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Abstract 
The widespread clinical application of cord blood (CB) for hematopoietic stem cell (HSC) transplantation is limited mainly by the inadequate 
number of hematopoietic stem and progenitor cells (HSPCs) in single CB units, which results in unsuccessful or delayed engraftment in recipi-
ents. The identification of agents to promote CB HSPC engraftment has significant therapeutic value. Here, we found that transient inhibition of 
the JNK pathway increased the HSC frequency in CB CD34+ cells to 13.46-fold. Mechanistic studies showed that inhibition of the JNK pathway 
upregulated the expression of quiescence-associated and stemness genes in HSCs, preventing HSCs from entering the cell cycle, increasing 
glucose uptake and accumulating reactive oxygen species (ROS). Importantly, transient inhibition of the JNK pathway during CB CD34+ cell col-
lection also enhanced long-term HSC (LT-HSC) recovery and engraftment efficiency. Collectively, these findings suggest that transient inhibition 
of the JNK pathway could promote a quiescent state in HSCs by preventing cell cycle entry and metabolic activation, thus enhancing the HSC 
number and engraftment potential. Together, these findings improve the understanding of the regulatory mechanisms governing HSC quies-
cence and stemness and have the potential to improve HSC collection and transplantation.
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Introduction
The ability of HSCs to undergo self-renewal and differen-
tiate into almost all blood cell lineages makes HSC trans-
plantation the most commonly used cell therapy to treat 
malignant and non–malignant hematological disorders.1 CB, 
which has the advantages of a less strict HLA-matching de-
mand, low incidence of graft-versus-host-disease, and low 
disease relapse rate, is an attractive donor source for HSC 
transplantation.2 Current estimates indicate that there have 
been more than 40 000 recipients of CB HSC transplant-
ation worldwide3; however, the insufficient number of HSCs 
in single CB units greatly limits the clinical application of 
CB HSCs.4 Multiple efforts have been made to improve the 
engraftment efficacy of CB HSCs.4,5 These approaches pri-
marily include (1) increasing the HSC number by in vitro 
expansion with cytokines, small molecules6,7 or artificial 
niches8-10 and (2) boosting HSC homing with reagents that 
can enhance HSC homing receptor expression11-13 or modify 
HSC niches in the recipient.14 Although several methods6,8,9 
have significantly improved CB HSC engraftment efficacy, al-
ternative strategies are needed to maximize the functional 
HSC harvest from single CB units.

The most primitive HSCs with long-term repopulation 
ability reside in a hypoxic environment and exhibit a quies-
cent status in their in vivo niche.15,16 They barely divide and 
exhibit rather low metabolic activity with little ROS.16 When 
exposed to cytokines or other ambient stimuli, quiescent HSCs 
can be activated and enter the cell cycle; however, they always 
lose their self-renewal ability.17 The JNK pathway is heavily 
involved in the regulation of cell proliferation and metabolic 
processes.18 Therefore, we hypothesized that manipulation of 
the JNK pathway could improve human HSC engraftment by 
regulating the transition of the cell cycle and metabolic status.

Materials and Methods
Mice and CB
All of the mice used for transplantation were NOD-Prkdcscid 
Il2rgtm1/Vst (NPG) mice (Stock No.: VS-AM-001) pur-
chased from Beijing Vitalstar Biotechnology and ranged from 
8 to 12 weeks of age. CB was obtained from healthy donors 
upon approval by Peking Union Medical College Hospital. 
All the animal procedures were performed according to the 
Animal Protection Guidelines of Tsinghua University, China. 
All the mouse experiments were approved by the Institutional 
Animal Care and Use Committee of Tsinghua University. 
This study was approved by the Institutional Review Board 
of Peking Union Medical College Hospital (ZS-2483) and 
conducted according to the approved protocol in compliance 
with the Declaration of Helsinki.

Human CB CD34+ Cell Isolation and In Vitro Culture
Human CB CD34+ cells were isolated with a CD34 
MicroBead Kit (Miltenyi Biotec) according to the 
manufacturer’s instructions and cultured in StemSpan 
SFEMII (Stem Cell Technologies) supplemented with re-
combinant human SCF (100  ng/mL, StemImmune LLC), 
recombinant human FLT3L (100  ng/mL, StemImmune 
LLC), recombinant human TPO (50  ng/mL, StemImmune 
LLC), and the indicated molecules. Details are provided in 
the Supplementary Methods section of the Supplementary 
material.

Transplantation and Engraftment Analysis
Cells were transplanted into mouse recipients via the tail vein. 
Repopulated human cells in NPG mouse peripheral blood 
(PB), bone marrow (BM), and spleen were monitored by flow 
cytometry at the indicated time points post-transplantation. 
Details are provided in the Supplementary Methods section 
of the Supplementary material.

Flow Cytometry Analysis
Fresh uncultured cells or cultured cells collected at 24 h were in-
cubated with the indicated antibodies for 30 minutes at 4 °C in 
PBS containing 0.5% BSA (Sigma–Aldrich, Cat: A1470-100G). 
Then, the cells were washed with PBS and suspended in 0.2 mL 
PBS for analysis. Flow cytometry analysis was performed using 
a FACSCantoTM II (BD). Data were analyzed using FlowJo 
v10 (BD). Details are provided in the Supplementary Methods 
section of the Supplementary material.

Limiting Dilution Analysis
The HSC frequency was quantified by extreme limiting di-
lution analysis (http://bioinf.wehi.edu.au/software/elda/) with 
95% CIs. The engraftment of more than 0.1% of human 
CD45+ cells in the BM was regarded as a positive response.

Quantification and Statistical Analysis
Statistical analysis was performed with GraphPad Prism soft-
ware. Data are shown as the mean and SD. Pairwise com-
parisons between different groups were assessed using an 
unpaired t-test. For all analyses, P < .05 was considered stat-
istically significant. The statistical significance and n value are 
reported in the figure legends. All the flow analysis data were 
processed with FlowJo v10 software. All the figures were pre-
pared with Adobe Illustrator.

Results and Discussion

Transient Inhibition of the JNK Pathway was 
Identified to Increase the HSC Number in CB
We screened a panel of JNK pathway-related small mol-
ecules to increase the CB Lin−CD34+CD45RA− cell popu-
lation, which is enriched for HSCs19 (Fig. 1A). The results 
showed that the JNK inhibitors AEG3482, SP600125, and 
JNK-IN-8, could each significantly increase the frequency of 
Lin−CD34+CD45RA− cells after 24 h of incubation compared 
with control treatment (cytokine-only or DMSO-treated 
cells) (Fig. 1B). The highest frequency of HSCs was obtained 
with 15 μM JNK-IN-8 (Supplementary Fig. S1A), which sig-
nificantly downregulated the expression of the target c-Jun 
(Supplementary Fig. S1B), and there were significant increases 
in the frequency and number of phenotypic HSC subsets 
(Lin−CD34+CD38− and Lin−CD34+CD38−CD45RA− cells) 
in the JNK-IN-8-treated group compared with the uncul-
tured and DMSO-treated groups (Fig. 1C−1F). Furthermore, 
after transplantation, the JNK-IN-8-treated group exhib-
ited better engraftment efficiency than the uncultured and 
DMSO-treated groups (Fig. 1G; Supplementary Table S1). 
And a limiting dilution assay (LDA) showed that the JNK-
IN-8-treated group possessed a higher transplantable HSC 
frequency, with 13.46-fold and 14.37-fold increases com-
pared with the uncultured and DMSO-treated groups, re-
spectively (Fig. 1H; Supplementary Fig. S1C, S1D); the HSC 
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number was approximately 800 for every 1 × 105 CD34+ cells 
in the JNK-IN-8-treated group, which was higher than the 
numbers in the uncultured and DMSO-treated groups (60 
and 56, respectively) (Fig. 1I). Together, these results suggest 
that transient inhibition of the JNK pathway significantly en-
hances phenotypic and transplantable HSC numbers in CB 
CD34+ cells.

We next investigated whether transient inhibition of 
the JNK pathway during CD34+ cell isolation can increase 

LT-HSC harvest from single CB units by the LDA, in which 
2000/500/200 conventionally isolated CD34+ cells (con-
trol group) and the same doses of JNK-IN-8-treated CD34+ 
cells were injected into separate immunodeficient NPG mice. 
We found that the JNK-IN-8-treated group exhibited better 
engraftment efficiency than the control group (Fig. 2A; 
Supplementary Table S2A, S2B), with human CD45+ cell en-
graftment being higher in the PB (Fig. 2B; Supplementary 
Fig. S2A), BM (Fig. 2C; Supplementary Fig. S2B) and spleen 
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treated groups (n = 5 mice for each group). See also Supplementary Fig. S1C, S1D; Supplementary Table S1. All data are shown as the mean value ± 
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(Fig. 2D; Supplementary Fig. S2C) of the recipients at 20 
weeks post-transplantation. The calculated HSC frequency 
was increased in the JNK-IN-8-treated group compared with 
the control group (1/148 vs. 1/934; Fig. 2E; Supplementary 
Fig. S2D, S2E); that is, approximately 676 LT-HSCs were 
harvested in the JNK-IN-8-treated group for every 1 × 105 

CD34+ cells, while the LT-HSC number of the control group 
was only approximately 107 (Fig. 2F). JNK-IN-8 treatment 
did not alter the B/myeloid cell ratio of engrafted human 
cells (Fig. 2G, 2H), and CD3+ T cells could be detected in the 
thymus (Fig. 2I). Moreover, after secondary transplantation, 
the BM cells from the JNK-IN-8-treated group provided 
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Figure 3. Transient inhibition of the JNK pathway promoted HSC quiescence, preventing HSCs from undergoing cell cycle entry and metabolic 
activation. (A) Heatmap showing gene expression in DMSO-treated, uncultured, and JNK-IN-8-treated CB CD34+ cells. (B) Expression by RNA-seq of 
the indicated genes in DMSO-treated, uncultured, and JNK-IN-8-treated CB CD34+ cells. The fpkm value for uncultured cells is normalized to 1.0; n = 
2. (C and D) GSEA plots showing enrichment of quiescent-HSC-enriched (C) and 120 HSC-associated (D) gene sets in the indicated groups. DMSO, 
DMSO-treated CB CD34+ cells; uncultured, uncultured CB CD34+ cells; JNK-IN-8, JNK-IN-8-treated CB CD34+ cells. Each group contained 2 replicates. 
(E) Bar plot showing the cell cycle status of DMSO-treated, uncultured, and JNK-IN-8-treated CB CD34+ cells (n = 3). (F and G) Representative FACS 
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better engraftment than the control group (Fig. 2J). The LDA 
showed that the 2° SCID-repopulating cells (SRCs) frequency 
of the JNK-IN-8-treated group was 14.92-fold higher than 
that of the control group (approximately 92 in the JNK-IN-8-
treated group versus 6 in the control group for every 1 × 107 
primary recipient BM cells) (Fig. 2K, 2L; Supplementary Fig. 
S2F, S2G; Supplementary Table S2C). Collectively, these re-
sults suggest that JNK-IN-8 treatment can enhance LT-HSC 
harvest from CB units without altering the HSC multilineage 
repopulation pattern.

Transient Inhibition of the JNK Pathway Promoted 
Quiescent HSC-Specific Gene Expression Profiles
To investigate the mechanism by w JNK-IN-8 treatment in-
creased HSC numbers, we compared the transcription pro-
files of DMSO-treated, uncultured, and JNK-IN-8-treated 
CB CD34+ cells generated by RNA sequencing (RNA-seq). 
Above all, JNK-IN-8-treated cells exhibited upregulation 
of quiescent cell-enriched gene set expression (Fig. 3A–3C). 
Specifically, compared with uncultured and DMSO-treated 
cells, JNK-IN-8-treated cells upregulated HSC-associated 
gene expression (Fig. 3A, 3B): the surface markers enriched 
on primitive HSCs such as ITGA3,20 PROCR,21 TEK,22 
JAM2,23 and EMCN24 were highly expressed after JNK-IN-8 
treatment, and the expression of key genes involved in HSC 
stemness and self-renewal abilities,17 including MECOM, 
HOXA5, HLF, MYB, HOXB5, ETV6, MLLT3, MSI2, and 
HOPX, was also upregulated in the JNK-IN-8-treated group. 
Moreover, gene set enrichment analysis (GSEA) showed that 
most of the previously reported 120 HSC-specific genes21 
were upregulated in the JNK-IN-8-treated group (Fig. 3D).

We next explored cell cycle- and metabolism-related gene 
expression. We found that DMSO-treated cells had highly 
upregulated cell cycle entry genes and active genes involved 
in glycolysis and oxidative phosphorylation compared with 
uncultured cells, while the expression levels of these genes 
were maintained or reduced in JNK-IN-8-treated cells (Fig. 
3A, 3B). Notably, JNK-IN-8 treatment upregulated cell cycle 
inhibitor (CDKN1B, CDKN1C, and CCNG2) expression 
(Fig. 3A; Supplementary Fig. S3E). Likewise, GSEA revealed 
that the expression of E2F and MYC targets was upregulated 
in the DMSO-treated group but downregulated in the JNK-
IN-8-treated group (Supplementary Fig. S3A, S3B). Similar 
results were also observed for glycolysis and oxidative phos-
phorylation gene sets (Supplementary Fig. S3C–S3E).

Transient Inhibition of the JNK Pathway Prevented 
HSCs From Undergoing Cell Cycle Entry and 
Metabolic Activation
We further conducted cell cycle status analysis, glucose up-
take activity measurement, and ROS level detection with 
DMSO-treated, uncultured, and JNK-IN-8-treated CB CD34+ 
cells. The DMSO-treated group showed a much higher per-
centage of cells in the S phase, while the JNK-IN-8-treated 
and uncultured groups consisted mostly of G0/G1 cells (Fig. 
3E). DMSO-treated cells showed the highest glucose uptake 

activity and intracellular ROS level, while JNK-IN-8-treated 
and uncultured cells maintained similarly low levels (Fig. 
3F–3I). These results, together with the gene expression 
profile analysis (Fig. 3A–3D; Supplementary Fig. S3), indicate 
that JNK-IN-8 treatment promotes the quiescence status of 
HSCs by preventing HSCs from undergoing cell cycle entry 
and metabolic activation (Fig. 3J).

We have previously reported a supportive role for JNK in-
hibition in HSC self-renewal in vitro; however, the engraftment 
process was slow, and the detailed mechanism was largely un-
clear.25 Here, by increasing the concentration of JNK inhibi-
tors (15 μM) and shortening the incubation period (24 h), we 
obtained a greater increase in the HSC number (13.46-fold). 
We found, for the first time, a novel role for JNK pathway in-
hibition in the promotion of HSC quiescence and stemness.

In our study, transient JNK inhibition modestly increased the 
phenotypic HSC (Lin−CD34+CD38−CD45RA−) number in CB 
CD34+ cells, but the transplantable HSC number was dramat-
ically increased. There is no immunophenotype that can iden-
tify functional HSCs with 100% purity; therefore, engraftment 
efficiency is the gold standard to evaluate functional HSCs. In 
our context, CD34+ cells were a remarkably heterogeneous 
population, making the exact identity of the target cells af-
fected by JNK inhibition unclear. Considering that the majority 
of cells were in the G0/G1 phase, we postulated that this not-
able increase in functional HSCs probably occurred through 
rapid enhancement of latent HSC activity in CB HSPCs rather 
than expansion. Transient JNK inhibition markedly enhanced 
the expression of key HSC-specific stemness genes, including 
the surface markers TEK, PROCR, and ITGA3 and the tran-
scription factors MECOM, HOXA5, HLF, MYB, HOXB5, 
ETV6, MLLT3, MSI2, and HOPX; HSCs exhibited low meta-
bolic activity and reduced ROS levels under JNK inhibition. 
Each of the characteristics above has been reported in HSCs 
showing the greatest engraftment potential. Therefore, we hy-
pothesized that transient JNK inhibition enhances CB HSC en-
graftment ability by recruiting cells in the CD34+ compartment 
that would not otherwise engraft via upregulation of stemness 
genes and promotion of quiescence.

Conclusion
In summary, we observed a high increase in the HSC number 
(13.46-fold) in CB CD34+ cells after incubation with JNK-IN-8 
(15 µM) for 24 h. We also found a novel role for JNK pathway 
inhibition in the promotion of HSC quiescence and stemness. 
More interestingly, we found that supplementation with JNK 
inhibitors during CD34+ cell collection could significantly in-
crease the LT-HSC number in CB units, which could help maxi-
mize functional HSC harvest from CB in clinical settings.

Our study extends the understanding of HSC quiescence 
and stemness regulation. Further investigation of whether 
transient inhibition of the JNK pathway can complement 
previous endeavors to maximize functional HSC harvest 
from single CB units using a combinational approach is 
needed.

plots (F) and bar plot (G) showing glucose uptake activity (indicated by the fluorescence intensity of 2-NBDG) of DMSO-treated, uncultured, and JNK-IN-
8-treated CB CD34+ cells (n = 3). (H and I) Representative FACS plots (H) and bar plot (I) showing ROS levels (indicated by the fluorescence intensity of 
DCFDA) of DMSO-treated, uncultured, and JNK-IN-8-treated CB CD34+ cells (n = 3). (J) Schematic of the proposed model demonstrating how transient 
JNK inhibition regulates CB HSPC engraftment through its roles in quiescence and stemness. All data are shown as the mean value ± SD. Statistical 
significance was assessed using one-way ANOVA if not mentioned. ns, not significant; **P <.01; ***P < .001; ****P < .0001.
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