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Background. Intervertebral disc degeneration (IVDD) is the most significant cause of low back pain, the sixth-largest disease
burden globally, and the leading cause of disability. This study is aimed at investigating the molecular biological mechanism of
Danggui-Sini formula (DSF) mediated IVDD treatment. Methods. A potential gene set for DSF treatment of IVDD was
identified through TCMSP, UniProt, and five disease gene databases. A protein interaction network of common targets
between DSF and IVDD was established by using the STRING database. GO and KEGG enrichment analyses were performed
using the R platform to discover the potential mechanism. Moreover, AutoDock Vina was used to verify molecular docking
and calculate the binding energy. Results. A total of 119 active ingredients and 136 common genes were identified, including 10
core genes (AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3, CASP3, JUN, and EGF). Enrichment analysis results showed that
the therapeutic targets of DSF for diseases mainly focused on the AGE-RAGE signaling pathway involved in diabetic
complications, IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, apoptosis, cellular
senescence, PI3K-Akt signaling pathway, and FoxO signaling pathway. These biological processes are induced mainly in
response to oxidative stress and reactive oxygen species and the regulation of apoptotic signaling pathways. Molecular docking
showed that there was a stable affinity between the core genes and the key components. Conclusions. The combination of
network pharmacology and molecular docking provides a practical way to analyze the molecular biological mechanism of DSF-
mediated IVDD treatment, which confirms the “multicomponent, multitarget and multipathway” characteristics of DSF and
provides an essential theoretical basis for clinical practice.

1. Introduction

Low back pain is the sixth largest disease burden globally and
is the leading cause of disability, which has become a global
health concern [1]. A previous study showed that 40% of
low back pain is related to intervertebral disk degeneration
(IVDD) [2]. The major pathological features of IVDD are
the elevated expression of inflammatory mediators, increased
senescence and apoptosis of nucleus pulposus cells (NPCs),
and degradation of the extracellular matrix [3, 4]. Impor-
tantly, IVDD may bring about a range of clinical symptoms,
such as pain, numbness, and even paralysis of the lower

extremities, causing enormous suffering and economic
burden.

The initial clinical treatment for IVDD has focused on
symptom relief, mainly with nonsteroidal anti-
inflammatory drugs (NSAIDs) [5, 6]. However, studies on
the use of NSAIDs in articular cartilage have shown detri-
mental effects [7–9]. Therefore, there is an urgent need for
an effective and safe drug. Traditional Chinese medicine
(TCM) has been used to treat various diseases for thousands
of years [10]. However, due to the diversity of TCM compo-
nents and the complexity of the body, systematic research on
TCM has been limited.
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Network pharmacology is a strategy for elucidating the
synergistic effects and potential mechanism of multicom-
pound and multitarget drugs based on various complex
“drug-ingredient-target gene” networks [11]. It may be a
potential tool to systematically explore new applications for
TCM. Recent studies demonstrated that network pharma-
cology could achieve high performance in the prediction of
the mechanisms of TCM involved in treating diseases [12,
13]. We hypothesize that combining gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis with network pharmacology may provide more
valuable and complementary information, thereby further
improving the prediction performance of potentially effec-
tive mechanisms.

The Danggui-Sini formula (DSF) is a classic prescription
in the Treatise on Febrile Diseases and is mainly composed
of seven herbs (Table 1): Angelica sinensis (Dang Gui, DG),
Cinnamomum cassia Presl (Gui Zhi, GZ), Cynanchum oto-
phyllum Schneid (Bai Shao, BS), Asarum sieboldii Miq (Xi
Xin, XX), Glycyrrhiza uralensis Fisch (Gan Cao, GC), Tetra-
panax papyriferus (Tong Cao, TC), and Ziziphus jujuba Mill
(Da Zao, DZ). In recent years, pharmacological studies have
shown that this decoction has positive anti-inflammatory
and antioxidative effects, especially in the treatment of oste-
oarthritis [12, 13]. Although Chinese medicine has already
used DSF to treat IVDD, its mechanism of action needs to
be further studied [14].

This study integrated network pharmacology and molec-
ular docking to explore the potentially effective mechanism
and targets of DSF acting on IVDD. The research process
is shown in Figure 1. The results highlight the potential of
DSF in the treatment of IVDD.

2. Materials and Methods

2.1. Active Ingredients and Target Genes of the Danggui-Sini
Formula. By searching the Traditional Chinese Medicine
Systems Pharmacology (TCMSP) database (https://tcmsp-e
.com/) [15], with the filter conditions of oral bioavailability
ðOBÞ ≥ 30% and drug likeness ðDLÞ ≥ 0:18, the active ingre-
dients of each herb from DSF were acquired. At the same
time, the corresponding target protein information of the
active compounds was obtained through the DrugBank
database (https://go.drugbank.com/) [16], and the conver-
sion of gene symbols was completed through the UniProt
database (https://www.UniProt.org) [17].

2.2. Related Targets of IVDD and Common Gene Set. To
obtain the targets of IVDD, we searched a total of five data-
bases, namely, Online Mendelian Inheritance in Man
(OMIM) (https://omim.org/) [18], Genecards database
(https://www.genecards.org/) [19], Comparative Toxicoge-
nomics Database (CTD) (http://ctdbase.org/) [20],
DrugBank database (https://go.drugbank.com/) [16], and
DisGeNet database (https://www.disgenet.org/) [21]. In
addition, all targets were standardized in the UniProt data-
base [17]. A common gene set of “compound-targets-
disease” comprises the potential target genes of DSF for
IVDD and was built by creating a Venn diagram.

2.3. Network Visualization and Enrichment Analysis. “Active
ingredients - potential targets” network and another related
network for disease-core genes–active ingredients–herbs
were established using the Cytoscape software [22]. To
obtain more accurate gene annotation results, we utilized
the clusterProfiler package of the R platform for gene ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional enrichment analysis [23]. GO enrich-
ment analysis revealed the underlying mechanisms from
biological processes (BPs), cell components (CCs), and
molecular functions (MFs), while KEGG is a pathway-
related database.

2.4. Protein–Protein Interaction (PPI) Network Construction
and Core Gene Selection. We imported the common genes
into the STRING database (https://www.string-db.org/)
[24] to obtain the PPI network and TSV format file with
the parameters of Organism = Homo sapiens and moderate
confidence = 0:400. Then, TSV files were imported into the
software to realize PPI network visualization and further
analysis. The CytoHubba plug-in was used to identify the
top 10 core genes by using 12 kinds of topological measures.

2.5. Molecular Docking. Molecular docking analysis focused
on the proteins encoded by the 10 core genes and their cor-
responding active components. First, we downloaded the 3D
structure of the protein from the RCSB PDB database
(https://www.rcsb.org/) and used the PyMol 2.4.0 software
to remove water and natural ligands from the protein. Sec-
ond, the 2D structures of active components (small molecu-
lar ligands) were downloaded from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/). Then, we used the
ChemBio3D software to convert the molecular ligand into
a 3D structure and performed energy minimization by the
MM2 calculation method. Hydrogenation of proteins and
small molecular ligands was prepared with the Autodock
tool. Finally, Autodock Vina was used for molecular docking
and calculating the binding energy [25].

3. Results

3.1. Active Ingredients in DSF and Potential Genes. Seven
herbal medicines of the DSF were successively inputted into
the TCMSP database, and a total of 155 active ingredients
were obtained, among which 2 were from DG, 7 were from

Table 1: Full scientific species names of herbs of Danggui-Sini
formula.

Pin Yin Latin name

Dang Gui (DG) Angelica sinensis

Gui Zhi (GZ) Cinnamomum cassia Presl

Bai Shao (BS) Cynanchum otophyllum Schneid

Xi Xin (XX) Asarum sieboldii Miq

Gan Cao (GC) Glycyrrhiza uralensis Fisch

Tong Cao (TC) Tetrapanax papyriferus

Dao Zao (DZ) Ziziphus jujuba Mill
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GZ, 13 were from BS, 8 were from XX, 92 were from GC, 4
were from TC, and 29 were from DZ (Supplementary
Table 1). Then, we searched the DrugBank database for
targets of each active ingredient and obtained a total of 268
genes after removing duplicates. All gene names were
corrected through the UniProt database. Details of the
above information are listed in Supplementary Table 2.

With the keyword “intervertebral disc degeneration,” we
searched the five databases mentioned above and obtained a
total of 2166 genes after deduplication. Using an online web
service (http://bioinformatics.psb.ugent.be/webtools/Venn/),
we obtained common genes that intersect between drug-
target and disease-related genes. One hundred thirty-six
genes were identified as potential genes for DSF in the treat-
ment of IVDD, and the Venn diagram is shown in Figure 2
and Supplementary Table 3.

3.2. Active Ingredient-Potential Target Network. After
obtaining the common genes and their corresponding active
compounds, a network of active ingredient-potential targets
was drawn by using Cytoscape (Figure 3). The network has
243 nodes and 1214 edges. Furthermore, we found that
one gene corresponds to multiple active ingredients and vice
versa. According to the number of target nodes, we ranked
the active ingredients, with quercetin (MOL000098) target-
ing the most genes.

3.3. PPI Network and Core Genes. To understand the rela-
tionship among common genes and obtain core genes, 136
common genes were first imported into the STRING data-
base, and then, the PPI network and TSV format file were
obtained (Figure 4(a)). Second, we visualized the PPI net-
work by importing it into Cytoscape and identified the 10
core genes using Cytohubba plug-ins with 12 kinds of topo-
logical sorting. Finally, we found that the top 10 core genes

obtained by the two methods of maximum neighborhood
component (MNC) and degree were the same, namely,
AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3, CASP3,
JUN, and EGF (Figure 4(b)). We performed further cluster
analysis of the PPI network with the MCODE plug-in and
acquired 5 clusters (Figure 4(c), Table 2). The top 1 cluster
contained 10 core genes, which further confirmed the criti-
cality of core genes.

3.4. GO and KEGG Analysis. To further explore the interac-
tion between common target genes and the mechanism by
which DSF may treat IVDD, GO functional analysis and
KEGG pathway enrichment analysis were performed using
the R platform.

A total of 2617 items were acquired: 2417 from BPs, 60
from CCs, and 140 from MFs (Supplementary Table 4). The
top 10 of each category are shown in Figure 5. The results
showed that the biological processes of the potential genes are
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associated with oxidative stress, such as response to oxidative
stress, response to reactive oxygen species, cellular response
to oxidative stress, and cellular response to reactive oxygen
species. The cellular component might be mainly activated in
the membrane raft, membrane microdomain, membrane
region, RNA polymerase II, transcription regulator complex,
and transcription regulator complex. The molecular functions
of common genes include cytokine receptor binding,
phosphatase binding, cytokine activity, DNA binding,
transcription factor binding, and RNA polymerase II-specific
DNA-binding transcription factor binding.

Simultaneously, we obtained 166 KEGG pathways asso-
ciated with potential genes (Supplement Table 4), of which

the top 30 are shown in Figure 5. The meaningful
pathways contain the AGE-RAGE signaling pathway
involved in diabetic complications, the IL-17 signaling
pathway, the TNF signaling pathway, the Toll-like receptor
signaling pathway, and apoptosis. Although cellular
senescence, the PI3K-Akt signaling pathway, and the FoxO
signaling pathway are not shown in the diagram, they were
also selected for further analysis because they may be
related to inflammation, apoptosis, senescence, and
autophagy. The results confirmed that DSF alleviated
IVDD disease by regulating antioxidant stress and
inflammatory reactions. The top 30 pathway-common
target-active ingredient networks are shown in Figure 6.
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3.5. Disease-Core Genes–Active Ingredients–Herbs. Based on
the 10 core genes, we obtained seven active ingredients and
six herbs. A network of disease core gene–active ingredi-
ent–herb interactions is shown in Figure 7 with 24 nodes
and 70 edges. Quercetin (MOL000098) is the most crucial
active ingredient with the largest degree, which is consistent
with the results of the active ingredient-potential target
network. JUN and CASP3 were the key genes with the high-
est degrees.

3.6. Molecular Docking. Ten key genes were selected for
molecular docking with seven major active compounds to
verify the binding ability between key active compounds
and core gene interactions. Studies have shown that the
lower the binding energy, the more stable the conformation
of the compound binding to the protein, and the greater the
possibility of interaction [26]. The docking results are shown
in the heat map (Figures 8 and 9). It is generally believed
that the binding energy between proteins and small molecule

compounds is relatively stable when it is less than -5.0 kcal/-
mol [26]. As predicted by network pharmacology, our bind-
ing energy results were all less than -5.0 kcal/mol, indicating
that all active compounds could easily enter the active
pocket of the protein and bind stably. In addition, all com-
pounds could bind to multiple targets simultaneously, sug-
gesting the mechanism of the multitarget role of decoction
in the treatment of intervertebral disc degeneration. In
addition, all compounds can bind to multiple targets simul-
taneously, suggesting the mechanism of the multitarget role
of DSF in the treatment of IVDD.

4. Discussion

IVDD is one of the common causes of low back pain. At
present, the incidence of IVDD is increasing, which seriously
aggravates patients’ mental and financial burden [27, 28].
Previous evidence has shown that the occurrence and devel-
opment of IVDD are related to inflammation and oxidative
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Figure 4: Protein–protein interaction (PPI) network and core genes: (a) the protein–protein interaction (PPI) network of potential targets of
DSF in the treatment of IVDD; (b) PPI network of the core genes; (c) cluster analysis of the common targets.

Table 2: Cluster information of the protein-protein interaction (PPI) network for common genes.

Cluster Score Nodes Edges Gene symbol

1 48.483 59 1406

IL10, MAPK1, NFKBIA, MAPK14, CXCL10, MMP1, CASP9, CASP8, STAT1, CD40LG, PLAU, RELA,
CDKN1A, HIF1A, CCND1, MAPK3 ∗, BCL2L1, AR, STAT3, CASP3 ∗, KDR, VEGFA ∗, ALB ∗, TP53 ∗,
SPP1, CXCL8, PPARG, JUN ∗, EGFR, PTEN, ESR1, MYC, EGF ∗, AKT1 ∗, SIRT1, ADIPOQ, MPO, CAT,
IL1B, TNF ∗, FOS, PTGS2, IL6 ∗, HMOX1, MMP2, SERPINE1, CCL2, IL2, IFNG, IL4, CRP, ICAM1,

VCAM1, NOS3, MMP3, NOS2, SELE, MMP9, MAPK8

2 4.706 18 40
IGF2, SOD1, CXCL2, NFE2L2, IL1A, IRF1, HSPB1, CCNB1, CDK4, CDK2, RB1, CCNA2, NCF1, GSK3B,

CAV1, GJA1, CTNNB1, RUNX2

3 3 3 3 PLAT, THBD, F3

4 3 3 3 NRI12, CYP3A4, CYP2B6

5 2.5 5 5 G6PD, HMGCR, FASN, ACHE, PON1
∗Core genes are shown in italic.
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Figure 5: GO (including BP, MF, and CC) and KEGG analysis of common genes. (a) Top 10 significantly enriched terms in biological
processes (BPs). (b) Subnetwork showing the top five BP terms and related genes. (c) Top 10 significantly enriched terms in cellular
components (CCs). (d) Subnetwork showing the top five CC terms and related genes. (e) Top 10 significantly enriched terms in
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stress, leading to apoptosis and senescence of nucleus pulpo-
sus cells [29–32]. Drugs currently used to treat IVDD are
limited to nonsteroidal anti-inflammatory drugs or muscle
relaxants to relieve symptoms [1, 33]. Notably, TCM has
been used for more than 2,000 years to treat various diseases,
including IVDD [34]. Compared with Western medicine,
TCM has the advantages of mild and fewer side effects. To
date, network pharmacology has been widely used to study
the mechanisms of TCM. In our study, the results of the
active ingredient-potential target network showed that the
main active compounds, including quercetin, beta-sitosterol,
kaempferol, naringenin, and formononetin, may have
potential research value for the treatment of IVDD. In addi-
tion, enrichment analysis showed that DSF acted on various
biological processes of IVDD and influenced the disease
course through eight pathways, such as the AGE-RAGE sig-

naling pathway in diabetic complications, the IL-17 signal-
ing pathway, the TNF signaling pathway, and the Toll-like
receptor signaling pathway, which confirmed that DSF has
multicomponent, multipathway, and multitarget
characteristics.

Some of the main compounds in DSF identified in our
study have anti-inflammatory and antioxidative stress
effects, thereby inhibiting apoptosis and senescence. Querce-
tin and kaempferol are common ingredients in licorice. Pre-
vious studies suggested that quercetin has antisenescence
and antiapoptotic effects, mainly by promoting SIRT1-
dependent autophagy and inhibiting senescence-associated
secreted phenotype factor expression and the senescence
phenotype in nucleus pulposus cells to prevent and treat
IVDD [35, 36]. In addition, Lu et al. found that quercetin
could inhibit the expression and release of various
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inflammatory factors, such as TNF-α, IL-1β, and IL6, by
suppressing the activation of the NF–κB pathway [37].
Kaempferol has been confirmed to modify the osteogenesi-
s/adipogenesis balance and inhibit inflammation in BMSCs,
making it a new target for the treatment of IVDD [38]. The
common component in Angelicae sinensis radix, cinna-
momi, ramulus, Paeoniae radix alba, and Jujubae fructus is
beta-sitosterol, which has anti-inflammatory and antioxi-
dant effects [39]. Cho et al. found that formononetin may
reduce the proteoglycan content used to treat musculoskele-
tal diseases [40].

By analyzing the PPI network of common genes, we
found that AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3,
CASP3, JUN, and EGF might be the main potential targets
for DSF therapy of IVDD. The apoptosis of nucleus pulpo-
sus cells (NPCs) plays a crucial role in the pathological pro-
cess of IVDD, which is mainly mediated by inflammation
and oxidative stress [3, 4]. IL6, TNF, TP53, and CASP3 are
closely associated with the inflammatory response in the

process of IVDD, among which TNF and IL6 are proinflam-
matory factors; moreover, TP53 and CASP3 induce apopto-
sis and senescence. AKT1 encodes one of the three members
of the human AKT serine-threonine protein kinase family,
which are often referred to as protein kinase B alpha, beta,
and gamma. AKT/PI3K is a key component of many signal-
ing pathways, and AKT proteins regulate a wide variety of
cellular functions, including cell proliferation, survival,
metabolism, and angiogenesis, in both normal and malig-
nant cells. Moreover, Zhan et al. found that the degree of
intervertebral disc degeneration was related to the loss of
vascular buds and the downregulation of VEGFA and its
receptors [41].

GO and KEGG enrichment analysis results showed that
the therapeutic targets of DSF for diseases mainly focused
on the AGE-RAGE signaling pathway involved in diabetic
complications, IL-17 signaling pathway, TNF signaling path-
way, Toll-like receptor signaling pathway, apoptosis, cellular
senescence, PI3K-Akt signaling pathway, and FoxO

Figure 9: Molecular docking of the “bioactive compound-core gene”: (a) beta-sitosterol to MAPK3; (b) formononetin to ALB; (c) quercetin
to MAPK3; (d) naringenin to MAPK3.
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signaling pathway. The biological processes are mainly
induced in response to oxidative stress and reactive oxygen
species and the regulation of apoptotic signaling pathways.
Studies have shown that all of these factors play crucial roles
in the progression of IVDD. The TNF and IL-17 pathways
play a synergistic role in the progression of IVDD, mainly
by promoting the release of inflammatory factors, the apo-
ptosis of NPCs, and the degradation of extracellular matrix
(ECM) [42–44]. mTOR is a serine/threonine protein kinase
activated by PI3K/Akt, ERK, Wnt, TNF-α, IGF1 or low
energy, low oxygen, and other factors. Then, mTOR acti-
vates downstream 4E-BP1 and p70S6K, which play a vital
role in regulating the proliferation, apoptosis, and nutri-
tional status of interdisc cells [45]. Furthermore, activation
of the PI3K-Akt pathway may lead to a series of events,
including reduction of ECM degradation, inhibition of apo-
ptosis, and induction or suppression of autophagy, which
can protect against IVDD [46, 47]. Recent studies have
shown that FOXO is a critical regulator of cellular homeo-
stasis during IVDD [48]. In addition, Gao et al. found that
17β-estradiol prevents ECM degradation by downregulating
MMP3 expression via the PI3K/Akt/FOXO3 pathway [49].
At present, among the regulatory pathways of IVDD, few
studies on the correlation between IVDD and other signal-
ing pathways were screened out in our study by KEGG anal-
ysis. A study found that accumulation of AGE-MG-H1 was
associated with endochondral ossifications, hypertrophy,
and osteogenic differentiation in IVDD and that these are
directly related to RAGE, suggesting that AGE/RAGE could
be a potential therapeutic target [50].

However, our study also has some limitations. For exam-
ple, the results of this study lacked in vitro validation, and
further external validation with animals should be per-
formed. Moreover, the screening of active ingredients and
related genes through databases may not be sufficiently
comprehensive.

5. Conclusions

The combination of network pharmacology and molecular
docking provides a practical way to analyze the molecular
biological mechanisms of DSF-mediated IVDD treatment.
AKT1, IL6, ALB, TNF, VEGFA, TP53, MAPK3, CASP3,
JUN, and EGF may be potential targets of DSF in treating
IVDD, and enrichment analysis results showed that the ther-
apeutic targets of DSF for diseases mainly focused on the
AGE-RAGE signaling pathway in diabetic complications,
IL-17 signaling pathway, TNF signaling pathway, Toll-like
receptor signaling pathway, apoptosis, cellular senescence,
PI3K-Akt signaling pathway, and FoxO signaling pathway,
which confirms the multicomponent, multipathway, and
multitarget characteristics of DSF and provides an essential
theoretical basis for clinical practice.
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