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Introduction
Alzheimer’s disease (AD) is a progressive neuro-
degenerative disease with high morbidity.1 To 
date, there is no single treatment that can stop or 
reverse the progression of AD. Mild cognitive 

impairment (MCI), a transitional state between 
normal ageing and dementia, has been identified 
as a high risk factor for AD. Epidemiological 
studies have indicated that approximately 10–
12% of patients with MCI progress to AD each 
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Abstract
Objective: This study aimed to build and validate a radiomics-integrated model with whole-
brain magnetic resonance imaging (MRI) to predict the progression of mild cognitive 
impairment (MCI) to Alzheimer’s disease (AD).
Methods: 357 patients with MCI were selected from the ADNI database, which is an open-
source database for AD with multicentre cooperation, of which 154 progressed to AD during 
the 48-month follow-up period. Subjects were divided into a training and test group. For each 
patient, the baseline T1WI MR images were automatically segmented into white matter, gray 
matter and cerebrospinal fluid (CSF), and radiomics features were extracted from each tissue. 
Based on the data from the training group, a radiomics signature was built using logistic 
regression after dimensionality reduction. The radiomics signatures, in combination with the 
apolipoprotein E4 (APOE4) and baseline neuropsychological scales, were used to build an 
integrated model using machine learning. The receiver operating characteristics (ROC) curve 
and data of the test group were used to evaluate the diagnostic accuracy and reliability of the 
model, respectively. In addition, the clinical prognostic efficacy of the model was evaluated 
based on the time of progression from MCI to AD.
Results: Stepwise logistic regression analysis showed that the APOE4, clinical dementia 
rating, AD assessment scale, and radiomics signature were independent predictors of MCI 
progression to AD. The integrated model was constructed based on independent predictors 
using machine learning. The ROC curve showed that the accuracy of the model in the training 
and the test sets was 0.814 and 0.807, with a specificity of 0.671 and 0.738, and a sensitivity 
of 0.822 and 0.745, respectively. In addition, the model had the most significant diagnostic 
efficacy in predicting MCI progression to AD within 12 months, with an AUC of 0.814, sensitivity 
of 0.726, and specificity of 0.798.
Conclusion: The integrated model based on whole-brain radiomics can accurately identify 
and predict the high-risk population of MCI patients who may progress to AD. Radiomics 
biomarkers are practical in the precursory stage of such disease.
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year.2 Since many elderly individuals have MCI, 
but do not meet the diagnostic criteria for AD, 
early intervention for individuals at this stage may 
effectively delay progression of the disease.3

MCI does not affect daily activities, and individu-
als with MCI have normal cognitive function.4 
However, MCI exhibits heterogeneous features 
in cognitive function and clinical progression, and 
the clinical outcomes remain uncertain. Some 
MCI patients remain stable, or even revert to nor-
mal functions, whereas others progress towards 
AD.5 Therefore, there is an urgent need to define 
biomarkers that can identify and predict high-risk 
individuals with MCI who will progress to AD, as 
these individuals will require subsequent inter-
vention. Currently, biochemical changes in the 
cerebrospinal fluid (CSF) and neuroimaging 
measures of brain anatomy and function have 
been identified as reliable biomarkers of AD.6–8 
Such features include increased CSF tau, hypo-
metabolism in the posterior cingulate, and hip-
pocampal atrophy.9,10 Using a machine-learning 
model with the combined use of these biomark-
ers, the automatic diagnosis and prognosis of AD 
patients has been proven to be reliable and highly 
accurate.11 However, the applicability of these 
biomarkers may be limited due to the high preva-
lence of AD, high cost of these techniques, and 
their relative difficulty of use.

Radiomics is a new approach based on the deep 
cross-fusing of medicine and computer science. It 
reflects the heterogeneity of disease through 
image features and has the characteristics of being 
low cost and non-invasive.12,13 In the early years, 
this new method was widely used in oncology,14 
and radiomics has now been used in the diagnosis 
and categorical assessment of MCI and AD.15 In 
the past few years, neuroimaging studies have 
shown that white matter (WM) degeneration and 
demyelination in the microscopic and macro-
scopic structure of WM are important physiologi-
cal features in the identification of risk and 
progression of AD.16 These microstructural 
changes can be identified in three-dimensional 
whole-brain WM radiomics analyses.17 In addi-
tion, grey matter (GM) atrophy and pathological 
changes in the CSF can identify very early changes 
associated with pathological ageing and AD.18 As 
a result, we hypothesize that whole-brain GM 
and CSF radiomics analysis may explain the het-
erogeneity of brain tissue in patients with MCI. 
We further believe that a whole-brain-based 

radiological approach may be more powerful than 
single region analysis in accurately identifying 
patients who may progress to AD.

Since AD is a complex neurodegenerative disor-
der, it is clear that a single marker cannot accu-
rately diagnose AD and monitor disease 
progression.19 However, radiomics, in combina-
tion with clinical data and gene data, can be used 
to establish a disease prediction model to improve 
the prediction accuracy.20,21 In addition, it is 
known that the E4 allele of the apolipoprotein 
(APOE4) is the major known genetic risk factor 
for late-onset AD.22 The addition of APOE4 and 
neuropsychological scale data analysis can 
improve the diagnosis of MCI.23,24 Therefore, a 
combination of different markers may provide a 
more comprehensive approach for the early diag-
nosis and monitoring of AD.

This study aimed to identify possible novel whole-
brain biomarkers with radiomics using conven-
tional magnetic resonance imaging (MRI) 
techniques, and to develop an integrated model 
using radiomics in combination with genetic traits 
and neuropsychological scales. This approach was 
used to identified individuals with MCI at high risk 
of progressing to AD. This radiomics-integrated 
model may be helpful to develop individualized 
and accurate medical plans in clinical practice.

Materials and methods

Patient information
Our study did not require an ethical board 
approval because all the original data used in this 
study, including neuropsychological scales, MRI 
and genetic data, were obtained from the 
Alzheimer’s disease neuroimaging initiative 
(ADNI) project (ADNI.Loni.USC.EDU), an 
open-source database for AD with multicentre 
cooperation. The ADNI project aims to compre-
hensively evaluate the progress of MCI and early 
AD through the combination of longitudinal MRI, 
positron emission tomography (PET), and bio-
marker data, as well as clinical neuropsychological 
scale assessments. In addition, the project is com-
mitted to finding biomarkers for the diagnosis and 
prognosis of AD, and to developing potential bio-
markers for clinical application. In the present 
study, we selected 357 patients with MCI, who 
were followed up for 4 years with complete clinical 
data, including baseline MRI, genetic data, and 
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neuropsychological data such as the Mini-Mental 
State Examination (MMSE), Clinical Dementia 
Rating (CDR), and the Alzheimer’s Disease 
Assessment Scale (ADAS). Of the 357 patients, 
154 patients progressed to AD within 4 years. In 
addition, according to the original ADNI partici-
pant number, these patients were assigned to a 
training set (n = 249) or a test set (n = 108) at a 7:3 
ratio. The prediction model was established using 
the training set, and the reliability of the model 
was verified using the test set.

Image preprocessing
The T1-weighted images (T1WI) were imported 
into the SPM12 software (https://www.fil.ion.ucl.
ac.uk/spm/software/spm12/), and DICOM data 
were automatically segmented into whole-brain 
WM, GM, and CSF. The correctness of the auto-
matic segmentation was confirmed by two experi-
enced neuro-radiologists with 6–10 years of 
neuroimaging experience, and if needed, were 
manually modified (WM, GM, and CSF vol-
umes) using the ITK-SNAP software (http://
www.itksnap.org). The two neuro-radiologists 
were blinded to the clinical data. The modifica-
tion was performed by removing non-brain tissue, 
brainstem, and cerebellum, and correcting seg-
mentation errors in brain tissues. After manual 
correction, the brain tissues were imported into 
the QK software (Quantitative Analysis Kit, ver-
sion 1.2, GE Healthcare) for feature extraction. 
Before feature extraction, image preprocessing 
was performed as previously described.25 Briefly, 
T1WI data were resampled at a resolution of 
1 × 1 × 1 mm3 voxel size using linear interpola-
tion. To reduce image noise, the image greyscale 
intensity level was discretized and normalized by 
downsampling each image into 32 bins, thus 
resulting in an image grey range with equally 
spaced intervals. Therefore, the bin size and 
intensity resolution of the discretized volumes 
depended on the greyscale value (i.e. four bin 
sizes for each greyscale).

Radiomics feature extraction and selection
The IPM software package of the QK analysis 
platform was used to extract the radiomics fea-
tures, including the histogram, Haralick, grey level 
co-occurrence matrix (GLCM), run length matrix 
(RLM), and grey level size zone matrix (GLZSM) 
features. Only the features that were most consist-
ent across different radiologists were selected to 

ensure robustness. The Spearman rank correla-
tion test was used to calculate the correlation coef-
ficient between feature set A (from radiologist A) 
and feature set B (from radiologist B). Robust fea-
tures were defined as those that exhibited a corre-
lation coefficient greater than 0.8.26 To prevent 
the ‘curse of dimensionality’ caused by too many 
features, which can lead to inaccurate prediction 
results,27 the dimension of the extracted features 
was reduced using the maximum relevance mini-
mum redundancy (mRMR) algorithm and tradi-
tional least absolute shrinkage and selection 
operator (LASSO) algorithm. The mRMR algo-
rithm selects a group of features, which can be 
divided into two categories (stable and progres-
sion) to the greatest extent and with minimum 
intracorrelation of features.28,29 The traditional 
LASSO algorithm was used to further reduce the 
dimensionality of the selected features to generate 
a final set of top-level radiation features related to 
MCI progression,30 and to participate in the con-
struction of the radiomics signature.

After feature dimensionality reduction of the 
training set, a joint feature set containing WM, 
GM, and CSF was obtained, and the radiomics 
signature was constructed using multivariate 
logistic regression. The ability of the signature to 
predict MCI conversion to AD was evaluated 
using the rad scores calculated based on the radi-
omics signature formula. Each patient in the 
training set was assigned a score that reflected the 
conversion probability of MCI to AD. The rad 
score of the test set was calculated by the signa-
ture formula of the training set. The area under 
the curve (AUC) of the receiver operating charac-
teristic (ROC) curve was used to evaluate the 
accuracy of the radiomics signature in the training 
and test sets. The radiomics signature formula 
can be found in the Supplementary Materials.

Construction of the integrated model
A backward stepwise selection method with a 
stopping rule based on Akaike’s information crite-
rion (AIC) was conducted to select potential pre-
dictors in the training set, including demographic 
characteristics, genetic data, neuropsychological 
scales, and radiomics signatures. Multiple regres-
sion analysis was used to obtain the final predic-
tive factors used for integrated model construction. 
The variance inflation factor (VIF) was used to 
diagnose the collinearity of each variable with VIF 
values, with VIF values greater than 10 indicated 
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severe multicollinearity.31 Machine-learning clas-
sification algorithms exhibit a strong ability to rec-
ognize neurodegeneration (e.g. AD and MCI).32,33 
Support vector machines (SVMs) in particular 
can provide a comprehensive way to characterize 
the whole spatial dimension. Accordingly, SVM 
was used to construct the prediction model based 
on the filtered prediction factors, and then the test 
set data was used to calculate the predictive effi-
ciency based on the predictive model. In this 
study, an SVM classifier was developed using the 
MATLAB platform (version 8.3.0.532). An SVM 
algorithm with a radial basis kernel was applied to 
construct classification models. The performance 
of each model was validated using the training and 
test sets, using diagnostic accuracy, calibration 
performance, and net benefit as evaluation met-
rics. These metrics were evaluated using ROC 
curve analysis, calibration curve analysis, and 
decision curve analysis (DCA), respectively. In 
addition, to further quantify the performance of 
the model, an ROC curve was used to evaluate the 
diagnostic performance of the integrated model 
and each predictor. The Delong test was used to 
measure the differences in the ROC curves 
between the joint model and the predictors. At 
last, we predicted the population disease progres-
sion at different transformation times to clarify the 
model’s clinical efficacy.

Statistical analysis
Statistical analyses were performed using the 
SPSS software 17.0 (IBM, Armonk, NY), 
GraphPad (San Diego, CA), and R software (ver-
sion 3.4.1; http://www.Rproject.org). The 
Kolmogorov–Smirnov test was used to evaluate 
the normality of variable distributions. For data 
with a normal distribution, a Student’s t-test was 
used to evaluate the differences between groups. 
For data without a normal distribution, a Mann–
Whitney test was used. For categorical data, a 
chi-squared test was used to evaluate differences 
between groups. The ‘rms’ package of R software 
was used to construct the plot of calibration. 
Statistical significance was considered as p < 0.05.

Results

Clinical characteristics of the patients
Table 1 summarizes the clinical characteristics of 
patients in the training and test sets. There were 
no significant differences in age, APOE4, gender, 
education, CDR, scores, ADAS scores, and 
MMSE scores between the training and the test 
sets. In the training set, the APOE4, CDR scores, 
ADAS scores, MMSE scores, and radiomics sig-
nature scores were significantly different between 
the stable and transformed group (Table 2). In 
the test set, the CDR scores, ADAS scores, 
MMSE scores, and radiomics signature scores 
were significantly different between the stable and 
transformed groups (all p < 0.05) (Table 2). The 
other factors were not significantly different 
between groups.

The establishment and evaluation of the 
radiomics signature
Figure 1 shows the radiomics workflow. A total of 
378 radiomic features were extracted from each 
brain tissue (WM, GM, CSF), indicating that for 
each patient, 1134 features were extracted from 
the T1WI images. Among these features, 10 fea-
tures, including three from WM, three from GM, 
and four from CSF, were retained after feature 
dimensionality reduction. Finally, logistic regres-
sion was used to construct the radiomics signa-
ture. The rad scores were significantly different 
between the training and test sets. The ROC 
curve showed that the prediction performance of 
the radiomics signature in the training and test 
sets was good, with AUC values of 0.722 and 
0.692, specificity values of 0.697 and 0.721, and 

Table 1. Characteristics of patients in the training and test sets.

Variable Training set (n = 249) Test set (n = 108) p-value

Age (years) 74.2 (7.8) 75.3 (7.3) 0. 15

APOE4 [ n (%)]

 No 119 (47.8) 48 (44.4) 0.641

 Yes 130 (52.2) 60 (55.6)

Gender [n (%)]

 Male 156 (62.7) 73 (67.6) 0.438

 Female 93 (37.3) 35 (32.4)

Education (years) 15.7 (3) 15.6 (2.8) 0.859

CDR (score) 1.6 (0.9) 1.6 (0.9) 0.637

ADAS (score) 11.5 (4.3) 11.9 (4.8) 0.471

MMSE (score) 26.9 (1.8) 27.2 (1.8) 0.106

ADAS, Alzheimer’s disease assessment scale; APOE4, apolipoprotein E 4; CDR, 
clinical dementia rating scale; MMSE, mini-mental state examination.
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Table 2. Clinical characteristics of patients with and without MCI progression in the training and test sets.

Variable Training set (n = 249) Test set (n = 108)

 Stable 
(n = 142)

Progression 
(n = 107)

p-value Stable 
(n = 61)

Progression 
(n = 47)

p-value

Age (years) 75.5 (7.5) 75 (7) 0.569 72.8 (8.2) 73.8 (7.4) 0.484

APOE4 [n (%)]

 No 84 (59.2) 35 (32.7) <0.001* 32 (52.5) 16 (34) 0.0864

 Yes 58 (40.8) 72 (67.3) 29 (47.5) 31 (66)

Sex [n (%)]

 Male 95 (66.9) 61 (57) 0.142 39 (63.9) 34 (72.3) 0.472

 Female 47 (33.1) 46 (43) 22 (36.1) 13 (27.7)

Education(years) 15.5 (3) 16 (2.9) 0.166 15.7 (3) 15.6 (2.5) 0.781

CDR (score) 1.4 (0.8) 1.9 (0.9) <0.001* 1.5 (0.7) 1.8 (1) 0.023*

ADAS (score) 10.3 (4.3) 13.1 (3.8) <0.001* 10.4 (4.3 13.7 (4.8) <0.001*

MMSE (score) 27.2 (1.8) 26.4 (1.6) <0.001* 27.5 (1.8) 26.9 (1.7) 0.048*

Radiomics signature (score) −0.7 (1.1) 0.1 (0.7) <0.001* −0.8 (0.9) −0.3 (0.8) 0.002*

*p < 0.05.
ADAS, Alzheimer’s disease assessment scale; APOE4, apolipoprotein E 4; CDR, clinical dementia rating scale; MCI, mild cognitive impairment; 
MMSE, mini-mental state examination.

Figure 1. The construction process of the integrated model.
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sensitivity values of 0.682 and 0.659, respectively 
(Figure 2). The detailed results and process of 
dimensionality reduction are shown in the 
Supplementary Materials.

Construction and performance evaluation of the 
integrated model
Based on stepwise logistic regression analysis, 
APOE4, CDR scores, ADAS scores, and radiomics 
signature scores were independent predictors for 
MCI conversion to AD. VIF values of APOE4, 
CDR scores, ADAS scores, and radiomics signa-
ture scores were 1.048, 1.04, 1.107, and 1.051, 
respectively, suggesting that there were no severe 
collinearities in these factors (see Table 3). The 
SVM was used to construct an integrated model 

based on independent prediction factors. The ROC 
curve showed that the accuracy of the integrated 
model, radiomics signature, ADAS scores, CDR 
scores, and APOE4 in the training set was 0.814, 
0.722, 0.696, 0.657, and 0.632, respectively with a 
specificity of 0.671, 0.697, 0.748, 0.747, and 
0.592, and a sensitivity of 0.822, 0.682, 0.563, 
0.514, and 0.673, respectively. The ROC curve 
showed that the accuracy of the integrated model, 
radiomics signature, ADAS scores, CDR scores, 
and APOE4 in the test set was 0.807, 0.692, 0.695, 
0.599, and 0.592, with a specificity of 0.738, 0.721, 
0.803, 0.672, and 0.525 and a sensitivity of 0.745, 
0.659, 0.532, 0.511, and 0.66, respectively (Figure 
3). Furthermore, the Delong test demonstrated 
that the performance of the integrated model was 
significantly higher compared to the other 

Figure 2. Score diagrams of the radiomics signature in the training set (a) and the test (b) set. The diagnostic 
accuracy of the rad score of the radiomics signature in the training (c) and test (d) sets. The blue dots indicate 
disease stability, and the yellow dots indicate progression.
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independent predictors in the training and test sets 
(p < 0.05).

Overall validation of the integrated model
We performed DCA on the integrated model, 
radiomics signature, ADAS scores, CDR scores, 
and APOE4 in the training and test sets. The inte-
grated model had the greatest net benefit in both 

datasets. The calibration curve was used to ana-
lyze the continuous variables, including the model, 
radiomics signature, ADAS scores, and CDR 
scores in the two datasets, which showed good 
consistency (Figure 4). The probability score of 
each patient’s conversion to AD was calculated 
based on the integrated model. In the training and 
test sets, the scores were significantly higher in the 
progression group compared with the stable group 

Table 3. Screening of predictors involved in the integrated model construction.

Variable Multivariate logistic regression

 OR (95% CI) p-value VIF value

Age 0.979 (0.937–1.023) 0.346 NA

APOE4 2.513 (1.376–4.589) 0.003* 1.048

Sex 1.301 (0.684–2.474) 0.423 NA

Education 1.089 (0.98–1.211) 0.114 NA

CDR 1.856 (1.285–2.68) 0.001* 1.04

ADAS 1.116 (1.036–1.201) 0.004* 1.107

MMSE 0.855 (0.708–1.033) 0.114 NA

Radiomics signature 2.575 (1.75–3.79) <0.001* 1.051

*p < 0.05.
ADAS, Alzheimer’s disease assessment scale; APOE4, apolipoprotein E4; CDR, clinical dementia rating scale; CI, 
confidence interval; VIF, variance inflation factor; MMSE, mini-mental state examination; OR, odd’s ratio.

Figure 3. ROC curves for the integrated model, radiomics signature scores, ADAS scores, CDR scores and 
APOE4 for the prediction of progression from MCI to AD in the training (a) and test (b) sets.
AD, Alzheimer’s disease; ADAS, Alzheimer’s disease assessment scale; APOE4, apolipoprotein E4; CDR, clinical dementia 
rating scale; MCI, mild cognitive impairment.
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(Figure 5). The ROC curve was used to study the 
diagnostic accuracy based on the conversion time 
and showed that the prediction of 1-year MCI 
conversion to AD by the model had the maximum 
diagnostic efficacy (Table 4).

Discussion
In this study, we used WM, GM, and CSF vol-
umes to build a radiomics signature. We found 
that, the rad score was significantly different 
between stable MCI patients and progression 
MCI patients, suggesting that a whole-brain-
based radiomics signature can be used as a poten-
tial biomarker to identify patients who progress 
from MCI to AD. In addition, the integrated 

model, with the use of the radiomic signature and 
genetic and neuropsychological scale data, 
showed that the time point for the greatest pre-
dicting efficacy from MCI to AD was 1 year. The 
radiomics-integrated model may provide a relia-
ble tool in clinical practice to identify high-risk 
patients with MCI who may progress to AD.

Biomarkers play a major role in the early diagnosis 
and prediction of AD.34 The most studied bio-
markers include neuropsychological markers, bio-
chemical markers, and neuroimaging markers.35 
However, the clinical application of biochemical 
markers is poor, and neuropsychological markers 
are more subjective and can be applied only to 
patients with clinical symptoms. Therefore, 

Figure 4. Calibration curves for the integrated model, radiomics signature, ADAS scores, and CDR scores for 
the prediction of progression from MCI to AD in the training (a) and test (b) sets. DCA curves for the associative 
integrated models, signature, ADAS scores, CDR scores and APOE4 in the training (c) and test (d) sets.
AD, Alzheimer’s disease; ADAS, Alzheimer’s disease assessment scale; APOE4, apolipoprotein E4; CDR, clinical dementia 
rating scale; MCI, mild cognitive impairment.
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neuroimaging markers are currently the main 
research focus, and MRI, which reflects brain tis-
sue structure non-invasively and intuitively, has 
become an important factor in neuroimaging 
research.36–38 The volume of the hippocampus and 
the thickness of the cortex have been widely used 
in the study of the evolution of AD.39,40 However, 
these brain regions reflect only the local pathologi-
cal mechanism of the disease, but not the patho-
logical changes in the evolution of MCI to AD. In 
this study, we developed a novel whole-brain bio-
marker based on radiomics analysis to identify the 
high-risk population of MCI patients who may 
progress to AD. Our results showed that the radi-
omics signature had good diagnostic efficiency, 
which may reflect most of the pathological changes 
that take place during disease progression. This is 
likely due to the fact that radiomics features of the 
signature obtained from the WM, GM, and CSF 
are closely related to the conversion of MCI to 
AD.41 In addition, most of the radiomics features 
of the signatures belong to high-level disease attrib-
utes. For example, it has been reported that RLM 
features are related to WM damage,42 which plays 
an important role in the transformation of MCI to 
AD. In addition, the complexity and roughness 
derived from GLCM features can reflect the degree 
of association between different pixels in the same 
brain region. Therefore, GLCM features involved 
in the construction of signatures indicate that brain 
structural damage may lead to changes in the com-
plexity and distribution of voxels in disease-relevant 
regions. A previous study by Feng et al.43 supports 
this idea,15 further confirming the prognostic value 
of high-price quantitative image features in 

neurodegenerative diseases. Furthermore, previous 
similar studies have shown that structural atrophy 
and functional metabolic abnormalities related to 
MCI progression were mainly in brain areas such 
as the hippocampus, frontal lobe, and temporal 
cortex.44 Therefore, our study may further expand 
the scope of radiomics studies in brain regions 
affected by neurodegenerative diseases.

Biomarkers can be used to track disease progres-
sion over time when studying the effectiveness of 
new modification therapies for AD.45 Many 
methods such as amyloid imaging, functional 
MRI, and F-deoxyglucose positron emission 
tomography (PET) can be used to predict the 
potential progress of AD.46–49 However, a single 
marker is unlikely to completely describe the sta-
tus and progression of AD. Given the lack of ideal 
diagnostic methods, a combination of biomarkers 
may improve the diagnostic accuracy of AD.50 
Our results also confirm this idea, in that our pre-
diction model significantly improved the diagnos-
tic efficiency by the combined use of a radiomics 
signature, APOE4, and neuropsychological 
scales. The predictive accuracy of MCI progres-
sion obtained by the current combined markers 
method is very similar to that of previous SPECT 
studies. In fact, the diagnostic efficiency of 

Figure 5. Violin box diagram of the model score. Statistically significant 
differences in model scores were observed between the stable and 
progression groups in the training (left) and test (right) sets.
**Denotes p < 0.001, the red line denotes the median, and the black dotted line 
denotes the first and third quartiles.

Table 4. Performance evaluation of the integrated 
model at different time points.

Time Receiver operating characteristic 
curve

 AUC Sensitivity Specificity

6 months 0.774 0.619 0.817

12 months 0.814 0.726 0.798

18 months 0.81 0.692 0.798

24 months 0.794 0.672 0.798

36 months 0.797 0.787 0.685

48 months 0.742 0.75 0.82

AUC, area under the curve.
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SPECT in predicting AD conversion in patients 
with MCI ranged from 0.74 to 0.82,51 which were 
similar to the results of this study. Further studies 
are required to assess whether the combination of 
whole-brain biomarkers and other brain imaging 
methods will lead to better risk assessment and 
diagnosis.

Chen et al.52 used the CARE index, which com-
bines multiple dimensions of biomarkers, includ-
ing cognition, CSF, a GM concentration index, 
and a hippocampal functional connectivity index, 
to predict the progress of MCI, and showed a high 
diagnostic efficiency (AUC = 0.861). However, 
considering the small sample size (n = 102 patients) 
in their study, our results may be more valuable 
for evaluating MCI progression. In addition, our 
results also showed that the diagnostic efficiency 
of the integrated model was the highest for pre-
dicting one-year conversion to AD (AUC = 0.814). 
Nevertheless, the diagnostic efficiency in our case 
was lower than that reported by Minhas et al.,53 
which found a one-year conversion accuracy to 
AD of 0.88 based on the longitudinal integrated 
index of MRI. The integrated index includes MRI 
biomarkers, such as the volume, surface area, and 
cortical thickness of different brain regions, in 
addition to a variety of neuropsychological indica-
tors, such as the ADAS and MMSE. However, 
since approximately 50–80% of MCI patients do 
not progress to AD during the follow-up period of 
3–4 years, the cost of assessment will be greatly 
increased when using this method to confirm such 
progression.54 In such a heterogeneous popula-
tion, long-term follow-up of these biomarkers may 
be more difficult, and will lead to a heavier burden 
of medical resources. In addition, our study used 
APOE4 genetic data for predicting MCI progres-
sion to AD. Although additional tests for APOE 
genetic information increases the cost for the 
patients, only one test at the beginning of the fol-
low-up period is necessary to build the prediction 
model. As a result, our model provides a non-
invasive and convenient approach for screening 
early AD in the clinic.

Our study also has some limitations. Firstly, this 
study used a relatively short follow-up period. A 
certain proportion of currently stable patients may 
progress to AD later in life. However, the propor-
tion of MCI patients who progress to AD is uncer-
tain. AD progression is higher during the first few 
years of follow-up, but decreases during longer 
follow-up intervals.55 Secondly, this study is a 

retrospective study based on information available 
in public databases. It is necessary to conduct fur-
ther longitudinal prospective studies on MCI 
patients to confirm the results of this study.

In summary, this study found that whole-brain-
based radiomics biomarkers can be used to identify 
high-risk patients with MCI who may convert to 
AD in the future. In addition, radiomics biomark-
ers in combination with genetic data and neuropsy-
chological scale analysis can significantly improve 
the predictive performance of MCI to AD.
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