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Abstract: Untargeted metabolomics experiments for characterizing complex biological samples, con-
ducted with chromatography/mass spectrometry technology, generate large datasets containing very
complex and highly variable information. Many data-processing options are available, however, both
commercial and open-source solutions for data processing have limitations, such as vendor platform
exclusivity and/or requiring familiarity with diverse programming languages. Data processing of
untargeted metabolite data is a particular problem for laboratories that specialize in non-routine mass
spectrometry analysis of diverse sample types across humans, animals, plants, fungi, and microor-
ganisms. Here, we present MStractor, an R workflow package developed to streamline and enhance
pre-processing of metabolomics mass spectrometry data and visualization. MStractor combines
functions for molecular feature extraction with user-friendly dedicated GUIs for chromatographic
and mass spectromerty (MS) parameter input, graphical quality-control outputs, and descriptive
statistics. MStractor performance was evaluated through a detailed comparison with XCMS Online.
The MStractor package is freely available on GitHub at the MetabolomicsSA repository.

Keywords: metabolomics; data analysis; pre-processing; R programming language; LC/MS

1. Introduction

Over the last few decades, mass spectrometry (MS) has become the technique of choice
to profile metabolites in biological systems, specifically when untargeted strategies are
required for characterizing the complexity of biological samples. Significant improvements
to the instrument’s sensitivity resulted in exponential growth of metabolites detected in
a single analysis (>103), and faster chromatographic separations allow analysis of large
sample sets. As a consequence, a single instrument can, over 24 h, produce data covering
105 to 106 potential metabolites. Hence, data processing has become a critical step that
limits throughput, productivity, and potentially also the quality of interpretation of raw
mass spectrometry data. Availability of bioinformatics workflows and software that enable
reliable data pre-processing, rapid throughput, and production of reliable information is
essential for the quality of the analytical results and biological interpretation [1–4].

Software for processing metabolomics data is in either a proprietary or open-source
format [1,5]. There are many solutions available, with various degrees of sophistication;
some software supports the entire metabolomics data-processing pipeline, while other
programs are specialized for specific tasks such as feature detection, statistical analysis,
or metabolite identification. In addition, many tools offer processing solutions limited to
single technology platforms such as GC/MS [6] or LC/MS.

Commonly used commercially available software includes Mass Profiler by Agilent
Technologies, Bruker Metaboscape, Progenesis QI by Waters, and Compound Discoverer by
Thermo Fisher Scientific. On the other hand, a fast-progressing area in metabolomics is the
development of freely available and open-source tools for all facets of data processing [7,8].
Popular open-source software such as MetaboAnalyst, MetaboNexus, XCMS, MZmine2,
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and MAVEN [9–13] provide the community with advanced tools to manage, explore, and
annotate the increasing complexity of data generated from new and evolving technologies.
Some popular open-source packages and platforms like XCMS and XCMS online also
include tools for statistical analysis [14–16].

Bioconductor, an open-source platform for bioinformatics analysis based on the R
programming language, represents one of the best options available when dealing with
both GC/MS and LC/MS datasets. It offers a range of packages covering pre-processing of
GC/MS and LC/MS data, reconstruction and annotation of deconvoluted spectra [17], and
complex data visualization.

Despite the many advantages of open-source tools, some aspects can be improved
further. As an example, XCMS and CAMERA [17] contain hundreds of functions (around
1000 for XCMS) with many different parameter-setting options. This provides experi-
enced users with desirable flexibility and allows the development of optimized data pre-
processing solutions. At the same time, this can be a challenge for time-poor researchers,
occasional users, technical staff, and laboratories that analyze many diverse biological
sample types. In addition, it can be difficult for users who are not familiar with the R
language to build a suitable script for processing a specific dataset.

Here we present MStractor, an R workflow package that offers a generic, user-friendly
framework for simplifying and automating the supervised analysis of LC/MS data from
untargeted metabolomics experiments. MStractor organizes, integrates, and implements
a range of functions and provides GUIs for project set-up, quality control (QC) data
monitoring, graphical outputs, data normalization, and descriptive statistics calculations.
In addition, it provides the operator with guidance for the selection of meaningful pa-
rameters related to the analytical platform used, thus minimizing potential parameter
input errors. MStractor workflow performance is critically evaluated in the following
sections of this paper and compared in detail with XCMS Online [16], which is one of
the most popular GUI-based tools for online pre-processing and visualisation of LC/MS
metabolomics datasets.

2. Discussion and Results
2.1. General Overview

The MStractor workflow translates raw mass spectrometry data into a base peak table
output that can be used for statistical analysis. It is freely available on Github and combines
a range of tools into a seamless workflow for processing large batches of metabolomics
datasets quickly and easily.

It is written in the R programming language, and the functionality of the toolbox
is user-adaptable, extendable, and practical for wider community use by analysts and
biologists. It includes high-performing tools such as XCMS and CAMERA [16,17] with
specific parameter-setting functions to minimize processing errors and graphical outputs
for QC.

A schematic representation of the MStractor framework is displayed in Figure 1,
in which the different steps of the workflow are displayed together with the associated
functions. The workflow has been designed to use XCMS functions compatible with the
most recent xcmsEXPn object type. The package also offers the possibility of running the
workflow using a lower computing power environment that utilizes the former XCMS
object type (xcmsSet). This option is detailed in the package documentation and is not
described here in the interest of brevity.

MStractor functions can be classified into three groups:

1. Functions developed by the authors to provide the user with GUIs for parameter
input and data QC monitoring (in green in Figure 1).

2. Wrappers of XCMS and CAMERA functions that are implemented with additional
code to automate routine operations and graphical output generation (in blue in
Figure 1).
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3. Native CAMERA and XCMS functions. All the arguments and parameters required
by these functions are automatically generated along the workflow (in orange in
Figure 1).
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2.2. MStractor Performance Evaluation

MStractor performance was benchmarked against the existing XCMS Online tool.
XCMS Online was chosen for the following reasons: both programs are directed to the
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same user type; they share core workflow steps (parameter input, peak detection, retention
time alignment, and data visualization); and they both rely on XCMS and CAMERA
packages for feature extraction and annotation. The LC/MS demo dataset for the software
comparison and the chosen parameters are described in the Materials and Methods section.

2.2.1. Data Input

Raw data files are converted into one of the supported file formats (mzXML, mzData,
CDF and mzML). Files need to be stored in a directory named “MSfiles”, where raw data
files are arranged in different subdirectories according to their class (see package vignettes),
and based on this folder structure, each analytical sample is automatically assigned to the
class of belonging within the MStractor workflow. XCMS Online (Pairwise option) requires
separate uploads of each class of samples.

Both workflows provide similar tools for data upload; XCMS Online uses a drag-and-
drop/file explorer option, and MStractor uses the functions Project() and LoadData().
Project() allows setting the working directory via a file explorer GUI, while LoadData()
uploads raw data within the R working environment.

Compared to XCMS Online, the data input step in MStractor provides two
additional advantages:

1. Project() allows two analytical replicates to be defined that are used in the early
steps of the workflow to evaluate peak detection parameters. It also generates a QC
directory where all the QC graphical outputs and data tables generated along the
intermediate steps are stored.

2. DefineClassAttributes() automatically defines symbols, colours, and identifiers
for each sample class. In this way, samples belonging to different classes are labelled
with different colours and symbols in the graphical outputs generated. This enables
easier interpretations of the generated plots, as well as performing additional quality
control of the loaded files.

2.2.2. Data Processing Parameter Input

Parameter input for data processing in MStractor works differently in comparison to
XCMS Online.

XCMS Online provides five different tabs for parameter input; “General”, “Feature
detection”, “Retention time correction”, “Alignment”, and “Annotation”.

All parameters must be entered before submitting the job. Although input parameters
are saved and stored within the project, the user has no option to perform adjustments
along the workflow.

Conversely, MStractor provides GUI for input parameters in a stepwise manner, and
an example of the GUI is displayed in Figure S2. The advantage of the MStractor stepwise
parameter input scheme is to provide QC and flexibility during every stage of processing.
The fit for purpose of entered values can be tested, and if required, changed prior to
re-executing the functions, as described in Section 2.2.3.

General chromatographic and mass spectrometry settings (such as retention time
deviation and polarity) are defined via ChromParam() and MassSpecParam() functions,
while feature-detection parameters are entered via PeakPickingParam().

In addition to the options available for peak detection in XCMS Online, MStractor also
allows defining values for “integration threshold” and “sensitivity”, which are useful for
limiting the number of features detected in the background range, thus minimizing noise
in the extracted data.

Feature grouping is defined within peakPickGroup(), while the retention time param-
eter input is carried out via the RTAlign() function.

Isotopic pattern and adduct annotation in XCMS Online is based on ppm and m/z
absolute error parameters, which are entered via the “Annotation” tab.

In MStractor, this is achieved via the “CAMERA” package, the main functions of which
are grouped within the autoCAMERA() function, which also provides a GUI for parameter
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input. After parameter input, autoCAMERA()identifies m/z ions that are likely to belong to
the same molecule and groups them in pseudospectra. After this, annotation of the isotopic
pattern and related adducts is performed. Input parameters used for autoCamera() are
listed in Table 1.

Table 1. Parameters used for XCMS Online and MStractor.

XCMS Online MStractor

Feature Detection CentWave

ppm 10 10
Min peak width (seconds) 10 10
Max peak width (seconds) 20 20
Signal-to-noise threshold 100 100
m/z difference 0.01 0.01
Integration method 1 1
Prefilter peaks 100 100
Prefilter intensity 750 750
Noise filter None Not applicable
Integration threshold Not applicable 2000
Sensitivity Not applicable 0.7
Fit Gaussian Not applicable FALSE

Retention Time Correction

Method loess loess
Extra peaks 1 1
Missing 3 3
Bw (seconds) 20 20
Mzwid 0.1 0.1
Minfrac 0.5 0.5
Span 0.6 0.6
Family Gaussian Gaussian

Alignment

Bw (seconds) 20 20
Minfrac 0.3 0.3
Mzwid 0.1 0.1
Minsamp 2 2
Max 50 50

Peak annotation

Sigma Not applicable 6
Percentage of FHWM Not applicable 1
Intensity Not applicable maxo
Max number of expected isotopes Not applicable 4
ppm error 10 10
m/z absolute error 0.005 Not applicable
Group-correlation threshold Not applicable 0.7
Intensity-correlation threshold Not applicable 0.7
Correlation-threshold significance Not applicable 0.1

Identification

ppm 10 Not applicable
adducts [M − H]−, [M + FA-H]− Not applicable

2.2.3. Functionalities for Workflow QC

The standout feature of MStractor is the generation of quality control (QC) outputs
for intermediate (framework) steps, a characteristic that is absent in XCMS Online, as all
the outputs are only accessible upon job completion. The most valuable QC features are
feature-detection parameter evaluation and feature curation.
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For feature-detection parameter evaluation, peak-picking parameters are tested on
the reference files selected at the beginning of the workflow, via Project(). Using the
exploreRef() function, peak detection and grouping is performed on the selected reference
files. refTic() prints the total ion chromatogram for reference files, while get100() prints
an image of 100 features randomly selected across the retention time range (an example
is reported in Figure 2). The plot gives a general overview of the peak-picking process,
showing whether extensive background noise is present or if multiple peaks were grouped
into a single feature. It is, therefore, possible to adjust the input values until the desired
peak-picking quality is achieved, without the need to wait until the entire workflow has
been completed.
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In respect to feature curation, the CollectBP_EICs() function prints images of the
extracted ion chromatograms related to the base peak matrix in two identical folders named
“EICs_BasePeaks” and “EICs_BasePeaks_Curated”. The Base Peak matrix output is also
stored within the working directory in a tab separated value (.tsv) file named “Pks_BPs”.
The “EICs_BasePeak” is used as a backup directory and stores all the EICs prior to curation.
The EICs in the directory “EICs_BasePeaks_Curated” need to be inspected by the user,
and the images (features) that do not resemble resolved chromatographic peaks need
to be deleted. Following this, the function BasePks_Curated() creates an updated data
matrix based on the content of the “EICs_BasePeaks_Curated” directory. The curated data
matrix (named “PksBpsCurated") is saved in a comma separated value file (.csv) within
the working directory.

Additionally, MStractor outputs that can be used as confirmation of workflow pro-
gression are the printed EICs for all detected features, including both raw (step 4) and
retention-time-corrected data (step 6); and data tables generated at steps 7, 8, and 9 that
summarize detected feature information (feature intensity, m/z, and retention time).

2.2.4. Results

MStractor results were evaluated by comparing the output obtained from processing
the same dataset using XCMS Online. A detailed description of the workflow parameters is
provided in the Materials and Methods section. Comparison of further data visualization
and data analysis tools will be discussed in Section 2.2.5.

The XCMS Online results were returned in the form of a table; in total, 5656 features
were detected. However, XCMS Online generated a data table that included all detected
features, and did not provide the users with any tools for data curation or data reduction.
Although very detailed, the result table contained redundant information (features belong-
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ing to the same peak group and, possibly, noise), and it might be difficult to interpret or
use for further data analysis.

In this respect, XCMS Online’s output can be compared to the MStractor’s “PksAn”
data matrix, which is generated after CAMERA annotation and is stored in the QC directory.
The number of features listed in the “PksAn” data matrix amounted to 2312. This was
significantly lower than the features detected via XCMS Online; however, this was expected
since MStractor allows the definition of a minimum “integration threshold” value (set to
2000) and a “sensitivity” value (set to 0.7); both limit the inclusion of background noise.

Further data reduction and curation steps were subsequently performed in MStractor
to rationalize the large amount of data generated. These steps included:

• Condensing peak groups by retaining only the most intense feature for each peak
group (FilterDM()). This feature selection assumes that features in an assigned group
belong to the same chemical entity. After filtering, the matrix was reduced to 343 peaks.
The same data-reduction step was manually performed for comparison purposes on
the XCMS Online dataset, which was reduced to 1000 features.

• Performing manual curation via CollectBP_EICs() and BasePks_Curated(). This
step was aimed at removing background signals and peaks that were not well resolved
(described in Section 2.2.3). During the curation step, 31 features were removed, and
the final data table contained 312 features. This further curation step, however, was
not available in XCMS Online, since EICs are not generated for all the features. The
MStractor and XCMS Online results are summarized in Figure 3.

• Median normalization, which was carried out to minimize possible inter-run instru-
ment variability.

• Calculation of descriptive statistics via the statsByClass() function that returned
separate data tables containing average values, standard deviation, and coefficient of
variation (%CV ) for each sample class (Treatment and Mix in the present dataset).
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An extract of the result tables generated by XCMS Online and MStractor is reported
in Tables S1–S4.

The structure of the result data table generated by MStractor also provides the user
with additional information. As an example, instrument response is displayed for each
sample, while XCMS Online only returns the average response among classes and the
standard deviation. Conversely, descriptive statistics results (average, standard deviation
and %CV) are calculated and stored separately using MStractor.

2.2.5. Data Analysis and Visualization

Result visualization and data analysis provide quite different outputs in MStractor
and XCMS Online. Each of the different tools are discussed in the following section.
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• Extracted Ion Chromatograms (EICs) and Box Plots EIC visualization and box plots
are available in XCMS Online depending on the output of the t-test (displayed in the
result table). If the feature result is not significant, the plot is not generated. This is
quite limiting, as the user cannot visualize all the metabolites in the biological sample.
On the contrary, MStractor does not perform a significance test, but provides extracted
ion chromatograms and box plots for every feature. A t-test was not included among
MStractor features because it was designed to be able to accommodate pairwise
and multigroup comparisons without the need of selecting dedicated workflows,
as required by XCMS Online. Extracted ion chromatogram plots are automatically
generated at different stages of the workflow and stored in dedicated folders. In regard
to box plots, MStractor provides more advanced visualization compared to XCMS
Online. Using the bpSel() function, a dedicated GUI enables the user to select the
classes to be represented in the box plot (an option that is particularly valuable in case
of multigroup experiments). Both individual box plots and group box plot (Figure 4)
visualizations are saved as .html files. This allows performing immediate visual
comparisons of the analyte differences among sample classes. In addition, all the plots
are interactive, allowing zooming in, as well as source-data display upon hovering.

• Heat map, Principal Component Analysis and Cloud Plot Heat maps generated in
MStractor and XCMS Online are very similar, as both provide interactive visualization
(Heatmaply package for MStractor [18]). However, the heat map in XCMS Online can
only display a limited number of features (first 1000). Thanks to the data-reduction
steps, the MStractor user is provided with a heat map for the whole dataset, avoiding
a partial visualization. Using the present case study, the heatmap could not be gen-
erated in XCMS Online. This, however, could be related to the speed of the internet
connection, rather than XCMS Online’s computational power. An example of the
heat map produced in MStractor is reported in Figure 5. On the other hand, XCMS
Online provides PCA and cloud plots. Specifically, interactive cloud plot functionality
is useful, since it represents the feature fold change along the retention time domain
as bubble plots. A number of interactive settings are also available to filter the re-
sults based on intensity, m/z, rt, p-value, and fold change. An example is reported in
Figure 6. This type of feature is not available in MStractor.

• Library Search, Putative Identifications Library search and putative identifications
represent another point of divergence between MStractor and XCMS Online. Within
XCMS Online, parameters for putative identification are entered via the “Identification”
tab, which allows users to define the mass tolerance and select possible adducts.
Library search is performed via the METLIN database using the feature mass and the
corresponding fragmentation pattern. On one hand, this option proves very valuable
for datasets containing MS/MS data. On the other hand, when MS1 data are used (such
as in the example dataset considered), the confidence of the putative identification
performed might drop significantly, as it is based only on the accurate mass of the
molecular ion and its isotopic pattern. In MStractor, the spectrum of each chemical
entity is saved as a list of m/z vs. intensities that are stored as .msp files. This type of
file can be uploaded in the NIST software and searched for matches against a given
spectral library. Using GUIs, StoreRefFeat() and spectraFromScan() functions
extract the raw spectra from a selected reference file, nistEntryFromScan() creates
individual NIST compatible entries for each compound, while createSearchList()
lists all compound spectra with unique identifiers in the .msp file. In this way, the
library search can be performed for a single compound of interest or, alternatively, for
all the compounds at once.
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3. Materials and Methods
3.1. Samples and Sample Preparation

The sample set included in the package is for demonstration purposes and includes
wine samples and a pooled biological mix. The wine samples include three biological
replicates of a white wine, named “Treatment”, while the pooled biological sample used
for instrument quality control (QC) was prepared by mixing equal aliquots of each sample
and named “MIX”.

A 1 mL aliquot of each sample was transferred in a 2 mL amber HPLC screw-cap
vial and kept at 4 ◦C prior to analysis. Three biological replicates for each wine and three
analytical replicates of the MIX were analyzed by LC/MS. The samples were injected neat.

3.2. HPLC-QToF MS Analytical Platform

Samples were analyzed using an Agilent 1200SL HPLC (Agilent, Santa Clara, CA,
USA) coupled to a high-resolution Bruker micrOTof QII (Bruker Daltonics,
Karlsruhe, Germany).

The Agilent system was equipped with a degasser, an autosampler, a binary pump,
and a column oven. Chromatography analysis was carried out using a reverse phase
(RP) method adopting a Kinetex PFP column (150 mm × 2.1 mm ID, 2.6 µm particle size)
manufactured by Phenomenex (Torrance, CA, USA). The column temperature was set at
30 ◦C.

The mobile phases were solvent A (0.1% formic acid, 0.5% methanol in MilliQ water)
and solvent B (0.1% formic acid, 2% MilliQ water, 40% acetonitrile in methanol). All the
solvents were gradient grade for liquid chromatography from Supelco (Bellefonte, PA,
USA). The flow was held constant at 0.4 mL/min, and the gradient used started at 0%
B; the percentage of solvent B was then increased to 1% at 25 min, 7.5% at 80 min, 60%
at 125 min, and 90% at 130 min, and then held for 3 min. The column was washed and
re-equilibrated from 133 to 147 min. The sample injection volume was 1 µL.

The mass spectrometer was operated in negative ESI mode using the following source
conditions: temperature 200 ◦C, capillary voltage 3500 V, end plate offset −500 V, nebulizer
pressure 2.0 Bar, dry gas flow 7.0 L/min.

The mass range acquired was from 50 to 1650 amu and the acquisition rate 0.5 Hz in
MS1 mode.

The instrument was calibrated by infusing a 10 mM sodium formate solution at a rate
of 100 µL/h. The calibrant was also injected at the beginning of each run to perform a
post-run calibration.
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3.3. Dataset Preparation

Prior to running the workflow, data were translated into the mzXML generic file
format (other supported formats include CDF, mzData, mzML) using Proteo Wizard
(Proteo Wizard, http://proteowizard.sourceforge.net/, accessed 13 April 2021).

The dataset used in this paper is freely available and can be downloaded with the
package at https://github.com/MetabolomicsSA/MStractor, accessed 1 July 2021.

3.4. Hardware and Software

The example dataset was processed using R version 4.1.0 and RStudio Version 1.3.1093 on
a 64-bit Windows 10 Pro operating system with 32 GB of RAM and an Intel(R) Core (TM)
i7-8809G CPU @ 3.10GHz processor.

The same dataset was processed in parallel using XCMS Online (https://xcmsonline.
scripps.edu, accessed 30 July 2021) using the “pairwise” job option.

Where possible, the same parameters were used for feature extraction. The full list is
reported in Table 1. Besides the parameters listed in Table 1, XCMS Online also gives the
option to perform pathway mapping. However, this option was not used because it goes
beyond the scope of this paper.

4. Conclusions

The MStractor package was critically evaluated and compared to the existing XCMS
Online workflow. The main advantages of MStractor are preliminary visual outputs to
evaluate parameter settings, data QC at various processing stages through graphical output
and data tables, data reduction that rationalize complex data, median normalization, and
detailed result tables.

In this respect, MStractor provides a quick and efficient alternative for users that
prefer to process their data in an offline environment, while still maintaining advanced
data extraction, QC monitoring, and visualization tools, all within a single package.

MStractor is used routinely in our laboratory by multiple technical staff and scientists
for effectively processing a broad range of data from untargeted metabolomics experiments
with biomedical, agricultural, and food samples. By offering the possibility of a deeper
control on parameter settings, MStractor has proven very valuable, not only for users with
minimal coding skills, but also for experienced R users. Finally, being coded in R, the
MStractor workflow can be easily adapted, extended, integrated, or enhanced with other
existing applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11080492/s1: Table S1: MStractor raw result table extract, Table S2: MStractor
normalized result table extract, Table S3: MStractor descriptive stats result extract, Table S4: XCMS
Online result table extract, Figure S1: Workflow commands, Figure S2: Example of MStractor GUI for
parameter input.
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