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Abstract Family data are used extensively in quantitative

genetic studies to disentangle the genetic and environ-

mental contributions to various diseases. Many family

studies based their analysis on population-based registers

containing a large number of individuals composed of

small family units. For binary trait analyses, exact marginal

likelihood is a common approach, but, due to the compu-

tational demand of the enormous data sets, it allows only a

limited number of effects in the model. This makes it

particularly difficult to perform joint estimation of variance

components for a binary trait and the potential confound-

ers. We have developed a data-reduction method of

ascertaining informative families from population-based

family registers. We propose a scheme where the ascer-

tained families match the full cohort with respect to some

relevant statistics, such as the risk to relatives of an

affected individual. The ascertainment-adjusted analysis,

which we implement using a pseudo-likelihood approach,

is shown to be efficient relative to the analysis of the whole

cohort and robust to mis-specification of the random effect

distribution.

Keywords Segregation analysis � Mixed models �
Variance components � Probit models

Introduction

Family data have been used extensively for complex

genetic modelling such as quantitative-trait linkage (e.g.,

Amos 1994; Blangero et al. 2001) or segregation analysis

to separate genetic and environmental contributions to non-

Mendelian diseases (e.g., Falconer 1965; Mather and Jinks

1977; Neale and Cardon 1992). Other than overcoming the

sample size problem associated with twin studies, espe-

cially when the disease of interest has a low prevalence,

family data potentially provide richer genetic information

(e.g., Pawitan et al. 2004). However, this information is

likely to be concentrated in ‘genetically loaded’ families,

so that it is not efficient to collect data from, nor to analyse,

all families from a population register. Non-random

ascertainment is commonly used in genetics research to

maximize the amount of information in the data for a given

sample size (e.g., Elston and Sobel 1979). One of the most

common methods of non-random ascertainment is to

include families with at least one affected member: for

variance component models this has been suggested, for

example, in deAndrade and Amos (2000), Epstein et al.

(2002), and Burton (2003). However, this sampling scheme

may not be optimal, and in fact it has been shown (Glidden

and Liang 2002; Noh et al. 2005) that the analysis of the

ascertained data is sensitive to mis-specification of the

random-effect distribution. In this paper we develop an

efficient and robust method of ascertaining informative

families from population-based family registers for the

purpose of complex genetic modeling involving variance

component analysis of a binary trait.

In epidemiological analyses, we often need or wish to

account for confounding factors. For variance component

analysis of a binary trait, the most straightforward way to

adjust for potential confounders is to include them as
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covariates in a generalized linear mixed model (GLMM)

(Breslow and Clayton 1993; Lee and Nelder 1996). Mar-

ginal likelihood provides a flexible computational

approach, and can be extended to multivariate binary traits

analysis, as we have demonstrated in an analysis of the the

co-morbidity of schizophrenia and bipolar disorder (Yip

et al. 2008; Lichtenstein et al. 2009). The exact marginal

likelihood computation is also more efficient than other

computational approaches such as the Gibbs sampling

(Zeger and Karim 1991; Burton et al. 1999), but for family

data, it is still slow because of the high-dimensional inte-

gration (e.g., Pawitan et al. 2004). Because of this limita-

tion, recent likelihood-based methods in family data

analysis are limited in their ability to handle general

covariates.

To avoid the integration step, Noh et al. (2006) used a

hierarchical-likelihood method with Laplace approxima-

tion. However, for the volume of data that is typical for

family studies, the computational requirements of these

methods are still enormous, so they cannot be used during

the model building stage, where numerous exploratory

analyses are performed. Moger et al. (2008) suggested

case-cohort methods as a way of dealing with large pop-

ulation-based family data with survival traits. We adapted

their idea here and extended the exact marginal likelihood

approach to a pseudo-likelihood approach to analyze

ascertained family data.

Intuitively, information about familial clustering comes

from families with at least two affected members. Thus,

provided the genetic information in the full data can be

preserved, ascertainment of families with at least two

affected members offers the potential for dramatic data

reduction; see Sect. 2.1 for a specific example. For com-

putational efficiency it is natural to first group families with

the same configuration of disease status and covariates. A

novel aspect in our method is an ascertainment of the

family configurations rather than family units. We propose

an optimized matching method where we ascertain family

configurations that are most informative, while making

sure that relevant features, such as the risk to relatives of

cases, are similar in the sampled data and the full cohort.

To summarize the contribution of this paper, we have

developed a method to facilitate routine exploratory anal-

ysis of large population-based family data sets, where

interest is focused on estimating the genetic and environ-

mental contributions to a binary trait with adjustment for

confounding. We propose an ascertainment scheme, where

families are first grouped by the pattern of the outcomes

and covariates of their members, and the ascertainment is

of family configurations rather than family units. In our

application, all families with two affected members are

sampled, and the remaining families are sub-sampled in

such a way that the sampled data matches the whole cohort

with respect to the odds ratio for affected siblings. Our

ascertainment-adjusted analysis, which uses a pseudo-

likelihood method, is robust against mis-specification of

the random-effect distribution and has high efficiency

versus exact likelihood. We illustrate our method in a

substantive analysis of a population-based dataset of birth

outcome in pairs of siblings.

Methodology

SGA dataset

For motivation and illustration we use the small-for-gesta-

tional-age (SGA) data as described in Svensson et al. (2006).

This dataset was obtained by linkage of the Swedish Multi-

Generation Register and Medical Birth Register. We include

covariates that have been suggested as potential risk factors

to SGA, such as maternal age, preeclampsia diagnosis in an

earlier pregnancy, smoking and body-mass index (BMI).

Due to availability of information on some of the covariates,

our data covers the calendar period (1981–2001). As in

Svensson et al. (2006), we identified pairs of full siblings,

where both of them had at least one delivery recorded in the

Medical Birth Register, and we collected the birth informa-

tion from the different types of sibships: sister–sister,

brother–brother and sister–brother pairs.

The final dataset consists of 326,629 family-pairs (pairs

of siblings with their spouses and offspring). The optimally

matched sample is ascertained from these data, and its

performance is compared to the analysis of the full data. To

limit the data to a manageable volume, we used the

information from a maximum of 4 pregnancies from any

sib-pair. There were 129,593 family-pairs with 2 preg-

nancies, 125,405 with 3 pregnancies and 71,631 with 4

pregnancies. There were 921,925 offspring between 1981–

2001, among whom we observed 21,103 born small for

their gestational age (SGA). The following table shows the

distribution of the number of SGA offspring within the

families of sib-pairs:

Number of SGAs 0 1 2 3 4

Number of family pairs 306,706 18,807 1,055 58 3

Ascertaining only family-pairs with at least two affected

members, we can limit the case family-pairs to just

1,055 ? 58 ? 3 = 1,116, instead of 1,116 ? 18,807 =

19,923 if we consider at least one affected member.

It has been shown previously (Svensson et al. 2006) that

genetic factors, especially the fetal component, account for

the majority of the liability of having an SGA birth.

However, birth order was the only fixed covariate included
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in the model, while, as the authors pointed out, the genetic

liability to SGA may be partly mediated by well-known

maternal risk factors for SGA births, such as smoking and

preeclampsia.

Data structure and likelihood

Let yi � ðyi1; . . .; yini
Þ be the vector of binary outcomes

from ni members of family i, for i = 1,…, N. The families

are assumed to be independent. Let x1,…, xN be the cor-

responding covariate matrices, each of size ni 9 p. Also

available is the information on relationships between

members of a family, thus determining structures such as

full siblings, cousins, paternal-halfsibs, etc. Conditional on

the random effect bi; we assume yij to be an independent

Bernoulli with parameter pij, following a general linear

mixed model (GLMM)

gðpijÞ ¼ x0ij bþ z0ij bi;

where g() is a link funciton, b is a p-vector of fixed

regression parameters. The random parameter bi captures

the dependencies between family members; the design

vector zij shows the contribution of bi to the outcome. To

complete the specification, we assume bi is normal with

mean zero and variance DiðhÞ; where h contains all the

variance component parameters.

In GLMM framework, the logit link is the canonical

link function for binary-trait models. However, there are

at least two reasons why the probit link may be preferred.

Firstly, the probit link fits directly in the liability model

(Sham 1998), which is commonly used in biometrical

genetics applications. Secondly, the probit link also led to

a convenient computation of the marginal likelihood in

terms of multivariate normal probabilities (Pawitan et al.

2004). Noh et al. (2006) illustrated that the parameters

estimated from the two models with different link func-

tions are comparable after adjustment by a simple scale

factor.

Specifically for the SGA data, a family structure consists

of a pair of nuclear families made by full siblings. The

vector yi is the pregnancy outcomes from the two families.

(The pregnancies are treated as the offspring of the fami-

lies.) We consider the model (now in vector notation)

U�1ðpiÞ ¼ xibþ mi þ fi þ ci þ si; ð1Þ

where mi is the vector of maternal effects, fi the fetal

effects, ci the common couple environment effect and si the

common sibling environment. The common couple

environment is the unique environment created by the

father and the mother, and the sibling environment is

the common childhood and adolescent environment

experienced by the siblings. The common family

environment is the unique environment created by the

father and mother, and the sibling environment is the

common childhood environment experienced by the sisters.

We assume that mi* N(0, rm
2 Rm), fi*N(0, r f

2Rf),

ci*N(0, rc
2Rc) and si* N(0, rs

2Rs). To illustrate the

discrepancy in the correlation matrices for the random

effects, let assume a sister–sister pair family where each

sibling had two preqnancies. The outcome yi is a binary

vector that indicates SGA status of the 4 pregnancies, and

Rm ¼

1 1 1=2 1=2

1 1 1=2 1=2

1=2 1=2 1 1

1=2 1=2 1 1

0
BBB@

1
CCCA;

Rf ¼

1 1=2 1=8 1=8

1=2 1 1=8 1=8

1=8 1=8 1 1=2

1=8 1=8 1=2 1

0
BBB@

1
CCCA;

Rc ¼

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

0
BBB@

1
CCCA; Rs ¼

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0
BBB@

1
CCCA:

The (1,2)-element of Rm is equal to one since the first two

outcomes come from the same mother, i.e. the first sister.

The (1,2)-element of Rf is 0.5 since the first two foetuses

are full siblings and the (1,3)-element of Rf is 0.125 since it

refers to a cousin pair. Similar reasoning applies to Rc and

Rs. For more details, we refer the reader to Pawitan et al.

(2004).

From the probit model, we have

pij ¼PðZj\x0ijbþ z0ijbiÞ
¼PðZj � z0ijbi\x0ijbÞ;

where the Zj’s are independent standard normal variates.

Thus we have the marginal probability

pðYi ¼ yijxiÞ

¼
Z

pðyijbiÞjDiðhÞj�q=2
expf�1

2
b0iDiðhÞ�1bigdbi

ð2Þ

¼ Ebi

Y
j

p
yij

ij ð1� pijÞ1�yij

( )
ð3Þ

¼ Pðlij\Vij\uij; for all jÞ; ð4Þ

where q is the dimension of bi; and Vij � Zj � z0ijbi: The

vector Vi: (Vi1,…, Vin_i) is Nð0;RiÞ with

Ri ¼ ziDiðhÞz0i þ Ii;

where zi denotes the matrix obtained by stacking the row

vectors zij, and Ii is the ni 9 ni identity matrix. The upper

bound uij ¼ x0ijb if yij = 1, and uij = ? if yij = 0. Similarly,
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the lower bound lij = - ? if yij = 1, and lij ¼ x0ijb if yij

= 0. Computation of the normal probability (4) is done

using a Monte–Carlo algorithm (Genz 1992).

Let fiðyi; xi; b; hÞ � PðYi ¼ yijxiÞ; where we make the

parameters explicit; the total log-likelihood would then be

l ¼
XN

i¼1

log fiðyi; xi; b; hÞ:

For the SGA data, N is of the order of 325,000 family-pairs.

Since the evaluation of each probability requires a non-

trivial Monte–Carlo integration, a naive approach is out of

the question. Our problem is compounded by the fact that

the resulting likelihood is not smooth, while we need to use

a derivative-free optimization method.

The likelihood computation will obviously be faster if

the data are grouped according to the configurations of the

family outcomes and covariates fYi; xig: The total likeli-

hood can then be written as

l ¼
XM
k¼1

wk log fkðyk; xk; b; hÞ; ð5Þ

where wk is the number of families with the kth configu-

ration, and M is the total number of configurations.

If the family data consist of information on binary

outcomes and p binary covariates from k family members,

then MB2k(p?1), and the number of probability computa-

tions can be reduced by a factor of N/M. However, for

analysis of families with up to 4 members, this grouping

will substantially reduce the computation time when the we

only use one or two covariates. As we increase the number

of covariates, M increases rapidly, so even the grouped data

become too large to analyse with exact methods. For the

SGA data, with one covariate we have M = 185, but with 5

covariates it increases to more than 11,000.

Ascertainment

For the grouped data, ascertainment is naturally done on the

family configurations rather than on the family units. Let

S = {1,…, M} be the index set of all family configurations,

and suppose that S can be divided into two disjoint sets,

S = S0 [ S1, where S1 is the set of all families with at least

k affected members, and S0 is the set of control families. In

line with the usual case–control studies, we will keep all

case-family configurations. Control-family configurations

will in general be included with probability less than one.

Exact and weighted likelihoods

Let Aj = 1 if family j is ascertained, and 0 otherwise, and

aj = P(Aj = 1). Typically aj is a function of the number of

affected members, but it can also be a function of

covariates. Then the exact ascertainment-adjusted likeli-

hood contribution from an observed yj is

PðYj ¼ yjjxj;Aj ¼ 1Þ ¼
ajPðYj ¼ yjjxjÞP
k akPðYk ¼ ykjxjÞ

;

where k runs over all possible configurations from the same

covariate xj, such that
P

k PðYk ¼ yjxjÞ ¼ 1: Note that the

denominator needs the evaluation of probabilities for all

families that might get ascertained, even if many of those

are in fact unobserved. Thus the computational burden of

the exact likelihood is still too demanding for routine

analysis.

We instead consider a weighted-likelihood

bl ¼
XM

k¼1

Ak

PðAk ¼ 1Þwk log fkðyk; xk; b; hÞ; ð6Þ

which is clearly an unbiased estimate of the log-likelihood

(5). The main advantage over the exact likelihood is that

we only need to evaluate the probabilities for family con-

figurations that are both observed and ascertained.

Computation and inference

Because of the Monte Carlo approximation, the log-like-

lihood (6) is not smooth. We use the derivative-free

Nelder-Mead simplex algorithm (Nelder and Mead 1965)

to get near to the solution, then use the Gauss-Seidel

method with the smoothed log-likelihood to arrive at the

final solution. The statistical software R was used for all

computations.

Standard inference in the pseudo-likelihood framework

typically relies on the asymptotic normality of the esti-

mates, with the so-called sandwich formula for the variance

(e.g., Kalbfleisch and Lawless 1988). Unfortunately, for

our problem, deriving the sandwich formula analytically is

too complicated. So in our examples we use the bootstrap

method on the grouped family data. Under the bootstrap

sampling, the total frequencies of the grouped data have a

multinomial distribution. Since, conditional on the sum, the

collection of Poisson variates has multinomial distribution,

we can approximate the bootstrap samples by generating

Poisson variates with means given by the observed

frequencies. This means we can generate the bootstrap

samples of the grouped data quite fast. We use B = 25

bootstrap replicates, which are sufficient since we will only

use the bootstrap to compute standard errors.

Simulation study

We will address three issues by simulation: (1) robustness,

(2) efficiency and (3) case definition. Previous studies
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(Glidden and Liang 2002; Noh et al. 2005) indicated that

the exact likelihood analysis of ascertained data is sensitive

to mis-specification of the random-effect distribution. Noh

et al. (2005) used a complex procedure based on hierar-

chical likelihood to perform a robust analysis. Here we

show that robustness can also be achieved with the stan-

dard analysis if we also ascertain some proportion of the

control group. Furthermore, even though the procedure in

Noh et al. is robust, there is a severe loss of information

from the case-only design. We show that we can retain

most of the information in the full cohort by sampling all

case families and a fraction of the control families. In our

simulation we will compare a case-only vs case–control

designs. In addition, we compare exact and pseudo-likeli-

hood approaches for the ascertained data.

Typically a case family is defined as having at least one

affected member. However, intuitively, information about

variance components is captured by familial clustering, i.e.,

at least two affected members in the family. In our SGA

problem we will also get a great computational advantage

from this definition of a case family, as it leads to a sub-

stantial reduction in the number of case-family configura-

tions. In the simulation, we will compare the efficiency of

the estimates under different definitions of case family (at

least one affected vs at least two affected members).

Following the example in Noh et al. (2005), we simu-

lated a population of 100,000 families, each comprising

ni = 5 siblings (children only, parents not included).

Additionally, considering the small family sizes in the real

data, we also simulated families with ni = 3 siblings. The

binary outcomes are assumed Bernoulli with probability

pij, which follows the logistic mixed-model

log
pij

1� pij

� �
¼ x0ij bþ bi;

where bi is assumed N(0, h). We define two family-level

covariates (i.e. fixed across members within a family), both

generated to follow the standard uniform distribution.

(Having siblings within a family share the same covariates

simplify the computations, but with real data this is not

necessary.) The fixed parameters are set at b0 =

- 0.5, b1 = 0.15, b2 = 0.20. Given these assumptions,

the basic likelihood contribution from the ith sibship is

f ðyi; xi; b; hÞ ¼
Z

bi

ni

di

� �
pdi

i ð1� piÞni�di/ðbiÞdbi;

where pi:pij, and /(bi) is the normal density for bi. The

integral can be computed very fast using the Gaussian

quadrature method.

To assess the robustness against mis-specification, we

generate the random effects bi according to each of the

following distributions:

1. bi � Nð0; 4:5Þ;
2. bi � Logistic with mean 0 and variance 4.5.

The first model provides a partial check on the simula-

tion, where the exact method should work well. The second

is a heavy-tailed model, which has been shown to produce

biased estimates (Noh et al. 2005). In both cases, bi has a

true variance h = 4.5. (We also tried another heavy-tailed

model bi

ffiffiffiffiffiffiffi
2:7
p

tð5Þ; where t(5) is the t-distribution with 5

degrees of freedom, and a skewed model bi

ffiffiffiffiffiffiffiffiffi
2:25
p

ðui � 2Þ;
where ui follows the gamma distribution with shape

parameter 2 and scale parameter 1. The results were similar

and will not be shown here)

The means and standard deviations of the parameters

estimates from 200 datasets are presented in Table 1. When

the model is correct, i.e., the true random-effect distribu-

tion is normal, all procedures are consistent (scenarios A1

to A4). However, note the substantial increase of variance

in the case-only design (A2). For estimation of h in A2, the

efficiency vs the full cohort is (0.085/0.306)2 = 0.08. Even

when only 5% of the control families are included A3, the

efficiency is (0.085/0.099)2 = 0.75. Lower efficiency is

achieved for the regression parameters, but this can be

improved by increasing the sampling proportion of the

controls. Furthermore, the results also indicate that the

pseudo-likelihood (A4) achieves similar results as the exact

likelihood (A3).

If the true random effects are not normally distributed,

but the model still assumes normality, then the case-only

design (A6) can produce very misleading estimates. This

problem was first presented in Glidden and Liang (2002),

and investigated further in Noh et al. (2005). Also, the

variances of the estimates are substantially larger than

those from the full cohort. In contrast, analysis of the full

cohort (A5) is quite resistant to the mis-specification. More

importantly, by including 5% of the control families, both

the exact and pseudo-likelihood analysis of the ascertained

data (A7 and A8) produce very close results to those from

the full cohort data. Again, the pseudo-likelihood (A8)

achieves high efficiency compared to the exact likelihood

(A7).

When we change the case-family definition from at

least 1 to at least 2 affected members, the number of case

families drops substantially from around 13,700 to 4,400,

while the number of control families increases from

around 86,300 to 95,600. To achieve a similar number of

ascertained families as in panel A, we increase the

proportion of controls to 10% (scenarios B3 and B4).

Case-only analysis (B2 and B6) continue to have

robustness problems. For the case–control designs, we

obtain similar results for robustness and efficiency as

obtained in panel A. Finally, Table 2 shows similar

results for small family size ni = 3.

408 Behav Genet (2010) 40:404–414
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In summary, from the simulation study we learn three

things that are directly relevant in our current problem:

• Inclusion of control families increase the robustness

against mis-specification of the random-effect

distribution.

• In this logistic mixed-model setting, the pseudo-likeli-

hood has high efficiency vs the exact likelihood.

• We can define case families as those having at least two

affected members with little loss of information/

efficiency.

Optimal matching

In our experience with the real SGA data, a direct appli-

cation of the suggested sampling approach for the family

case–control data does not work well: it often produces

estimates that are very far from the full-likelihood esti-

mates. This is mainly because the sampled data are often

too different from the full data with respect to certain

features that reflect the parameters of interest. Since the full

data are available, we devise a scheme to match these

features in the full data with the same features in the

ascertained data.

The vector of unknown parameters can be divided into

two groups: regression parameters and variance compo-

nents. Hence, there are two types of statistics that are

natural for matching:

• Estimates from an ordinary generalized linear model

(GLM) (without the random effects),

• Odd-ratios (ORs, between family members) that cap-

ture familial risk.

We have shown previously (Yip et al. 2008) that ORs

describing risk in relatives are good proxy measures of the

magnitude of variance components. So if the ORs from the

sampled data are similar to the ORs from the full data, then

we would expect the estimates of variance components

from the two datasets to be of the same magnitude. Similar

thinking applies to the estimation of the regression

parameters. It is of course important that the estimation of

the ordinary GLM and ORs can be done extremely fast

even for the full data, so we perform the following scheme:

1. Sample case and control families from the full data

with the desired ascertainment probabilities.

Table 1 Means and standard deviations from 200 simulations for full and different ascertained samples, assuming normal random effects the in

logistic mixed-effect model, and using ni = 5 siblings per family

Sampling design b0 b1 b2 h

True value -5 0.15 0.20 4.5

A. Case family: C1 affected

True distribution: normal

1. Full data -4.998 (0.033) 0.150 (0.025) 0.197 (0.024) 4.500 (0.085)

2. Case only -5.092 (0.241) 0.152 (0.081) 0.196 (0.078) 4.625 (0.306)

3. 5% control-exact -4.997 (0.053) 0.151 (0.043) 0.195 (0.040) 4.501 (0.099)

4. 5% control-pseudo -4.996 (0.055) 0.152 (0.044) 0.195 (0.043) 4.498 (0.099)

True distribution: logistic

5. Full data -5.381 (0.036) 0.153 (0.027) 0.202 (0.025) 5.792 (0.104)

6. Case only -9.435 (0.540) 0.002 (0.658) -0.07 (0.806) 11.459 (0.551)

7. 5% control-exact -5.405 (0.054) 0.137 (0.046) 0.186 (0.044) 5.851 (0.113)

8. 5% control-pseudo -5.380 (0.056) 0.149 (0.049) 0.201 (0.048) 5.794 (0.113)

B. Case family: [1 affected

True distribution: normal

1. Full data -4.997 (0.033) 0.15 (0.023) 0.200 (0.025) 4.496 (0.079)

2. Case only -5.220 (1.123) 0.137 (0.205) 0.221 (0.191) 4.739 (1.168)

3. 10% control: exact -5.002 (0.054) 0.149 (0.034) 0.201 (0.035) 4.513 (0.122)

4. 10% control: pseudo -4.997 (0.085) 0.149 (0.056) 0.200 (0.054) 4.499 (0.172)

True distribution: logistic

5. Full data -5.378 (0.038) 0.154 (0.029) 0.203 (0.028) 5.766 (0.108)

6. Case only -6.371 (0.565) 0.037 (0.28) 0.073 (0.292) 8.226 (0.603)

7. 10% control: exact -5.750 (0.081) 0.152 (0.046) 0.204 (0.044) 6.812 (0.216)

8. 10% control: pseudo -5.382 (0.099) 0.161 (0.066) 0.207 (0.062) 5.760 (0.222)
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2. Obtain ordinary GLM estimates and ORs from the full

data and from the sampled data, where the latter

estimates account for the ascertainment.

3. Compute the criteria

Q1 ¼
1

h

Xh

k¼1

ðÔRsamp
k � ÔRfull

k Þ
2

varðÔRsamp
k Þ

Q2 ¼
1

p

Xp

k¼1

ðb̂samp
k � b̂full

k Þ
2

varðb̂sampÞ

where h is the number of ORs and p is the number of

covariates. Combine the criteria into Q = Q1 ? Q2 from

each sampled data.

4. Repeat the procedure a large number of times, and select

the sampled data that minimizes Q. In our examples, the

best sample was chosen from 1000 samples. Once the

sample is chosen, the estimation of the mixed model is

based on the weighted likelihood (6).

While the ascertainment process looks complex, the

principle is quite simple, i.e. we try to ascertain ‘balanced’

samples, where the balance is determined by the ORs and

regression coefficients that are observed in the full data. In

general, the process belongs to a stratified or two-stage

sampling method. Had the data been much simpler, e.g.

consisting only of families of size two and the condition

involves only a single OR, then the ascertainment process

becomes more transparent. In this situation, we ascertain

all the case families, then sample the controls such that the

ratio of cases to controls is the same as in the full data,

thereby preserving the observed OR in the full data.

Since we use the bootstrap method for computing the

standard errors, the complex matching does not present any

analytical problem. We note that there are two ways to

bootstrap the data: before or after the ascertainment step. In

the former, we boostrap the full data and include the optimal

matching step in the bootstrap. However, if we treat the

ascertained data as a stratified sample, then it should be

possible also to apply the bootstrap to the ascertained data,

so the optimal matching is performed only once (to generate

the ascertained data). We show later (Sect. 5) that these two

methods in fact produce similar results.

Application to SGA data

The purpose of our analysis of the SGA data is to extend

the results in Svensson et al. (2006) by including potential

Table 2 Means and standard deviations from 200 simulations for full and different ascertained samples, assuming normal random effects the in

logistic mixed-effect model

Sampling design b0 b1 b2 h

True value -5 0.15 0.20 4.5

A. Case family: C1 affected

True distribution: normal

1. Full data -5.003 (0.035) 0.151 (0.026) 0.202 (0.028) 4.508 (0.092)

2. Case only -5.074 (0.483) 0.156 (0.101) 0.201 (0.096) 4.598 (0.6)

3. 5% control-exact -5.004 (0.051) 0.154 (0.039) 0.202 (0.041) 4.507 (0.1)

4. 5% control-pseudo -5.004 (0.052) 0.154 (0.041) 0.202 (0.043) 4.507 (0.1)

True distribution: logistic

5. Full data -5.444 (0.045) 0.149 (0.029) 0.206 (0.03) 6.002 (0.133)

6. Case only -9.356 (0.334) 0.166 (0.307) 0.223 (0.33) 11.483 (0.332)

7. 5% control-exact -5.004 (0.06) 0.154 (0.046) 0.202 (0.047) 4.507 (0.138)

8. 5% control-pseudo -5.004 (0.059) 0.154 (0.048) 0.202 (0.048) 4.507 (0.138)

B. Case family: C2 affected

True distribution: normal

1. Full data -5.006 (0.038) 0.149 (0.027) 0.2 (0.025) 4.523 (0.099)

2. Case only -5.221 (0.534) 0.169 (0.325) 0.179 (0.351) 4.733 (0.477)

3. 10% control-exact -5.002 (0.073) 0.149 (0.045) 0.203 (0.039) 4.514 (0.159)

4. 10% control-pseudo -5.007 (0.111) 0.154 (0.069) 0.209 (0.06) 4.51 (0.222)

True distribution: logistic

5. Full data -5.442 (0.044) 0.15 (0.031) 0.204 (0.029) 5.998 (0.136)

6. Case only -3.909 (0.48) 0.034 (0.328) 0.068 (0.313) 5.333 (0.69)

7. 10% control-exact -5.731 (0.1) 0.149 (0.048) 0.199 (0.044) 6.791 (0.278)

8. 10% control-pseudo -5.449 (0.112) 0.156 (0.067) 0.203 (0.069) 6.011 (0.285)

This is the same as Table 1, except here we have ni = 3 siblings per family
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risk factors, such as birth order, maternal smoking and

maternal body-mass index (BMI). We fit model (1), which

includes 4 random components: maternal, fetal, couple

environment and sibling environment effects. To assess the

confounding between these risk factors and the genetic and

environmental effects, we first fit a simple model that

includes only birth order (first = 0, subsequent = 1). In

the second model we include information on preeclampcia

(yes = 1, no = 0), smoking (yes = 1, no = 0) and BMI

(low, medium and high).

For the purpose of matching, the data are categorized by

the type of sibling pairs and the number of offspring. The

sib-pair types are sister–sister, brother–sister and brother–

brother, but the last two can be combined since they have the

same covariance structure (Pawitan et al. 2004). From each

category we compute within-sib and between-sib ORs.

Irrespective of the sib-pair type (sister–sister, sister–brother,

brother–brother), within-sib ORs capture the maternal and

couple environment effects. In the sister–sister pairs,

between-sib ORs capture the maternal and sibling environ-

ment effects. In the brother–sister and brother–brother pairs,

between-sib ORs capture fetal and sibling environment

effects. Table 3 shows the descriptive statistics and the ORs

from the full data and the optimally-matched sample. All

ORs are very well-matched between the two datasets.

To illustrate that matching is indeed necessary, the

boxplots in Fig. 1 show a substantial variation between the

ORs from the 1,000 randomly ascertained samples. Many

samples produce ORs that are far from the corresponding

full-data ORs (8.51 and 1.33 from the last category in

Table 3). Without any matching, this large variability will

lead to larger uncertainty in the estimates obtained from a

single ascertained sample.

The results of various analysis are presented in Table 4.

There is a higher risk of SGA on first or preeclamptic

pregnancies, for smokers, or for women who have low

BMI. Because of the large size of the data, all fixed

regression parameters are very precisely estimated with

very small standard errors. However, the estimation of the

variance components, particularly the fetal component, is

much less precise. With the simple model, there are only

185 observed family configurations, so there is no need for

case–control sampling.

The result of the simple model is similar to Svensson

et al. (2006), with a substantial fetal genetic component for

SGA, accounting for a much larger contribution than the

other three effects. (The result is not exactly the same,

because of the different followup periods; see Sect. 2.1.)

The genetic variance component parameters can be inter-

preted in terms of heritability (Pawitan et al. 2004), for

example

h2
m ¼

0:51

0:51þ 1:16þ 0:33þ 0:01þ 1

� �
¼ 16:9%;

is the heritability of the maternal genetic effect. The con-

tributions to total liability from the fetal, common family

and sibling environments are 38.5, 11.0, and 0.3%,

respectively. The total genetic effect (maternal ? fetal)

Table 3 Counting statistics in various categories defined by sib-pair type, total number of offspring and number of offspring of the second

sibling

Sib type Offsp. total Offsp. sib-2 No. pairs No. case-fams Full-data ORs Sampled-data ORs

Within Between Within Between

ss 2 1 32,830 35 – 1.54 – 1.55

bs, bb 2 1 96,763 88 – 1.24 – 1.24

ss 3 2 32,138 142 8.51 2.10 8.50 2.02

bs, bb 3 2 93,267 349 8.53 1.15 8.39 1.16

ss 4 1 13,114 94 7.57 1.64 7.65 1.65

bs, bb 4 1 37,112 249 8.99 1.50 8.95 1.49

ss 4 2 15,389 44 11.36 3.20 12.40 3.63

bs, bb 4 2 16,016 115 8.51 1.33 8.64 1.39

Total 326,629 1,116

Also shown are the corresponding ORs from the full data and the optimally-matched sampled data. Within and between ORs are computed from

pregnancy outcomes within and between the sib families. ‘ss’, ‘bs’ and ‘bb’ refer to sister–sister, brother–sister and brother–brother

6
8

10
14

Within ORs

1.
0

1.
5

2.
0

2.
5

Between ORs(a) (b)

Fig. 1 Boxplots of the ORs computed from (a) within and (b)

between the sibling families. The ORs in each boxplot are based on

1,000 randomly ascertained samples from the last category in Table 3
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explains 55.4 (16.9 ? 38.5) per cent of the liability to

SGA.

When we introduce more covariates, the number of

family configurations increases to 11,151, of which 802 are

case-family configurations. We ascertain three-times as

many control configurations as case configurations, so we

achieve substantial data reduction by this sampling, while

obtaining results that are very close to those of the full data.

(We also tried the same number of control and case con-

figurations, and the estimates were also quite close, except

for the fetal variance.) The standard errors (SEs) of the

regression estimates from the full-data bootstrap are gen-

erally larger than the SEs from the full likelihood. How-

ever, for the variance parameters the SEs are comparable.

Furthermore, the SEs obtained from bootstrapping the

ascertained data are comparable to the full-data bootstrap,

suggesting that there is no need to bootstrap the optimal

matching step. The ‘naive SEs’, computed from the

weighted likelihood, appear too optimistic for the regres-

sion estimates, but quite comparable to the bootstrap SEs

for the variance-component parameters. In practice, since

the naive SEs are more readily available, we might con-

sider using them as a first approximation, particularly for

the variance-component parameters.

While still significant, in the more complex model the

maternal and fetal genetic variance components drop sub-

stantially. This reflects some confounding between these

components and the risk factors, which is not surprising.

For example, preeclampsia is associated with both maternal

and fetal genetic effects (Pawitan et al. 2004). We also

expect maternal BMI to have some genetic component.

The result here indicates that there are further maternal and

fetal genetic effects beyond those already explained by the

risk factors.

Finally, we add two more covariates: (1) maternal

country of birth (Nordic = 1, other = 0), and (2) maternal

age at delivery (\ 26, 26–32 and [ 32). The number of

configurations is now 67,997, of which 1,082 are case-

family configurations. Now a full-data analysis is no longer

practical, particularly when numerous exploratory analysis

are needed. As before, we ascertain three times as many

control configurations as case configuration, and obtain the

following estimates for the four variance components:

0.33(SE = 0.03), 0.80(0.20), 0.25(0.04) and 0.01(0.01).

These estimates are close to those found in Table 4, which

means that the two extra covariates are not confounding the

genetic and environmental effects.

Conclusions

Our work on population-based family data has been

motivated by questions in genetic epidemiology, particu-

larly in estimating the relative contribution of genetic and

environmental components to human diseases. Previous

works in this area have been hampered by the inability to

include general covariates, mainly due to computational

problems in dealing with the integration of marginal like-

lihood. In this paper we investigated a novel approach to

sampling informative families with at least two affected

members, together with control families. We showed that

inclusion of controls is important to preserve the robustness

of the full cohort data against model mis-specification. We

also showed that the pseudo-likelihood approach leads to

efficient computations and the statistical properties com-

pared well to those of the exact likelihood approach.

In the application to SGA data, the more complex model

reveals more insight into the contribution of genetic factors

Table 4 Summaries of the SGA data analysis

Variable Full data Full data Sampled data Boot2 SE Naive SE

Regression parameters

Constant -1.84 (0.00) -2.00 (0.00) -1.98 (0.01) (0.01) (0.00)

Subsequent birth -0.30 (0.00) -0.28 (0.00) -0.28 (0.01) (0.00) (0.00)

Smoking – 0.40 (0.01) 0.41 (0.01) (0.01) (0.01)

Preeclampsia – 0.88 (0.01) 0.89 (0.02) (0.03) (0.01)

Low vs. med BMI – 0.22 (0.01) 0.23 (0.03) (0.02) (0.01)

High vs. med BMI – -0.08 (0.01) -0.08 (0.01) (0.01) (0.01)

Variance components

Maternal 0.51 (0.08) 0.31 (0.04) 0.29 (0.06) (0.06) (0.04)

Fetal 1.16 (0.44) 0.80 (0.21) 0.80 (0.16) (0.17) (0.20)

Couple 0.33 (0.05) 0.33 (0.04) 0.29 (0.04) (0.03) (0.04)

Sibling 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) (0.01) (0.01)

The entries are the parameter estimates and their standard errors (SEs). The SEs from the full data are computed from the full likelihood. The SEs

from the sampled data are computed using the bootstrap of the full data. The ‘Boot2 SEs’ are computed by bootstrapping the ascertained data.

The ‘Naive SEs’ are obtained from the weighted likelihood. The value ‘0.00’ means ‘less than 0.005’
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to this condition. For example, comparing one covariate

(birth order) model with the more complex model (birth

order, preeclampcia, maternal BMI, smoking) we found the

total genetic contribution of liability to SGA drop from

55.4 to 45.5 per cent. This means that the genetic contri-

bution to SGA is mostly independent of the known

covariates. Similar comparison is very useful, if genotyped

data are available. Then comparison between models with

and without known (or candidate) risk associated single-

nucleotide polymorphism (SNPs) will give us insight on

how much of the total genetic effect was explained by

those SNPs.

It is worth noting from the SGA analysis that, while

fixed-effect regression parameters can be well estimated in

this large dataset, the fetal variance component has a large

standard error. This highlights the need for large popula-

tion-based family data for precise estimation of genetic

effects, and hence practical methods for dealing with such

large datasets.

The case–control study design, commonly used in

medical studies to reduce cost, collects information on

cases and a subsample of controls. It is well known that a

case–control study has a high efficiency compared to a full

cohort study. We have a similar goal here: to sample a

dataset that gives parameter estimates close to those

obtained from the full cohort. Existing family-based case–

control methods (e.g., Lu and Wang 2002; Moger et al.

2008) are focused on estimation of the fixed regression

parameters rather than the variance components, and they

usually involve only simple family structures that allow

only a single variance component. For fitting the complex

genetic and environmental component models, existing

family-based case–control methods are still not practical

enough for routine use.

While our motivation has been to reduce the computa-

tion in dealing with binary traits, it is clear that the issues

and methods that we investigated here can be applied more

generally to other questions, for example for quantitative-

trait linkage analysis (e.g. Amos 1994; Blangero et al.

2001), where both segregation and linkage is required.

One weakness in our approach is that we can only deal

with categorical covariates; continuous covariates will

generate too many family configurations that the procedure

becomes too slow. This is also a problem with other

methods that rely on computing the likelihood for each

configuration. Another weakness is typical with ascertain-

ment methods, where, because of the subsampling, there is

a potential loss of efficiency compared to the full data.

However, it is worth noting that our approach is particular

useful during model building stage, where speed is

important but full precision less so. Once we arrive at the

final stage, if feasible, we can of course use the full data for

analysis.

In general, our optimal matching approach is applicable

to situations where some population statistics are available.

Our approach is akin to balancing considerations in two-

stage sampling methodology (e.g., Reilly 1996), but the

simulation approach to sample selection allows much more

complex stratification.
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