trees. To infer a phylogeny for our
datasets, we first calculated a pair-wise distance matrix using Mash [25], then
we ran the popular and widely used BIONJ [9] variant of the neighbor joining
algorithm on the distance matrix. After we inferred phylogenetic trees, we ran
Phydelity and TreeCluster with their default settings. In order to pick a single
threshold for each genotyping signal-pathogen combination in PathOGiST, we
chose the threshold resulting in the best ARI (CP for M. tuberculosis) among
all the options. These thresholds are set as the default thresholds for these geno-
typing signal-pathogen combinations, but can be overridden by the user. Table 5
(Appendix) shows the chosen optimal threshold for each dataset and genotyping
signal.

Table 3. ARI (Adjusted Rand Index) and CP (Cluster Purity) computed for different
methods and genotyping signals

Method E. coli Y. pseudotuberculosis | M. tuberculosis | Simulated Data
ARI CP |ARI CP ARI CP ARI CP

Phydelity 0.76 0.93/0.23 0.94 - 0.92 0.238 0.645

TreeCluster 0.08 0.96/0.01 0.90 - 0.74 0.940 0.562

PathOGiST

ILP: SNP 0.92 1.0 |0.96 0.98 - 0.56 0.970 0.979

ILP: MLST 0.90 0.95/0.94 0.94 - 0.95 0.969 0.968

ILP: KkWIP 0.90 1.0 0.96 0.94 - 0.57 0.973 0.989

ILP: CNV - - - - - 1.0 - -

ILP: SpoTyping|- - - - - 0.92 - -

ILP: Consensus |0.91 0.85/0.96 0.97 - 0.57 0.973 0.989

C4: SNP 0.92 1.0 0.96 0.98 - 0.57 0.973 0.989

C4: MLST 0.90 0.95/0.94 0.94 - 0.95 0.969 0.968

C4: kWIP 0.90 0.99/0.96 0.94 - 0.60 0.973 0.989

C4: CNV - - - - - 1.0 - -

C4: SpoTyping |- - - - - 0.92 - -

C4: Consensus |0.91 0.86/0.96 0.97 - 0.47 0.973 0.989
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Having clustering outputs of the single signal correlation clustering algorithm
with chosen default thresholds, we ran consensus clustering for each pathogen
with all their available genotyping signals. We considered SNP clustering as the
finest because it provides a higher resolution signal comparing to other genotyp-
ing signals. The results are described in Table 3. The main observation is that in
all cases, but M. tuberculosis, the consensus clustering ARI is close to the best
ARI obtained by a single genotyping signal, showing that our approach indeed
removes the need to chose a single signal for clustering.

4 Conclusion

In this paper we described PathOGiST, an algorithmic framework for clustering
bacterial isolates. One of our key contributions is to introduce the paradigms
of correlation clustering and consensus clustering for the analysis of bacterial
pathogens, together with two implementations - one exact and one heuristic - of
correlation clustering algorithms, tailored to the problem at hand. Our exper-
imental results suggest that our approach allows to compute a very accurate,
often close to optimal, clustering without having to determine an optimal geno-
typing signal.

In the future, we hope to address several challenges. The first issue is the
risk of overfitting, as the calibration of the threshold relies on the correlation
clustering results’ comparison to a gold standard. However, we also provide an
automatic threshold detector. Our results demonstrate that our approach has
the potential to provide reliable clusters.

Second, instead of a single output, a multi-scale or hierarchical representation
of the clusters may be helpful in order to provide the user with the flexibility of
deciding on their own clustering granularity. Moreover, some metadata, such as
collection time or geographic location, may be fruitfully incorporated into the
clustering approach in order to better inform the resolution of some groups of
isolates.

Finally, due to the lack of existing tools for simulating multiple genotyping
signals, we considered MLST as our gold standard. This may not represent the
correct clustering, but is the best available among the individual genotyping
signals.

Despite these challenges, we believe that PathOGiST is a first step in the
right direction, and we hope that it will generate an impetus to further explore
the problem of clustering bacterial isolates.
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A Appendix Tables

Table 4. Ranges and steps for threshold values. For each experiment we ran the
PathOGiST with different thresholds iteratively. We increased threshold by the step
starting from beginning of the range through its end.

Dataset | SNP MLST kWIP CNV SpoTyping
Range Step | Range Step | Range Step |Range Step | Range Step
E. coli |(0,43000] 2150|(0,600] 20 |[0.21,0.75] 0.03
MTB [(0,500] 25 |(0,500] 25 [0.125,0.5] 0.025|(0,50] 2.5 |(0,13] 0.65
Yp (0,40000] 2000 (0,600] 20 |[0.175,0.7] 0.025 |- - - -
SD (0,8000] 400 |(0,400] 20 |[0.26,0.4] 0.02 |- - - -

Table 5. Best clustering thresholds per dataset and genotyping signal.

Dataset SNP MLST kWIP CNV SpoTyping
E. coli 17200 400 0.66 - -
M. tuberculosis 500 475 0.5 50 13

Y. pseudotuberculosis| 6000 340 0.625 - -
Stmulated Data 1600 220 0.4 - -
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From top to bottom: SNP, MLST, kWIP.
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