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Abstract

Background: Comprehensively understanding corticosteroid pharmacogenomic effects is an essential step towards
an insight into the underlying molecular mechanisms for both beneficial and detrimental clinical effects.
Nevertheless, even in a single tissue different methods of corticosteroid administration can induce different
patterns of expression and regulatory control structures. Therefore, rich in vivo datasets of pharmacological time-
series with two dosing regimens sampled from rat liver are examined for temporal patterns of changes in gene
expression and their regulatory commonalities.

Results: The study addresses two issues, including (1) identifying significant transcriptional modules coupled with
dynamic expression patterns and (2) predicting relevant common transcriptional controls to better understand the
underlying mechanisms of corticosteroid adverse effects. Following the orientation of meta-analysis, an extended
computational approach that explores the concept of agreement matrix from consensus clustering has been
proposed with the aims of identifying gene clusters that share common expression patterns across multiple dosing
regimens as well as handling challenges in the analysis of microarray data from heterogeneous sources, e.g.
different platforms and time-grids in this study. Six significant transcriptional modules coupled with typical patterns
of expression have been identified. Functional analysis reveals that virtually all enriched functions (gene ontologies,
pathways) in these modules are shown to be related to metabolic processes, implying the importance of these
modules in adverse effects under the administration of corticosteroids. Relevant putative transcriptional regulators
(e.g. RXRF, FKHD, SP1F) are also predicted to provide another source of information towards better understanding
the complexities of expression patterns and the underlying regulatory mechanisms of those modules.

Conclusions: We have proposed a framework to identify significant coexpressed clusters of genes across multiple
conditions experimented from different microarray platforms, time-grids, and also tissues if applicable. Analysis on
rich in vivo datasets of corticosteroid time-series yielded significant insights into the pharmacogenomic effects of
corticosteroids, especially the relevance to metabolic side-effects. This has been illustrated through enriched
metabolic functions in those transcriptional modules and the presence of GRE binding motifs in those enriched
pathways, providing significant modules for further analysis on pharmacogenomic corticosteroid effects.

Background
Glucocorticoids (GC) are a class of steroid hormones pre-
sent in almost every animal cell, playing a central role in a
wide range of physiological responses [1]. Because of their
potent anti-inflammatory and immunosuppressive effects,
synthetic glucocorticoids referred as corticosteroids (CS)

(e.g. methylprednisolone - MPL) have been used widely in
pharmacology as a therapeutic option for a wide range of
autoimmune and inflammatory diseases [2,3]. However,
beneficial effects are derived from magnifying the physio-
logical actions of endogenous glucocorticoids, causing a
variety of side effects following long-term treatment with
this class of drugs e.g. hyperglycemia, dyslipidemia, arter-
iosclerosis, muscle wasting, and osteoporosis [4-7]. The
physiological and pharmacological effects of corticoster-
oids are complex and manifest themselves with expression
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changes of many genes across multiple tissues [8-10]. It
has been observed that even in a single tissue different
dosing regimens of CS administration can induce different
patterns of expression [11-13]. As such genes with similar
expression profiles under acute CS administration may
not exhibit similar expression patterns during continuous
infusion, pointing to the possibility of alternative regula-
tory mechanisms. Therefore, a better understanding of
corticosteroid pharmacogenomic effects from multiple
dosing regimens are very valuable not only to reveal the
transcriptional dynamics under different patterns of input
perturbations but also to provide an insight into the
underlying molecular mechanisms of action, for both ben-
eficial and detrimental effects, and thus for the optimiza-
tion of clinical therapies.
It has been noted that genes affected by CS include both

immunosuppressive genes, mostly associated with thera-
peutic effects, and metabolic genes often associated with
adverse effects whose regulation is mainly controlled by
glucocorticoid receptor gene mediated pathways [6].
Unbound CS binds with cytosolic free glucocorticoid
receptors (GR) releasing it from the heat shock complex
allowing dimerization and translocation into the nucleus
where it binds to glucocorticoid response element (GRE)
of the target genes, leading to enhancement or inhibition
of the target gene expression. As a result, long-term treat-
ment with corticosteroids results in sustained up- or
down-regulation of numerous genes, leading to a new
steady state which might be the basis for occurrence of
adverse effects. However, it has also been noted that
chronic infusion of CS causes a sustained down-regulation
of the receptor (mRNA and thus protein) [14,15]. While
several alternative mechanisms have been proposed
[16-18] it is still not understood why drug effects remain
strong although GR mRNA is down-regulated to the point
of almost being eliminated. A plausible explanation is that
besides direct regulation through GRE binding sites in the
5’ regulatory regions of genes, there are changes in expres-
sion that are also the indirect results of effects due to
changes in expression of transcription factors (TFs) that
act as secondary biosignals directly or indirectly modulat-
ing the transcription of genes [15,19,20]. Thus, along with
identification of expression patterns, predicted regulatory
control structures are also an essential source of informa-
tion towards understanding corticosteroid effects.

In this study we address the question as to whether
(1) significant transcriptional modules coupled with
complex patterns of mRNA changes across multiple
dosing regimens of corticosteroids and (2) their com-
mon regulatory controls can be computationally identi-
fied. Hypothetically, transcriptional modules that are
significantly coexpressed under different dosing regi-
mens will be important gene clusters for further analysis
towards better understanding of both beneficial and
adverse effects of corticosteroids, especially the meta-
bolic side-effects since these patterns are survived under
a long-term treatment of corticosteroids. The hypothesis
explored here is that if two or more genes have the
same temporal expression profiles in response to differ-
ent dosing regimens, they are more likely to share some
common regulatory mechanisms. The liver was selected
because of its major role in both the physiological effica-
cious and adverse effects of corticosteroids e.g. altering
the expression of serum proteins that regulate immune/
inflammatory responses [21], enhancing the expression
of liver enzymes involved in metabolic effects (gluconeo-
genesis and lipid metabolism) [22].
However, rich in vivo datasets of pharmacological

time-series across multiple dosing regimens are often
obtained from different microarray platforms and
time-sets [11,23], leading to a problematical issue for
computational analysis [24-26]. As an example, in a
study comparing normal and chronic lymphocytic leu-
kemia B-cells, Wang et al. [27] identified only 9 differ-
entially expressed genes across all three studies, when
combining results from three different platforms, while
there are at least 1,172 differentially expressed genes in
each individual platform. In general, there are two
important issues relevant to the analysis of data
derived from different platforms: (i) genes may be pre-
sent in one platform but not in the other, and (ii)
genes present on both platforms may not be repre-
sented by the same probes. Since different microarray
platforms do not contain the same probesets, and even
do not have a similar hardware design and sample pro-
cessing protocols, standard analyses may not yield
comparable expression level quantifications across plat-
forms, leading to many challenges for computational
models aiming at the analysis of microarray data from
heterogeneous sources [25,28,29].

Table 1 Effectiveness of the approach on synthetic data

Synthetic data Number of selected genes Number of clusters Accuracy* (Adjusted Rand-index)

Dataset 1 174/400 4 100.0%

Dataset 2 368/400 6 100.0%

Dataset 3 395/400 6 100.0%

Dataset 4 378/400 6 100.0%

*: The accuracy is only estimated on the selected domain.
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A number of approaches have been proposed and are
generally classified into two main categories: (1) inte-
grate raw expression profiles from different studies into
one dataset so that available computational models can
be directly applied, and (2) develop and/or utilize a unit-
less statistic as a primary analysis and then combine the
result through a meta-level analysis. The former cate-
gory can be further divided into two sub-classes, namely
combining raw data through a normalization and/or
transformation procedure [30-33] and pooling raw infor-
mation from common probes that can be mapped to the
same Unigene clusters or full-length mRNA transcripts
[34-37]. However, these approaches are not general
enough to make data from different platforms fully
compatible [25,38]. Since combining data across differ-
ent platforms remains a serious challenge, meta-analysis
- the second category - has been identified as a more
popular technique in order to combine results, and thus
data, from a number of independent studies [39,40].
The assumption here is that while the raw expression
levels from different platforms may not be comparable,
the results of the primary analysis should be. However,
almost all prior studies has focused on the discovery of
genes that are differentially expressed in conjunction
with standard models such as effect size models [41-43],
Bayesian models [44,45].
Consequently, in order to identify significant clusters

of genes that share common expression patterns across
multiple dosing regimens, we extend our prior study
[46] in the aspect of (i) producing an agreement matrix
(AM) that describes the agreement levels of co-expres-
sion of genes across multiple conditions and (ii) succes-
sively searching clusterable subsets to infer all such gene
clusters. The approach follows the concept of meta-ana-
lysis to avoid the limitation of incompatible data across
multiple datasets from different platforms (also different
tissues, time-grids, as well as lab-protocols when applic-
able). The unitless statistic, expressing the confidence
level of co-expression is the agreement level of cluster
assignments drawn from multiple clustering runs. There
remain a number of open critical issues associated with
a single clustering run (e.g. the input number of clusters
[47,48], the biases and assumptions of distance metrics
and/or clustering methods [49], cluster significance
[50]), and thus consensus clustering coupled with the
examination of AM distribution has been designed with
the aims of reducing aforementioned limitations [46,51].
Once the AM is obtained for each condition indepen-
dently (e.g. each dosing regimen in this case), an average
agreement matrix is calculated to estimate the confi-
dence levels of coexpression between genes across mul-
tiple conditions, thus combining data from different
datasets into a single input for the next analysis. For the
analysis at the meta-level, we extend the selection and

clustering processes (also proposed in [46]) to identify
all possible clusters of genes that are highly coexpressed
with the average AM above as the input. As such these
clusters of genes will share common patterns of expres-
sion across multiple dosing regimens. Additionally, due
to the selection of all possible patterns of expression
several clusters may have similar expression patterns
and thus we also provide a heuristic as an optional pro-
cedure to merge such similar clusters based on a criter-
ion of maximizing the total homogeneity and separation
of selected clusters. Subsequently, we analyze promoter
regions of genes in every cluster in order to predict
putative transcriptional regulators, aiming at providing
another source of information towards better under-
standing those complex patterns of expression and the
underlying regulatory mechanisms of corticosteroid
effects.
Our results demonstrate that the proposed computa-

tional approach is highly effective on both synthetic and
real data. When applying the approach to real time-ser-
ies datasets (acute/chronic corticosteroid administration
[11,23]), selected patterns of transcriptional responses
are enriched in a biological sense with relevant putative-
regulatory controls and significant metabolic pathways
in each pattern. Computational results are further vali-
dated predicated upon literature evidence.

Methods
1. Datasets
Synthetic data
A number of synthetic datasets from the open literature are
utilized to assess our approach for finding common sets of
genes that are highly coexpressed across multiple condi-
tions. Specifically, we used a series of four high-noise 20-
timepoint sine-format synthetic datasets with different
number of replicates at each time-point (1, 3, 4, and 20
respectively) from [52,53]. Each dataset contain five sepa-
rate sets with 400 genes allocated equally in 6 classes, each
of which contains the same list of genes but has different
patterns across five conditions. For each set, in the first step
the data are generated according to an artificial pattern F(i,
t, l) which shows the values for gene i at time-point t in
cluster l; four of six clusters follow the sine function i.e. F
(i, t, l) = sin(2πt/10 - wl) (wl is some random phase shift
between 0 and 2π), and the other two follow the non-peri-
odic linear function (F (i, t, 5) = t/20 and F(i, t, 6) = -t/20),
i = 1,...,400, t = 1,...,20, l = 1,...,4. In the second step, let x(i,
t, r) be the error-added value for gene i, time-point t and
repeat; x(i, t, r) is randomly drawn from a normal distribu-
tion N(μ, s) where μ is the value of the synthetic pattern F
(i, t, l) and s is equal to lsit (sit is randomly extracted
from measurement errors observed in the yeast galactose
data [54] and l is the multiplicative factor that controls the
noise level). High-noise synthetic data are generated with l
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= 6 [53]. Datasets are downloaded from the links provided
in synthetic data in Additional File 1.
Acute corticosteroid administration
Forty-seven male ADX Wistar rats weighting from 225
to 250 g underwent right jugular vein cannulation under
light ether anesthesia 1 day before the study [23]. Forty-
three rats were injected with a single intravenous bolus
dose of methylprednisolone (MPL) of 50 mg/kg. Ani-
mals were sacrificed by exsanguinations under anesthe-
sia and liver samples were harvested at 0.25, 0.5, 0.75, 1,
2, 4, 5, 5.5, 6, 7, 8, 12, 18, 30, 48, and 72 after dosing.
The sampling time points were selected based on preli-
minary studies describing GR dynamics and enzyme
induction in liver. Four untreated rats were sacrificed at
random times and nominally considered as 0 h controls.
The gene expression was obtained via the Affymetrix
RG-U34A array which consists of 8,799 probesets. The
data are publicly available through the GEO Omnibus
Database under the accession number GDS253.
Chronic corticosteroid administration
In a similar experiment model, forty rats were given 0.3
mg/kg/hr infusions of MPL over 168 h via an Azlet
pump [11]. The pump drug solutions were prepared for
each rat based on its predose body weight. Animals were
sacrificed at various times up to 7 days; specifically the
time-points included are 6, 10, 13, 18, 24, 36, 48, 72, 96,
and 168 h. A control group of four animals was
implanted with a saline-filled pump and killed at various
times throughout the 7-day study period. Unlike the pre-
vious experiment, the microarray platform for this data-
set is the RAE230A which consists of 15,923 probesets.
The data are publicly available through the GEO Omni-
bus Database under the accession number GDS972.
All protocols followed the Principles of Laboratory

Animal Care (Institute of Laboratory Animal Resources,
1996) and were approved by the University at Buffalo
Institutional Animal Care and Use Committee.

2. Identifying critical transcriptional modules
The general computational problem can be briefly
defined as follows. We are given a set of N genes

G gi i

N= { } =1
and K conditions. For each condition k,

every gene is characterized by one or more time-series
expression profiles with Rki corresponding probesets

over Tk time-points G g g g r R g g k Kk ki i

N
ki ki

r
ki ki

r
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The question then becomes to search for clusters of
genes that are highly coexpressed across all K conditions
with a confidence level δ. The term ‘highly coexpressed’
is used in the sense that ∀ ∈ ∧( ) ≥=∑g g C

K
P g gi j k i jk

K
, , 1

1
 where C

denotes a, yet to be determined, cluster and Pk(gi ∧ gj) is
the confidence level that two gene profiles i and j are
clustered together in condition k; a gene profile includes

sets of corresponding probesets Rki of gene i in condi-
tion k, k = 1,...,K. The subscripts {i, j}, t, k, r indicate the
{gene id}, time, condition, and probesets respectively. It
should be also noted that in this work, we used three
different terms to refer to the same object (e.g. a set of
genes that are coexpressed across multiple conditions):
‘cluster’ when designing the algorithm, ‘pattern’ when
exhibiting the expression changes, and ‘module’ when
charactering the biological function. The framework
contains several step displayed in Figure 1.
The pre-processing step
Each dataset is pre-filtered to identify differentially
expressed probesets. Since we would like to identify
gene clusters with common expression patterns across
multiple conditions, input datasets must contain the
same set of genes. Thus using the respective platform
information, probesets in each dataset are mapped to a
list of genes and then the intersection across those gene
lists is evaluated to extract a common set of genes
which are differentially expressed across multiple condi-
tions (i.e. datasets). However, genes are sometimes char-
acterized by multiple probesets whose expression
profiles may be similar or sometimes different, but not
identical. These probesets can be considered as repli-
cates of expression profiles for a gene and thus taking
an average expression profiles across all these probesets
to characterize for the expression profile of the gene
may lose useful potential information. Therefore, from
the common set of genes we re-map genes to corre-
sponding probesets in each dataset with the respective
platform before starting the analysis.
Construction of the agreement matrix
The agreement matrix (AM) quantifies the likelihood
that two objects (x, y) are assigned to the same cluster
(Figure 2). If m clustering runs are performed on the
data, each entry (termed ‘agreement level’) will show
the frequency with which two objects are assigned to
the same cluster over ‘m’ clustering runs. The AM
entries are defined as follows:
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In addition to the various clustering methods that
were utilized, different distance metrics (Euclidean,
Pearson correlation, and Manhattan [55]) are also
explored in order to attenuate the biases associated with
individual distance metrics. In our implementation, we
are using hierarchical clustering (hclust), divisive analy-
sis clustering (diana), fuzzy analysis clustering (fanny),
partitioning around medoid (pam) with Pearson correla-
tion and Manhattan metric, k-means (kmeans), fuzzy c-
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means (cmeans), self-organizing map (som), and model-
based clustering (mclust) with Euclidean metric as the
core clustering methods (supported by R packages)
[56-61]. Since clustering results are highly dependent on
the input number of clusters (nc), the sensitivity of the
AM as a function of nc was examined to find a ‘sugges-
tive’ number of clusters (nc*) for each particular dataset.
After identifying nc* based on the procedure in our
prior work [46], all clustering runs are repeated with nc*
to produce the final AM for further analysis (see more
details in [46]).
If two probesets (x, y) are clustered together, it is

implied that their expression profiles are similar under a
specific condition k. Therefore, the fraction of times
(Mxy) they are clustered together over multiple cluster-
ing runs can be considered as the confidence level that
they are coexpressed since Mxy, by construction, aims at
eliminating method-specific biases and assumptions.
Subsequently, we calculate the average agreement levels
between sets of corresponding probesets of any two
genes to estimate the confidence level that those two
genes are coexpressed in a specific condition. The AM
entries in condition k is re-estimated as follows

AM
R R

M i j Nij
k

ki kj
xy

y Rx R kjki

( ) , , , ...,= =
∈∈
∑∑1

1 (2)

With the assumption that the unitless statistics, i.e. the
confidence level of co-expression, is comparable across
multiple conditions and different platforms [37], we esti-
mate the confidence level of co-expression between two
genes across multiple conditions by taking the average.
While combining raw data remain challenges, the esti-
mation of a unitless statistics provides a simple but effi-
cient combination of heterogeneous data for further
analyses.
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As a result, we obtain an agreement matrix whose
entries exhibit a quantity that shows how confident
genes are coexpressed. This will be the input for the
selection and clustering process.
Selection and clustering
With the hypothesis that the more clusterable the data
is the more biologically relevant it is, we applied our
previously proposed procedure to select a more
‘hypothetically clusterable’ subset from the entire set of
genes [46]. The main hypothesis underlying the selec-
tion is that AM entries associated with genes at the
‘hypothetical’ core of an expression pattern (or a cluster)
will be consistently grouped together over multiple

clustering runs. This should be manifested by high
corresponding values in the AM, whereas genes belong-
ing to the ‘hypothetical’ core of two clearly distinct clus-
ters are associated with consistently low AM entries. On
the contrary, cluster assignments associated with genes
at cluster boundaries or between clusters would be very
sensitive to the method used and thus they would have
relatively moderate agreement levels with other genes.
As a result, with a user-defined confidence level δ
genes associated with moderate AM entries

(1 − < < AMij
k( ) ) are eliminated to produce a more

‘clusterable’ subset of genes (δ = 70% in this study). The
process starts removing genes associated with the high-
est number of moderate AM entries and then updates
the AM for the next loop until no moderate AM entry
exists. The corresponding subset of genes is now consid-
ered as a ‘hypothetically clusterable’ subset since any
two genes are highly coexpressed or non-coexpressed
with the confidence level at least δ. Subsequently, we
used the concept of consensus clustering [51,62,63] to
divide the subset of genes into a number of clusters by
applying the hierarchical clustering with the selected
AM as input data. The algorithm starts with every gene
filling a cluster and then grouping two clusters into a
new one for each loop so that any pair of genes belong-
ing to a new cluster always has an agreement level
greater than or equal to δ. The iteration is stopped
when no more new cluster is formed (see more details
in [46]).
However, since there should be existed clusters of

genes located closely to other clusters in the data and
the input number of clusters for the core analysis is
only a suggestive one, those clusters may not be com-
pletely separated. As a result, although genes that belong
to those clusters are identified as highly coexpressed,
their relationship to genes in other clusters cannot be
uniquely determined. Therefore, some significant clus-
ters may be not included in the selected subset due to
the constraint of ‘clusterable’ selection. Since we would
like to obtain all significant patterns of expression, the
procedure of selection and clustering is repeated on the
removed domain. The removed domain consists of a set
of unselected genes whose coexpression levels are still
high as quantified agreement levels in the original AM.
After extracting the sub-agreement matrix correspond-
ing to the set of unselected genes, the entire process of
selection and clustering is applied again with the same
confidence level δ as before. The procedure is reiterated
until no more clusters of genes are recognized. Figure 3
presents the pseudo-code of the procedure and an
example to illustrate the process.
Furthermore, due to the nature of clustering, trivial

clusters may be identified in the final results. In order
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to exclude such trivial clusters, each cluster C is
assigned with a simple hypothetical quantity called ‘clus-
ter significance’ which represents how large the cluster
is in this study. We then create the distribution of clus-
ter significance on random data to estimate the cluster
significance threshold corresponding to a user-defined
threshold p-value for cluster selection. Without loss of
generality we select K = 1 for the random data and
assume that each probeset in the mapped dataset D cor-
respond to a gene. The suggestive number of clusters
nc* for D is searched with the process in [46]. Subse-
quently, D is randomly resampled (permutation plus
convex-hull [50]) a number of times (nr), for each of
which the entire process starting from building the AM
with the same nc* to extracting clusters of highly coex-
pressed genes is repeated and the resulting random clus-
ters are returned. After that, the procedure estimates the
cluster significance, which is simply the cluster-size in
this study, for these random clusters and constructs a
distribution of cluster significance. The corresponding
p-value of cluster significance cs is defined as the num-
ber of random clusters whose significance is greater
than cs over the total number of clusters identified in nr
resamples:

pvalue cs
clusters with cluster significance cs

random cl
( ) =

≥∑    

 uusters∑ . As

a result, given a threshold p-value (p-value = 0.05 in
this study), the corresponding cluster significance
threshold is inferred (Figure 4) and only clusters with
significance greater than this threshold are selected.
Merging similar patterns
Because of the nature of the approach, it is quite rea-
sonable to expect that the clustering process can break
out patterns of expression into several sub-patterns.
Thus, we repeat the process on the eliminated domains
to extract all possible significant clusters, resulting in
that several clusters may have a similar expression pat-
tern but are separated into two or more clusters.
Because cluster homogeneity reflects the similarity of
expression profiles within a given cluster and cluster
separation quantifies how effectively expression profiles
are discriminated, we provide an optional heuristic in

order to merge similar patterns together according to
the criterion of maximizing sum of homogeneity and
separation of all final output clusters. Starting with all
significantly selected clusters, the procedure searches for
a combination of two similar patterns so that their com-
bination will generate a maximal increase of the sum of
homogeneity and separation of all current clusters after
merging those two patterns. The process is repeated
until no more combinations are found i.e. any new com-
bination always reduces the sum of homogeneity and
separation. Eventually, a list of significant expression
patterns that characterize the underlying transcriptional
responses is generated. The metric used during the eva-
luation of the heuristic is quantified as follows:
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where C is the current set of selected clusters

C Cp p

n
= { } =1

and n is the current number of clusters;

Hk (Cp) is the homogeneity of cluster Cp in condition k
and Sk(Cp, Cq) is the separation between cluster Cp and
Cq in condition k; sim(gki, gkj) and dis(gki, gkj) are the
average similarity and dissimilarity (or distance) respec-
tively between all probesets of gene i and gene j in con-
dition k. Similarity is measured by the Pearson
correlation coefficient and dissimilarity is estimated by
the Pearson correlation distance.

3. Predicting putative transcriptional regulators
Promoter identification
Promoters of genes are extracted from a rich database of
promoter information with a default length (500 bp
upstream and 100 bp downstream of the transcription
start site) if there is no experimentally defined length as
suggested by Genomatix [64]. In order to identify puta-
tive transcriptional regulators, we explore the basic
underlying assumption of comparative genomics which

Table 2 Effectiveness of the approach on synthetic data

pam mclust consclust

# of sel. genes # of clusters+ Accuracy*
(%)

# of sel. genes # of clusters Accuracy
(%)

# of sel. genes # of clusters Accuracy
(%)

Dataset 1 122 7|6 74.8|82.8 155 9|7 87.8|84.1 68 4|4 100|100

Dataset 2 337 6|6 100|100 343 6|6 100|100 330 6|6 100|100

Dataset 3 374 6|6 100|100 380 6|6 100|100 374 6|6 100|100

Dataset 4 376 15|7 68.8|94.6 375 13|7 80.1|94.2 302 11|7 80.9|92.4
+: only clusters with more than 5 genes;*: the accuracy is estimated on the selected domain; the number of clusters and the accuracy are formatted as ‘before
merging’ | ‘after merging’.
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states that functional regions evolve in a constrained
fashion and thus at a lower rate than non-functional
regions [65,66]. It implies that conserved regions in a
set of orthologous sequences survive due to their special
functional implications i.e. TFBSs located on these con-
served regions will be more promising as functional
binding sites and thus associated TF families are more
relevant to our context. Therefore, each promoter is
characterized by a set of promoters from orthologous
genes of other vertebrate species, if available (e.g. Homo
sapiens, Mus musculus, Macaca mulatta, Pan troglo-
dytes, Equus caballus, Bos Taurus, Gallus gallus, etc.).
To be consistent in the search for conserved regions on
promoter sequences in order to identify putative tran-
scription factor binding sites (TFBSs) we eliminate those
that do not consist of more than two orthologous
promoters.
Putative functional binding sites
In order to identify conserved regions for each promoter
DIALIGN [67] was used to perform multiple sequence
alignments with the input sequences including each
sequence as well as its orthologous promoters. DIA-
LIGN was selected because it has many applications in
comparative genomics [68]. Also, a recent benchmark
study for the alignment of non-coding DNA sequences
has concluded that it can produce alignments with high
sensitivity as well as specificity to detect constrained
sites [69]. Following the alignment among orthologous
promoter sequences, we relied on the conserved scores
returning from DIALIGN (with the similarity threshold
of diagonals or corresponding segments involved at least
5 bases) to locate conserved regions which are defined
as sub-sequences that are longer than 10 bp and con-
tinuously scored greater than the average score of all
the alignment’s conserved scores (Figure 5a).
We next apply MatInspector [70] to scan for all physi-

cal TFBSs and only those that overlap with the con-
served regions selected above are kept for further
analysis. We used a common core similarity 0.75 and
utilized the optimal matrix similarity threshold for each
position weight matrix (a corresponding profile of
TFBSs) suggested from MatBase, Genomatix [64] which
ensure that a minimum number of matches are found
in non-regulatory sequences i.e. the false positive
matches is minimized. However, a gene may have

multiple alternative promoters [71] and virtually in all
cases, it is not known which promoter of the gene is
activated. Therefore, all putative TFBSs detected from
all alternative promoters of a gene are considered as
candidates to infer putative transcriptional regulators for
the gene. Subsequently, we estimate the common level
of each candidate above in each corresponding module
and select those TFBSs present more than a common
threshold (70% in this study) (Figure 5b). Associated TF
families with those selected TFBSs are inferred and con-
sidered as transcriptional regulators for corresponding
transcriptional modules.

Results and Discussion
Method evaluation on synthetic data
In order to evaluate the effectiveness of the proposed
approach, we use synthetic data with known class struc-
ture as described earlier. The process of evaluation is
repeated four times with four different datasets that are
created with different number of replicates for each time-
point (1, 3, 4, and 20 respectively). In each time, we use
five high-noise sets as the data for five conditions (K = 5),
each of which has 400 genes distributed across 6 clusters;
each cluster has different patterns across five conditions
but has the same set of gene ids. We set the same para-
meters for all evaluation in this study and also for the
analysis on real time-series datasets, specifically the con-
fidence level of coexpression δ = 70% and p-value = 0.05
for the selection of significant clusters. Furthermore, the
testing process on synthetic data is done without the
merging option. Without loss of generality, we assume
that each gene has only one probeset in this evaluation.
The performance of the approach is assessed through its
ability to recover the number of cluster structures and
the list of gene ids identified in each cluster. We use the
adjusted Rand index [53,72] which is a statistic that mea-
sures the extent of concurrence between the clustering
results and the underlying known class structure to eval-
uate the approach’s performance in identifying gene clus-
ters that are coexpressed across multiple conditions. The
larger the Rand index is, the higher the agreement
between the results and prior knowledge of cluster struc-
ture. The number of selected genes, recovered cluster
structures and the accuracy on the selected domain are
listed in Table 1.

Table 3 Characterization of significant transcriptional modules

Transcriptional modules 1 2 3 4 5 6

Number of genes 97 45 34 71 14 54

Expression pattern in acute* DD UU U DD U D UU D UU DD DD UU U DD U

Expression pattern in chronic* D UU D U DD U UUUU U DD U DDDD UU DD

*: Patterns consist of one-phase regulation (up-down/down-up), two-phase regulation (up-down-up/down-up-down) or simply up- or down-regulation. Details are
listed in expression patterns in Additional File 2.
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Due to the fact that these datasets are high-noise syn-
thetic data, some cluster structures may be missed when
there is only one measurement at each time-point. How-
ever, when the number of replicates is increased, the
number of cluster structures is recovered. As discussed
in our previous study [73], this is a reasonable observa-
tion due to the effect of gene expression replicates on
clustering performance. Additionally, we also examine
an alternative approach which is more intuitive in iden-
tifying gene clusters that are coexpressed across multiple
conditions. Instead of performing a meta-analysis to
avoid the limitation of incompatible data across different
platforms, we can separately identify significant clusters
of genes that are coexpressed in each condition (set of
data) and then obtain the intersection among these gene
clusters across all conditions. In this experiment, we
used pam [60], mclust [57], and consensus clustering
(consclust) [46] as standard single clustering methods to
identify clusters in each set of data, for which nc* = 6 is
the input number of clusters. We then simply took the
intersection between clusters from set to set and only
keep those clusters that contain more than 5 genes as
significant clusters for the final estimation of accuracy.
The number of selected genes, number of clusters, and
accuracy on the selected domain are listed in Table 2.
In general, this approach selects a smaller number of

genes with an equal or greater number of cluster struc-
tures, resulting in lower accuracy. As an example, in
each set of dataset 4 there are two cluster structures

that are not clearly identifiable. As a result, a single
clustering methods (even consensus clustering) may fail
to properly separate them in each set, leading to the
situation where the intersection between clusters from
set to set divides those cluster structures into many sub-
clusters with a small number of genes. On the contrary,
by taking the average of the co-expression levels across
multiple sets, the relationship of whether two genes are
coexpressed across multiple conditions can be recov-
ered. Consequently, our proposed approach is more
advantage, resulting in a final highly correct classifica-
tion as illustrated in Table 1. Furthermore, since this
simpler alternative approach produces many resulting
clusters, we also attempted to apply the proposed mer-
ging process to reduce the number of clusters as well as
improve the accuracy if applicable. However, its testing
performance is still not as high as that of our proposed
approach although we do not apply the merging process
for the proposed approach in this test. Additionally, the
alternative approach is highly sensitive with the initial
number of clusters. For instance, when we constantly
set nc* = 7 and test on dataset 3, without the merging
option our approach still recovers the correct number of
cluster structures with high accuracy: (number of
selected genes, number of clusters, accuracy) = (386, 6,
100%) whereas ‘pam’ approach yields (366, 13, 87.8%),
‘mclust’ provides (360, 11, 82.3%), and ‘consclust’ does
(351, 7, 98.3%). Since this information is not available
for real datasets, the more sensitive with it the less

Table 4 Connecting CS transcriptional modules to enriched gene ontology terms (p-value < 0.0001)

No. Gene Ontology Terms* Module 1 Module 2 Module 3 Module 4 Module 5 Module 6

1 Metabolic process Amino acid, compound, organic acid X

mRNA X

Nucleotide, nucleoside X

Protein, macromolecule X X

2 Binding Cofactor, coenzyme, vitamin, heme, ion X

Nucleotide, nucleic acid binding X

RNA binding X

Protein binding X X

3 Cellular catabolic process X

4 Catalytic, oxidoreductase activity X X

5 Oxidative phosphorylation X

6 Transmembrane transporter activity X

7 Protein-RNA complex assembly X

8 RNA splicing, processing X

9 Gene expression X X X

10 Translation activity X X

11 Biosynthetic process X

12 Structural molecule activity X

*: Details are listed in functional characterization in Additional File 3.
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robust the approach is. Therefore, by taking the average
of the co-expression levels between two genes across
multiple datasets, our proposed approach provides more
robust results.

Acute vs. Chronic CS administration
For the analysis of corticosteroid administration, the pre-
processing step (Figure 1) is performed to provide corre-
sponding mapped datasets. The datasets are first filtered
for differentially expressed probesets using ANOVA tech-
nique (p-value < 0.05) implemented in R [74] and also cus-
tomized by our previous work for easy uses [46]. 2,920
probesets in the acute and 4,361 probesets in the chronic
are selected for further analysis. To obtain the common
set of genes across two conditions, these probesets are

mapped into sets of genes based on the corresponding
platform information. 2,920 differentially expressed probe-
sets in the acute are mapped into a set of 2,340 genes and
4,361 probesets in the chronic are mapped into another
set of 4,076 genes. The intersection of these two gene-sets
yields 967 genes in common for both dosing regimens.
From this common gene set, the re-mapping process sub-
sequently returns a corresponding set of 1,314 probesets
for the acute and a set of 1,112 probesets for the chronic
data. All datasets (including synthetic data) are pre-pro-
cessed with the model in our previous study to estimate
the ‘true’ expression profiles that are integrated with
potential information in replicates instead of simply taking
the average expression profiles [73]. The suggestive num-
ber of clusters nc* for both datasets is 7.

Table 5 Connecting CS transcriptional modules to enriched biological pathways (p-value < 0.01)

Transcriptional modules Enriched biological pathways p-value GRE+

Nitrogen metabolism(rno00910) 0.0000313 X

Glycine, serine and threonine metabolism(rno00260) 0.0006195 x

Bisphenol A degradation(rno00363) 0.0009858 √

Tryptophan metabolism(rno00380) 0.0013596 x

Histidine metabolism(rno00340) 0.0017470 √

1 beta-Alanine metabolism(rno00410) 0.0020365 √

Bile acid biosynthesis(rno00120) 0.0027013 √

Arachidonic acid metabolism(rno00590) 0.0053445

Pantothenate and CoA biosynthesis(rno00770) 0.0056735 √

Butanoate metabolism(rno00650) 0.0072639 √

Tyrosine metabolism(rno00350) 0.0079428 √

Valine, leucine and isoleucine degradation(rno00280) 0.0094101 √

Tyrosine metabolism(rno00350) 0.0000590 √

Aminophosphonate metabolism(rno00440) 0.0001267 x

Selenoamino acid metabolism(rno00450) 0.0004668 x

Histidine metabolism(rno00340) 0.0010152 x

2 Alanine and aspartate metabolism(rno00252) 0.0013658 √

Arginine and proline metabolism(rno00330) 0.0019112 √

Tryptophan metabolism(rno00380) 0.0040672 x

Androgen and estrogen metabolism(rno00150) 0.0042813 X

Oxidative phosphorylation(rno00190) 9.000E-08 x

Androgen and estrogen metabolism(rno00150) 0.0000888

3 Starch and sucrose metabolism(rno00500) 0.0020632

Urea cycle and metabolism of amino groups(rno00220) 0.0069082

Pentose and glucuronate interconversions(rno00040) 0.0076060

4 Ribosome(rno03010) 0.000E+00

Proteasome(rno03050) 0.0000037 X

5 None

Proteasome(rno03050) 2.570E-04 x

Tight junction(rno04530) 3.410E-04 x

6 Long-term depression(rno04730) 4.090E-04 x

TGF-beta signaling pathway(rno04350) 5.040E-04 x

Wnt signaling pathway(rno04310) 0.0032164 X
+: Glucocorticoid Receptor Element - GRE binding sites; √: GRE binding sites are present on the promoters of almost all genes in the corresponding function
group; x: possibly because of not enough promoter information to be considered. Details are listed in functional characterization in Additional File 3.
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Subsequently, we apply the proposed approach with
the merging option to the intersection set of 967 genes
that are affected by corticosteroid administration across
the two dosing regimens. We obtain 6 significant clus-
ters with 315 genes in total. These clusters are hypothe-
sized to be transcriptional modules which share
common regulatory mechanisms since they consist of
genes that exhibit similar expression patterns in both
acute and chronic dosing regimen. Table 3 shows the
distribution of these 315 genes over six modules and
also briefly describes how the pattern of expression
changes. Although genes may exhibit simple or complex
patterns of expression during corticosteroid administra-
tion, we crudely classify those patterns into up- or
down- with one or two phases of regulation.
A detailed description for patterns of these transcrip-

tional modules is shown in Figure 6 with the average
expression patterns of all probesets clustered in each mod-
ule following acute and chronic dosing. In brief, transcrip-
tional module 1 (97 genes) is characterized by one-phase

regulation in acute but two phases in chronic dosing.
Genes in this module exhibited a fast and robust decline
in mRNA, which reached its peak between 4 h and 8 h,
and returned to the baseline after about 18 h. However,
when MPL is infused (chronic dosing) this set of genes
shows a more complex pattern involving both enhanced
and suppressed regulation. Although a strong down regu-
lation is observed at the beginning, it is subsequently fol-
lowed by a sharp induction with the maximum around 36
h and then gradually returned to the baseline indicating
some kind of possible tolerance. The second transcrip-
tional module (45 genes) shows a similar pattern of
expression in both acute and chronic regimen with two
phases of regulation. Genes in this module exhibit an early
up-regulation and reached their corresponding peaks at
around 4 h in the acute and 10 h in the chronic. Subse-
quently, both profiles denote a clear down-regulation
(around 18 h in acute and 24 h in chronic) and possible
slight fluctuation before returning to base line. An inter-
esting dynamics is observed in the 34 genes of transcrip-
tional module 3. In the acute dosing, the genes in this
module clearly exhibit an expression pattern with two
phases of regulation (down-up-down). Yet, in chronic
administration they exhibited an early transient decline in
mRNA followed by robust, sustained, up-regulation.
Similar to module 2 is the transcriptional dynamics

exhibited by transcriptional module 4 (71 genes) charac-
terized by an early induction with a maximum at 5.5 h in
the acute and 18 h in the chronic. A typical pattern with
down regulation for both acute and chronic administration
is illustrated by transcriptional module 5 (14 genes). How-
ever, genes in the acute regimen exhibited a fluctuated
repression with a maximum at around 8 h and then fol-
lowed by an induction to return to the baseline as late as
72 h. Meanwhile, genes in the chronic regimen character-
ized a pattern with a slightly transient up-regulation fol-
lowed by a sustained down-regulation and eventual
convergence to a new steady state in the presence of the
drug. The last transcriptional module (54 genes) has a
similar acute pattern of expression with two phases of reg-
ulation as that of module 2. However, in the chronic regi-
men after falling to a value below the baseline (~24 h) this
set of genes was further sustained a slight suppression.
While comparing these expression patterns, we

observe that modules 2, 4, and 6 have similar expres-
sion patterns in acute (2 & 6) or chronic (2 & 4) with a
slight difference in the other dosing regimen (e.g. 2 & 6
in chronic, 2 & 4 in acute). Although the difference is
not large enough to be intuitively recognized, the mer-
ging process could not merge them together, implying
that the difference is significant. Furthermore, the
separation of these expression patterns is also reinforced
with different functional characteristics which will be
illustrated below. In summary, selected transcriptional

Figure 1 The flowchart of the approach. The pre-processing
section refers to filtering for differentially expressed probesets in
each dataset, mapping to gene symbols to extract a set of common
genes that are present across all datasets, and then re-mapping to
corresponding probesets in each particular dataset. The main steps
include establishing the AM to characterize how much confidence
two probesets (and two genes) are co-expressed in each condition
(and then across all conditions) and searching for all possible
clusters of co-expressed genes based on the common AM. The
post-processing step will select those clusters that are significant
and optionally merge those with similar expression patterns if
indicated.
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modules exhibit a number of typical expression patterns
under corticosteroid administration. The pattern can be
simply expressed as an up- or down- regulation or as a
more complex one with two phases of regulation plus
some fluctuation (see expression patterns in Additional
File 2).

Putative transcriptional regulators of critical
transcriptional modules
It has been widely accepted that after corticosteroids bind
to cytosolic glucocorticoid receptors (GR), the activated
steroid-receptor complex is rapidly translocated into the
nucleus where it can alter the expression of target genes.

Figure 2 An example of the primary clustering results (left) and the agreement matrix. The left is the summary results of running m
clustering times (m = 4 in this example, represented by M1...M4) with nc* = 3 initial clusters on N objects (N = 7, represented by x, y, z...). The right
shows the corresponding agreement matrix whose entry Mxy is the probability that two corresponding objects are clustered together by M1,...,M4.

Figure 3 The integrating clustering and selection procedure. The left panel depicts a pseudo-code description of the algorithmic procedure.
The right panel illustrates an example of the process. At iteration 1, the algorithm selects a ‘clusterable’ subset of genes including (x, z, t, v) that
results in two clusters (x, z, v) and (t). The remained AM consists of corresponding rows and columns of genes (y, u, w) from the original AM. At
iteration 2, the procedure selects (y, u) and the remained AM now contains only one gene (w); at that point, the process terminates.
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However, the drug seems to be cleared within about 6 h
following a bolus injection, suggesting that the mRNA
levels of CS-target genes will return to the base line after
that [11]. In the contrast, the drug will reach and remain
to a stable steady state after 6 h in the chronic administra-
tion. Yet, the GR is greatly diminished in response to cor-
ticosteroids [14,15,19,20], suggesting that the mRNA levels
of CS-target genes in the chronic regimen should also
return to the base line. This mechanism is corresponding
to the first-phase regulation of target genes. However,
almost all chronic patterns involve two phases of regula-
tion and some (module 3 & 5) are only half-phase patterns
i.e. persistent up or down without returning to the base-
line. These complexities in expression patterns of CS-

target genes can be explained by a number of possibilities
previous studies have shown [11,12], including multiple
GR isoforms, multiple GREs with different affinities to the
drug receptor complex, or some other receptors that can
mediate the effect of corticosteroids and thus affected
genes in this case can reach a new steady state in the pre-
sence of the drug (e.g. module 3 & 5).
However, another possibility is a mechanism that

results in the regulation of secondary biosignals which
transcription factors are the most potential factors. After
affected by corticosteroids, they in turn further modu-
late the expression of glucocorticoid-regulated genes as
a continuing cascade of events that were initiated by the
drug. As a result, this possibility suggests a possible

Figure 4 Estimating the cluster significance threshold given a user-defined p-value. An illustrating example is shown in which nr = 5
random data are generated, the data are subsequently clustered according the proposed clustering/selection procedure and cluster significance
distribution are depicted in (a) and (b) following sorting. The corresponding p-value for each cluster significance cs is estimated and depicted in
(c). Thus, given a p-value, we can infer the corresponding cluster significance threshold. For example, for a p-value = 0.05, all clusters with cluster
significance ≥ 10 are selected and if p-value = 0.1, all clusters with cluster significance ≥ 8 are considered as significant clusters.

Figure 5 Identification of promoter conserved regions and common physical TFBSs. (a) Estimation of conserved regions on a single
promoter (the red one) based on Dialign’s alignment scores from a set of orthologous promoters. (b) Finding common physical TFBSs
accounting for the case that genes may have multiple alternative promoters. TFBSs present on the conserved regions of any alternative
promoter of a gene are also considered as putative TFBSs for that gene.
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Figure 6 Critical transcriptional modules of CS pharmacogenomic effects. Each module is characterized by the average gene expression
profile of the corresponding cluster in the acute and the chronic data. The error bar shows the standard deviation of all probeset transcript
levels at each time-point in each corresponding pattern.
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interpretation of the complexities in expression changes
of multiple CS-target genes with the second phase of
regulation (e.g. module 1, 2, 4, and 6). In order to reveal
some underlying regulatory mechanism of these selected
transcriptional modules, we start analyzing the promoter
regions of genes to search for significant putative tran-
scriptional regulators as well as possible relationships
of regulation. The hypothesis we explore here is that if
two or more genes have similar temporal profiles in
response to multiple dosing regimens, they are more
likely to share some common regulatory mechanisms.
For the 315 genes in six transcriptional modules, we

extract 817 Rattus norvegicus’s promoter sequences, of
which we only keep 194 genes with 502 promoters that
include sufficient information of orthologous promoters
for further analysis. Figure 7 shows the identified puta-
tive regulation between TF families and transcriptional
modules. This finding highlights the possibility that sec-
ondary biosignals are involved in the regulatory com-
plexities of expression changes for CS-affected genes.
Almost all suggested TF families do consist of transcrip-
tion factor members that are recognized as differentially
expressed genes in one or both dosing regimens (see
functional characterization in Additional File 3). Since
transcription factors are characterized by pleiotropic
effects, it is reasonable to observe a significant overlap
across various transcriptional modules [75]. While com-
paring these regulatory combinations, we observe that
some TF families seem to be common regulators for all
modules (on the top of the figure) whereas some are
very specific to particular modules (in the bottom of the
figure). This could possibly explain the difference
among the expression patterns of these modules. It is
likely that the more similar the expression pattern of

clusters the more likely they share a larger fraction of
common regulators, e.g. TF families in this case. For
example, there are a large number of transcriptional reg-
ulators that are common between modules 2, 4 and 6
but it seems little overlap exists between the transcrip-
tional regulators of modules 1 and 4, 1 and 6, 2 and 3,
except common regulators on the top of the figure.
Furthermore, one TF family consists of several TF

members whose expression patterns may be similar or
different across multiple dosing regimens. Figure 8
shows two examples (CREB family and RXRF family),
each of which is represented by two TF members whose
expression patterns are similar (CREB-CREM, RXRF-
NR1H3) or different (CREB-JUN, RXRF-RARB) between
the acute and the chronic corticosteroid administration.
Provided that theses TFs are directly involved in the
regulation of module 2, 4, and 6, their combinations can
produce different ways of regulation, leading to different
patterns of expression on target genes among different
modules and even in a module but different dosing regi-
mens. As a result, such observations provide a complex,
but insightful, perspective into the regulation of these
transcriptional modules or the complexities of their
expression patterns across multiple dosing regimens.
However, it has been widely recognized that genes

affected by CS include both immunosuppressive genes
and metabolic genes. Upon the identification of putative
transcriptional regulators, their relevance to immune
response is demonstrated based on current literature
evidence. Specifically, nine among the 29 recognized
ETS transcription factors are known to regulate genes
involved in immunity [76]; forkhead transcription fac-
tors (FKHD) play a major role in the control of apopto-
sis [77]; and especially CREB has been showed as an

Figure 7 Putative regulation of CS transcriptional modules by enriched TFBSs. Those TF families with ‘blue’ border lines consist of
transcription factors that are affected under corticosteroid administration in this study. The results show a putatively dynamic perspective of
regulation between transcriptional regulators and involved sets of genes.
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essential factor for interactions of glucocorticoid recep-
tors to mediate gene expression [78,79]. A number of
others are overlapped with earlier in silico studies e.g.
E2FF, EGRF, HOXF, NKXH, SP1F [80]. However, given
that the experiment of corticosteroid administration has
been studied on normal rats, the relevance to adverse

effects may be more important than the relevance to
immune response. In fact, almost all enriched functions
(gene ontologies, pathways) in these transcriptional
modules are relevant to metabolic side-effects (see dis-
cussion below). Also, due to this reason NFkB and Ap-1
families widely considered as factors involved in

Figure 8 Expression patterns of several TF representatives in CREB and RXRF family. One TF family may consist of several members with
different expression patterns. One specific TF can have different expression patterns under different conditions (e.g. dosing regimens of
corticosteroid administration in this case).
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inflammation are not present as direct transcriptional
regulators for these sets of genes. Furthermore, we iden-
tify a number of transcriptional regulators known to be
critical factors in metabolic syndrome including obesity,
dyslipidemia, hypertension, insulin resistance, etc. e.g.
RXRF [81], FKHD [82], SP1F [83]. For instance, the
deletion of RXR in mouse liver results in abnormalities
of all metabolic pathways regulated by retinoid X recep-
tors heterodimers [84]; FoxOs, members of FKHD
family, are able to increase hepatic glucose production,
decrease insulin secretion, and affect glucose or lipid
metabolism [82].

Functional characterization of critical transcriptional
modules
Since selected transcriptional modules consist of sets of
genes that are coexpressed across all dosing regimens,
we hypothesize that these genes are more likely involved
in critical functions following the drug treatment. Con-
sequently, we search for enriched functions in these
modules to explore the functional effects of corticoster-
oids on target genes as well as evaluate the importance
of the selected modules. Using ArrayTrack [85], we first
identify the gene ontology terms (GO) that are signifi-
cant in each transcriptional module (p-value < 0.0001,
at least 5 genes). We then classify them into super-cate-
gories (so-called main functions) based on the branch of
molecular function and biological process in the GO
tree. Table 4 lists the distribution of main functions
across selected transcriptional modules. In general, all
modules are involved in metabolic processes and bind-
ing category (except module 5 since it is too small to
include significant GO terms). Some modules seem to
share almost all main functions e.g. module 2, 4 and 6
whereas others seem to share less e.g. module 2 and 3,
3 and 4, or 3 and 6. However, they are shown to have
different roles with specific functions in those main
categories. For example although module 2 and 4 are
involved in metabolic processes and binding, module 2
is associated with RNAs and nucleotides whereas
module 4 is specialized in proteins and macro-mole-
cules. These functional differences (coupled with path-
way analysis in Table 5) can be linked to the
similarities/differences in their corresponding expression
patterns, strengthening the phenomenon that they are
classified as distinct transcriptional modules although
their expression patterns are not intuitively separated.
However, the most important conclusion drawn from
this analysis is that all these transcriptional modules
consist of components that participate in metabolic pro-
cesses, implying that they include genes that experience
metabolic effects under corticosteroid administration.
Using ArrayTrack, we also searched for enriched path-

ways in these transcriptional modules (p-value < 0.01).

A large proportion of significant pathways selected in
each module are metabolic pathways of amino acid
metabolism or biosynthesis, providing another support
that selected transcriptional modules are critical and
able to capture metabolic side effects for further analy-
sis. Table 5 shows significant pathways in each tran-
scription module.
It is generally accepted that expression levels of many

CS-affected genes are mediated through the binding
motifs, called GREs - glucocorticoid response elements,
on their control regions. We thus examine the presence
of this binding site on the promoter of genes in each of
the enriched pathways in order to assess the possible
effect of GRE of metabolic functions. However, such
GREs are short (5-9 bp) and fairly degenerate, leading to
matches occurring by chance alone thus not implying
any kind of functionality. In order to address this issue,
after extracting gene promoters from the Genomatix
database we identified conserved regions across sets of
orthologous promoters. As a result, those matches
located on these conserved regions would be more reli-
able estimates of functional binding sites.
Although it is currently believed that GREs are com-

posed of two hexamers with a three-nucleotide random-
hinge region in between, the general consensus is that
towards one hexamer, namely TGTTCT [10]. We there-
fore search for this motif on conserved promoter regions
across orthologous promoters of the selected genes. The
results are shown in Table 5 and detailed information is
provided in additional files in functional characterization
in Additional File 3. In general, almost all metabolic path-
ways contain genes with the GRE binding sites, implying
that these genes are more likely to be directly regulated by
the complex between corticosteroids and glucocorticoid
receptors. Additionally, we also examine how frequently
the GRE binding sites are present on the control regions
of all selected genes (315 genes). Furthermore, we deter-
mined that given a background set of 2,000 randomly
selected genes, the frequency of GREs in a set of genes is
similar to that in the random set (~20%), implying that
not all genes in those modules are directly regulated by
the drug and that the presence of GRE binding sites on
the control regions of genes in enriched pathways is very
significant and not random.

Conclusions
In summary, we have proposed a systematic computa-
tional approach that can identify critical transcriptional
modules coupled with their common regulatory controls
under the CS administration. The approach provides a
framework to handle challenging issues related to differ-
ent platforms, time-grids, genes with multiple probesets,
and also different tissues if applicable. Even if the data-
sets across multiple conditions are present on the same
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platform, time-grid and tissue, the approach is still use-
ful since genes contain multiple probesets and estima-
tion of a single gene profile by taking the average across
these probesets may lose some useful information. How-
ever, the analysis may be limited due to the small com-
mon set of genes across different platforms.
The computational effectiveness of the approach has

been demonstrated on synthetic data. When applying to
real time-series datasets, the approach not only yields
critical transcriptional modules but also provides an
insight into the complexities of regulation of expression
patterns. These complexities are further analyzed by
techniques in promoter analysis and functional analysis
to deduce useful information of transcriptional regula-
tors and enriched metabolic pathways, providing a bet-
ter understanding towards regulatory mechanisms and
adverse pharmacogenomic effects of corticosteroids.

Additional material

Additional file 1: Provide links to sources of synthetic datasets used
in this study.

Additional file 2: Provide detailed results of six significant
transcriptional modules, including gene ids, cluster ids, probeset
ids and corresponding ‘true’ expression profiles of identified
probesets in response to acute and chronic corticosteroid
administration respectively.

Additional file 3: Provide detailed results of functional analysis,
including gene ontology, pathway enrichment, binding information,
and corresponding expression profiles of transcription factors
found in the study.
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