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Abstract: In this study, the impact of steel fibres and Silica Fume (SF) on the mechanical properties
of recycled aggregate concretes made of two different types of Recycled Coarse Aggregates (RCA)
sourced from both low- and high-strength concretes were evaluated through conducting 60 compres-
sive strength tests. The RCAs were used as replacement levels of 50% and 100% of Natural Coarse
Aggregates (NCA). Hook-end steel fibres and SF were also used in the mixtures at the optimised
replacement levels of 1% and 8%, respectively. The results showed that the addition of both types of
RCA adversely affected the compressive strength of concrete. However, the incorporation of SF led
to compressive strength development in both types of concretes. The most significant improvement
in terms of comparable concrete strength and peak strain with ordinary concrete at 28 days was
observed in the case of using a combination of steel fibres and SF in both recycled aggregate concretes,
especially with RCA sourced from high strength concrete. Although using SF slightly increased the
elastic modulus of both recycled aggregate concretes, a substantial improvement in strength was
observed due to the reinforcement with steel fibre and the coexistence of steel fibre and SF. Moreover,
existing models to predict the elastic modulus of both non-fibrous and fibrous concretes are found
to underestimate the elastic modulus values. The incorporation of SF changed the compressive
stress-strain curves for both types of RCA. The addition of steel fibre and SF remarkably improved
the post-peak ductility of recycled aggregates concretes of both types, with the most significant
improvement observed in the case of RCA sourced from a low-strength parent concrete. The existing
model to estimate the compressive stress-strain curve for steel fibre-reinforced concrete with nat-
ural aggregates was found to reasonably predict the compressive stress-strain behaviour for steel
fibres-reinforced concrete with recycled aggregate.

Keywords: compressive behaviour; elastic modulus; recycled aggregates; steel fibres; silica fume

1. Introduction

Concrete is considered the most widely used construction material in the world [1–13].
Rapid urbanisation due to population growth results in the redevelopment of housing
sectors and infrastructures in many cities around the world [14–18]. These redevelopments
generate huge amounts of demolition waste due to the destruction of existing infrastructure,
such as buildings and bridges [19,20]. New construction activities also generate concrete
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and building waste. Therefore, a significant amount of construction and demolition (C&D)
waste is generated, and only a small amount is recycled in road bases while the rest goes to
landfills [21–24]. Conversely, in many cities, land areas for C&D wastes disposal are scarce,
and the landfill levy to dump these C&D wastes is also increasing every year. Hence, the
additional cost is paid off by contractors and asset owners. The use of waste materials,
such as C&D wastes, as aggregates in concrete is a sustainable and economical practice in
the construction industry [23,25,26].

The properties of concrete made by recycled aggregates have been analysed in many
research studies [27,28]. Therefore, there is a good understanding of the mechanical and
durability properties of recycled aggregate concrete. As a result, the partial replacement of
natural aggregates with recycled aggregates in concrete has been adopted in many projects
around the world [29,30]. However, previous studies on the use of the recycled coarse
aggregates (RCA) in concrete indicate the lower mechanical and durability characteristics
of recycled aggregate concrete in comparison with the natural aggregate concrete, which is
due to the weaker properties of RCA in comparison to the natural coarse aggregate (NCA).
The weaker performance of RCA is due to the presence of attached mortar and inferior
interfacial transition zone (ITZ).

Like concrete-containing natural aggregates, recycled aggregate concrete also exhibits
brittle behaviour in tension and flexure [31]. Therefore, various fibres are used to reinforce
recycled aggregate concrete to improve its mechanical properties [32–35]. Among many
fibres, steel fibre is one of the most effective materials to enhance the tensile strength of
recycled aggregate concrete [36–38]. Most studies have investigated the improvement in the
mechanical properties of recycled aggregate concrete containing steel fibres by measuring
the compressive, tensile and flexural strengths.

To mitigate the weaker performance of RCA and make it more comparable to conven-
tional concrete, multiple approaches have been utilized in previous research, including
the addition of supplementary cementitious materials (SCMs) such as fly ash, electric arc
furnace slag, ground granulated blast furnace slag, and SF [39]. Such SCMs contribute to
strength enhancement through eliminating the inferiority of RCA and make it compara-
ble to natural aggregate concrete. For instance, the latent hydraulic property of ground
granulated blast furnace slag as well as its pozzolanic characteristics contributes to the
mitigation of the adverse mechanical impacts of RCA [40].

In addition to the desirable impact of the mentioned materials, previous research
studies indicate the superb performance of SF in the enhancement of mechanical and
durability properties of recycled concrete [41]. The addition of SF improves the mechanical
and durability properties of recycled aggregate concrete in two ways. First, SF fills out RCA
pores, which later improves the microstructure of the interfacial transition zone; second,
hydration products fill the micro-cracks initially present in the RCA during crushing [42].
The incorporation of SF also improves the behaviour of fibre-reinforced concrete [43].
However, there is still a need to better understand the stress-strain behaviour of steel fibre-
reinforced recycled aggregate concrete in the construction of structures once SF is used
as a supplementary cementitious substance [44,45]. While determining the compressive
strength is necessary for calculating the strength of structural components, the stress-strain
curve is required for evaluating the toughness resistance to determine the ductility of
structures made with sustainable materials [46–48].

Carneiro et al. [49] measured the compressive stress-strain behaviour of steel fibre-
reinforced concrete containing recycled aggregates replaced by 25% of natural aggregates.
The results showed that steel fibres affect the stress-strain behaviour of recycled aggregate
concrete and increase its toughness. The behaviour of steel fibre-reinforced recycled aggre-
gate concrete under compression was similar to that of fibre-reinforced natural aggregate
concrete. However, to maximise the use of RCA in concrete and increase its sustainability,
high amounts of RCA as a replacement for natural coarse aggregate are required.

Meesala [50] studied the effects of various types of fibres, such as woollen fibres,
glass fibres, and steel fibres, on the mechanical and durability properties of recycled



Materials 2021, 14, 7065 3 of 17

aggregate concretes. The experimental results showed that the incorporation of fibres
could significantly improve the mechanical properties of recycled aggregate concrete.
However, steel fibres showed the best performance in enhancing the mechanical properties
of concrete. In another study [16], the axial stress-strain behaviour of macro-polypropylene
fibres reinforced recycled aggregate concrete was investigated. Test results indicated that
the peak stress, peak strain, and ultimate strain of concrete specimens increased with an
increase in the fibres dosage, and the addition of fibres had a positive effect on the ductility
of recycled aggregate concrete. Additionally, it has been reported that lower aspect ratio of
fiber could lead to strength reduction [51]. This is due to the weak bond properties between
the cement matrix and the fibres at lower aspect ratios. Furthermore, it has been reported
that when the aspect ratio is higher than a specific value, with the addition of steel fibres,
the ductility increases rather than the strength of concrete [52].

A better understanding of the compressive stress-strain behaviour and elastic modulus
of recycled aggregate concrete containing steel fibre, SF, and their combination needs to be
accepted by many designers, contractors, and policymakers as a sustainable alternative to
conventional concrete. Therefore, the current study aims to evaluate the impacts of steel
fibre and SF and their combination on the compressive stress-strain behaviour and elastic
modulus of different recycled aggregate concretes. In published research, it is proven that
the replacement levels of up to 30% of NCA by RCA does not significantly jeopardise
the mechanical properties of concrete. A recent study reported a 5.0–9.3% reduction in
compressive strength when different amounts of RCA were utilized [53]. However, due to
the poor mechanical properties of RCA, increasing the replacement levels of NCA by RCA
to over 30% can adversely affect the strength properties of concrete once no other additives,
such as SF, are added into the mixes [16,54,55]. Therefore, the RCA replacement levels in
this study were considered at 50% and 100%, and two different types of RCAs sourced
from both low- and high-strength concretes were prepared and tested to investigate the
improvement in mechanical properties.

2. Experimental Program
2.1. Raw Materials

The cementitious materials used in this study were ordinary Portland cement (OPC),
equivalent to ASTM Type I, and SF. Their chemical compositions and physical properties
are summarised in Table 1. The water quality used to make concrete specimens has a
significant impact on concrete strength properties [56–59]. Therefore, distilled water was
utilised for the characterisation tests and tap water for moulding the specimens [60–69].
Furthermore, the workability of the concrete mixtures was adjusted by using a Sika HRF-2
superplasticiser. Hooked-end steel fibres with a 50 mm length, 0.85 mm diameter, aspect
ratio of 60, and tensile strength of 1309 MPa were used. The RCAs, with an angular shape,
were obtained by crushing two laboratory concretes with low and high strength levels
labelled as “Type A” and “Type B”, with water/cement ratios of 0.60 and 0.40, respectively.
The compressive strength of the Type A and B concretes cured for 28 days were 27 MPa and
41 MPa, respectively. The sieve analysis and physical properties of the used aggregates are
presented in Figure 1 and Table 2, respectively. The attached mortar was obtained according
to the thermal method, as recommended by other researchers [70,71]. In this method, before
removing all the impurities, such as asphalt, plastics, and bricks, the prepared sample
of recycled aggregate (mi) was immersed in water for 2 h to fully saturate the attached
mortar. Next, the recycled aggregate sample was placed in a muffle at 500 ◦C to dry before
being immersed in the cold water. This sudden cooling procedure caused cracks and
stress generation, leading to easy removal of the mortar from the recycled aggregates. To
remove the remaining attached mortar, a rubber hammer was used. Finally, to screen the
recycled aggregate sample, a 4 mm sieve was used. Equation (1) was used for calculating
the attached mortar:

% attached mortar = (mi − m f )/mi × 100 (1)
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where mi and mf are the initial and final masses of the sample, respectively.

Table 1. Characteristics of cementitious materials [71].

Properties Cement Silica Fume

SiO2 21.66 90.01
Al2O3 4.21 1.29
Fe2O3 3.10 1.09
CaO 63.41 -
MgO 2.82 1.80
SO3 2.61 -

Loss of ignition 0.81 -

Relative density, g/cm3 3.11 2.20
Specific surface, cm2/g 2950 20.700
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Figure 1. Sieve analysis of natural aggregates and RCAs.

Table 2. Physical characteristics of the aggregates.

Type of
Aggregates Crushing Value (%) Density (kg/m3)

Attached
Mortar (%)

Water
Absorption (%)

RCA (A) 27.3 2440 25.34 4.45
RCA (B) 27.1 2470 33.51 4.07
SAND - 2510 - 0.91
NCA 26.5 2630 - 0.47

2.2. Mixture Proportions

The mix design of the concrete samples is shown in Table 3. In total, twenty mixtures
were prepared, which were divided into four main groups. According to previous research
studies [15,71], the optimum percentages of steel fibres and SF that provide sufficient
mechanical strength for concrete mixes are 1% (by volume) and 8% (by cement weight),
respectively. Therefore, the first group consisted of five control concrete mixtures containing
NCA and RCA (including types A and B); the second group included 8% SF used as a
partial replacement for OPC. In the third group, 1% steel fibres by volume were added
to the mixtures. “S” and “F” were denoted at the beginning of the names of groups two
and three, respectively. In the fourth group, the concretes contained 8% SF as a partial
replacement for OPC and 1% steel fibres by volume, and “FS” was denoted at the beginning
of the mixtures.
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Table 3. Mixture design of concrete samples.

Group Mix Code Cement
(Kg/m3) Water/Binder

Steel
Fibres

(Kg/m3)

SF
(Kg/m3)

Sand
(Kg/m3)

RCA
(Kg/m3)

NCA
(Kg/m3)

SP
(Kg/m3)

Control

NC 380 0.40 - - 910 - 910 2.30
RC50-A 380 0.40 - - 910 455 455 2.30
RC100-A 380 0.40 - - 910 910 - 2.30
RC50-B 380 0.40 - - 910 455 455 2.30

RC100-B 380 0.40 - - 910 910 0 2.30

Silica
fume

SNC 350 0.40 - 30 910 - 910 2.30
SRC50-A 350 0.4.0 - 30 910 455 455 2.30

SRC100-A 350 0.40 - 30 910 910 - 2.30
SRC50-B 350 0.40 - 30 910 455 455 2.30
SRC100-B 350 0.40 - 30 910 910 0 2.30

Steel fibre

FNC 380 0.40 78 - 900 - 900 4.40
FRC50-A 380 0.40 78 - 900 450 450 4.40

FRC100-A 380 0.40 78 - 900 900 - 4.40
FRC50-B 380 0.40 78 - 900 450 450 4.40
FRC100-B 380 0.40 78 - 900 900 0 4.40

Steel fibre
and silica

fume

FSNC 350 0.40 78 30 900 - 900 4.40
FSRC50-A 350 0.40 78 30 900 450 450 4.40

FSRC100-A 350 0.40 78 30 900 900 - 4.40
FSRC50-B 350 0.40 78 30 900 450 450 4.40

FSRC100-B 350 0.40 78 30 900 900 - 4.40

F: concrete containing steel fibre, S: concrete containing silica fume, NC: normal concrete, FS: concrete containing steel fibres and silica
fume, RC: recycled aggregate concrete, FSRC100-B: steel fibre-reinforced concrete containing 100% RCA and silica fume.

A constant water-to-binder ratio equal to 0.4 was used in all the mixtures. Two
different RCA contents included the partial replacement of NCA (50% by mass) and full
replacement (100% by mass). It should be noted that the replacements were made by mass
because the RCA featured a different density compared with the NCA.

The trial-and-error method was used to find the suitable mixing procedure. First,
the fine aggregates and binders were mixed using a Hobart mixer for one minute until a
homogenous mixture was obtained. Next, half of the mixing water and super-plasticiser
were added to the mix of binder and aggregates and were mixed for two minutes. The
coarse aggregates and the other half of the water were then added, and the mixing process
was resumed for five minutes. Finally, the fibres were added, and the mixing was resumed
for five minutes.

2.3. Sample Preparation and Test Methods

The freshly mixed concrete was poured into cylindrical moulds with a 100 mm di-
ameter and 200 mm in height to undergo the compressive strength tests and determine
the stress-strain curves [45,72]. Next, 24 h after casting, the specimens were demoulded
and cured in a basin with 100% relative humidity at 23 ◦C for 28 days [72,73]. In total,
60 cylindrical samples were prepared, and the compressive strength tests were carried
out on them. Three replicate samples were prepared for each test to increase the accuracy
of the test results. The uniaxial compressive strength and the stress-strain curves were
automatically measured via a data logger connected to a compressive strength test machine
with a maximum capacity of 2000 kN, and the loading rate was set to 24 MPa/min.

The slump values of all the mix designs adopted in this study were set to be between
50 mm and 75 mm, which is a reasonable value for practical applications. Moreover, the
workability of the samples was slightly reduced while replacing the natural aggregates
with both types of recycled concrete aggregates, or by using higher amounts of silica fume.
Detailed information regarding the sample preparation, compression tests, and the used
standards can be found in recent research studies conducted by the authors [45,74]. The
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elastic modulus for each specimen was measured by calculating the slope of the linear
portion of the compressive stress-strain curve [46]. In other words, the concrete elastic
modulus (Es) was calculated from the stress-strain curves according to Equation (2) [75]:

Es =
σ2 − σ1

ε2 − 0.005%
(2)

where σ2 is equivalent to the 40% of the peak load, σ1 corresponds to the strain at 0.005%,
and ε2 is the strain when the stress is equal to σ2.

3. Results and Discussion
3.1. Compressive Stress-Strain Behaviour

The compressive stress-strain behaviours of the non-fibrous concretes containing RCA
types A and B are shown in Figure 2a,b respectively. The stress-strain curves in both types
only contain the ascending branch and the peak stress at which the specimen suddenly
fractured and failed. This was due to the fact that in the absence of fibre, the samples
exhibited brittle behaviour and failed after reaching their peak strength. When comparing
the ascending branch of concrete containing NCA with those of the concretes containing
RCA types A and B, the slope in the latter cases is less stiff than that of the former. In
addition, between concretes containing two types of RCA, the concrete containing RCA
type A was less stiff than that of concrete containing RCA type B. The results indicated
that the fracture strain of the concretes containing two types of RCA was higher than that
of the control concrete containing NCA. This may have been due to the fact that the total
ITZ of RCA is higher than that of concrete containing NCA. The increased interfacial zone
may give rise to the progressive development of micro-cracks at these interfaces and lead
to reduced strength. Naturally, the ITZs of RCA type A, which produced from the low
strength concrete, were more extensive than those of the RCA type B, and this may be the
reason for the low strength and higher fracture strain of the concrete containing RCA type
A. The lower strength of the samples containing RCA type A can also be attributed to the
lower strength of the parent concrete. The effect of the SF addition on the ascending branch
of the compressive stress-strain behaviour of all the concretes is also shown in Figure 3.
Irrespective of coarse aggregate type, the compressive strength and the stiffness of the
slopes of all the concretes increased by adding SF. The reason for the improved behaviour
in the control concrete containing NCA is pore refinement owing to the particle packing
and the formation of additional calcium-silica-hydrate due to the pozzolanic reaction of the
SF. The SF also decreased the pores and densified the matrix in the ITZ between the RCAs
and the matrix. Previous studies have also reported improvement in the case of ordinary
concrete containing NCA [31].

Figure 3 presents the impact of steel fibre inclusion on the compressive stress-strain
behaviour of all the concretes. The descending branch of the stress-strain curves was due
to the contribution of steel fibres, which increased both the toughness and the ductility of
the specimens. The compressive strength and the stiffness of the ascending branch of the
stress-strain curve of all the concretes also increased due to the addition of steel fibres. In
the case of the concretes containing RCA, the improvement was more prominent. It was
observed that the coexistence of steel fibre and SF compensated for the negative effect of
RCA in the concretes with the highest strength values of 58.38 and 58.23 MPa for FSRC
100-A and FSRC 50-B, respectively. The results also indicate that the impact of SF was
more significant in the fibrous concrete compared with the non-fibrous concretes. This
could be tied to the better bonding of steel fibre with the matrix, as observed recently in
another study [76]. Additionally, the failure pattern of the fibrous specimens changed from
brittle to ductile. The peak strain of the fibrous concretes increased approximately 10 times
compared to that of the non-fibrous concretes. The addition of SF also improved the
stiffness of the ascending branch slope of the fibrous recycled aggregates concretes, with
significant improvement in the case of the concrete containing RCA type B.
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The typical failure patterns of all the concrete samples are shown in Figure 4. All
the non-fibrous samples exhibited brittle failure, including those containing RCAs. The
addition of steel fibres changed the failure pattern of the cylinders from brittle to ductile,
as evidenced from the shear-type failure plane in the specimens, which was also similar
to the samples prepared with the combination of SF and steel fibres. By comparing the
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failure patterns of the concretes containing steel fibre with those containing both SF and
steel fibres, more minor damage was seen in the latter than in the former.
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3.2. Modulus of Elasticity

The calculated elastic modulus values of all the concretes are presented in Figure 5. It
can be observed that the modulus of elasticity of the recycled aggregate concretes decreased
with an increase in the RCA content. This change could have been due to the lower elastic
modulus of the RCA than that of the NCAs and the weaker ITZ of the RCA. Similar
results were achieved by Xiao et al. [75] and Salem and Burdette [77]. The replacement
with RCA at 50% of both types reduced the modulus of elasticity by about 25%. With
100% replacement of the NCA with RCA types A and B, the elastic modulus decreased by



Materials 2021, 14, 7065 9 of 17

about 40% and 10%, respectively, compared to that of normal concrete. The addition of SF
increased the modulus of elasticity of the mixtures in comparison to conventional concrete.
This increase could have been due to the pozzolanic activity of SF, which improved the
ITZ of the concrete and thus enhanced the modulus of elasticity. Similar results were also
reported by Corinaldesi and Moriconi [42]. The addition of steel fibre reduced the elasticity
modulus of both the recycled aggregate concretes. For instance, through the introduction
of steel fibres, the elasticity modulus of the RC50-A sample was reduced by approximately
19% (from 36.37 to 29.46 GPa in the FRC50-A sample). These results are in line with the
findings of Altun et al. [78], who concluded that the modulus of elasticity decreases by
increasing the percentage of steel fibre volume. However, the combination of steel fibre
and SF had no significant impact on the mixtures containing recycled aggregates type A,
but reduced the modulus of elasticity by about 18% in the mixtures containing recycled
aggregates type B.
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A correlation between the compressive strength and the modulus of elasticity of the
non-fibrous recycled aggregates concretes was established, as shown in Figure 6. A reliable
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correlation was obtained with R2 equal to 0.87. The measured elastic modulus values
were compared with those predicted by existing models for both the non-fibrous and steel
fibre-reinforced concretes to examine the feasibility of using existing models. In the case
of the non-fibrous concrete, the models proposed by Warner et al. [79] and Thomas and
Ramaswamy [80] for steel fibre-reinforced concrete were considered and compared with
the measured values.
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Figure 7a,b show the correlations between the experimentally measured and the model-
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concretes, respectively. A good correlation can be seen in both cases, with the slight
deviation of a few experimentally measured elastic modulus values.
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The effect of SF addition on the toughness of both types of steel fibre-reinforced
recycled aggregates concretes was calculated from the area under the compressive stress-
strain curve in each concrete. The results are summarised in Figure 5b. The toughness
values of all the non-fibrous samples were less than 0.1; hence, they are not indicated
in the Figure. The toughnesses of the steel fibre-reinforced recycled aggregate concretes
containing RCA’s types A and B were comparable with those of the steel fibre-reinforced
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concrete containing NCA. The addition of SF improved the toughness of both steel fibre-
reinforced recycled aggregate concretes such that the toughness increased about 31% (from
0.47 in FRC100-A to 0.62 in FSRC100-A). Similar results were observed in the case of
concrete containing NCA. This could have been due to the densification of the ITZ of the
steel fibre in the cement matrix, which improved the steel fibre bond in the matrix and
hence better post-peak ductility in the concrete.

The consequences of adding SF on the peak compressive strain and compressive
strength of both non-fibrous and fibrous recycled aggregates concretes are shown in
Figure 8.
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Figure 8. Impact of SF and steel fibre and coexistence of steel fibre and SF on the peak strain
and compressive strength of recycled aggregate concretes. (a) non-fibrous concretes and (b) steel
fibre-reinforced recycled aggregate concretes.

As shown in Figure 8, the peak strain of both types of recycled aggregates concretes
was slightly decreased due to the addition of SF. However, in the case of the steel fibres
reinforced recycled aggregates concrete, a significant improvement in the peak strain was
observed. This improvement can be attributed to the bridging of micro-cracks by the steel
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fibres. The addition of SF led to a slight improvement in the peak strain of the steel fibre-
reinforced recycled aggregate concretes; however, this amount was not very insignificant.

3.3. Modelling of Stress-Strain Behaviour of Recycled Aggregates Concretes Containing Steel Fibre
and Combination of Steel Fibre and SF

The prediction of compressive stress-strain behaviour of concrete helps to model the
structural behaviour of concrete structures. Various models that predict the compressive
stress-strain behaviour of concrete containing natural aggregates and fibre-reinforced
concretes can be found in previous research, Ezeldin and Balaguru [81] proposed the
following model Equation (3) to predict the compressive stress-strain behaviour of ordinary
concrete containing steel fibres:

fc

fc f
=

β
εc
εco

β − 1 +
(

εc
εco

)β
(3)

β = 1.093 + 0.7132 (RI)−0.926 (4)

RI = Vf
l
ø

(5)

where fc f is the compressive strength of fibre concrete; εco is the strain corresponding to the
compressive strength ( fc), and εc is the strain value in the compressive stress-strain curve.
The value β is the material parameter and RI is a reinforcing index combining the effect of
the steel fibre volume fractions, where Vf is the volume fraction of fibers, and l and ø are
the length and diameter of fibers, respectively [82].

The comparison between the experimental compressive stress-strain curve of RCA
and that predicted by the aforementioned model proposed by Ezeldin and Balaguru [81]
for ordinary concrete containing steel fibres is shown in Figure 9. The model for steel
fibre-reinforced concrete containing natural aggregates agrees well with the ascending
branch of the stress-strain curve for all recycled aggregates concretes. However, a slight
variation in the post-peak behaviour between the model predicted and the experimentally
observed curve for recycled aggregates concretes can be seen. Nevertheless, the existing
model proposed for steel fibre-reinforced ordinary concrete can be used to predict the
compressive stress-strain behaviour of steel fibre-reinforced recycled aggregates concretes
even with RCA from different grades of concrete.
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Figure 9. Comparison between the experimental compressive stress-strain curve of steel fibre-reinforced RAC and the
predicted model for steel fibre-reinforced NAC proposed by Ezeldin and Balaguru (1992): (a) FNC, (b) FSNC, (c) FRC100-A,
(d) FSRC100-A, (e) FRC100-B, (f) FSRC100-B.

4. Conclusions

The effects of steel fibres, silica fume (SF), and the combined use of steel fibres and
SF on the mechanical properties of recycled aggregate concretes containing 50% and
100% recycled coarse types aggregates (RCA), sourced from both low- and high-strength
concretes, were investigated. The following main conclusions were drawn based on the
experimental and prediction studies:



Materials 2021, 14, 7065 14 of 17

1. The discrete addition of SF and steel fibre slightly increased the compressive strength
of concretes containing both types of RCA. The combined use of SF and steel fibre
significantly improved the compressive strength of recycled aggregates concretes,
especially with RCA sourced from high-strength concrete. Similar behaviour was also
observed in both recycled aggregate concretes in the case of peak strain.

2. The addition of SF slightly increased the elastic modulus of both recycled aggregate
concretes; however, a significant improvement was observed due to the addition of
steel fibre and a combination of steel fibre and SF. Existing models underestimate the
elastic modulus of both non-fibrous and fibrous concretes at higher magnitudes.

3. The addition of SF improved the ascending branch of the compressive stress-strain
curve of the concretes containing both types of RCA. No significant changes in the
ascending branch of the compressive stress-strain curve were observed due to the
addition of SF in the recycled aggregate concretes containing steel fibre. The addition
of steel fibres and the combined addition of SF and steel fibre significantly improved
the post-peak ductility of the recycled aggregate concretes of both types, with the
most significant improvement, in the case of RCA, sourced from the low-strength
parent concrete.

4. The existing model reasonably predicts the compressive stress-strain behaviour of
steel fibre-reinforced concrete containing both natural aggregates and recycled aggre-
gates. This indicates the applicability of the existing model for steel fibre-reinforced
recycled aggregates concretes with and without SF.

For future research studies, it is recommended to explore the effects of different
water/cement ratios on the same mix designs. The investigation of the impact of using
other types of fibres on the engineering properties of the mix designs adopted in this
research is also suggested.
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