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Abstract Tissue resident mesenchymal stem/stromal cells (MSCs) occupy perivascular spaces.

Profiling human adipose perivascular mesenchyme with antibody arrays identified 16 novel surface

antigens, including endolysosomal protein CD107a. Surface CD107a expression segregates MSCs

into functionally distinct subsets. In culture, CD107alow cells demonstrate high colony formation,

osteoprogenitor cell frequency, and osteogenic potential. Conversely, CD107ahigh cells include

almost exclusively adipocyte progenitor cells. Accordingly, human CD107alow cells drove dramatic

bone formation after intramuscular transplantation in mice, and induced spine fusion in rats,

whereas CD107ahigh cells did not. CD107a protein trafficking to the cell surface is associated with

exocytosis during early adipogenic differentiation. RNA sequencing also suggested that CD107alow

cells are precursors of CD107ahigh cells. These results document the molecular and functional

diversity of perivascular regenerative cells, and show that relocation to cell surface of a lysosomal

protein marks the transition from osteo- to adipogenic potential in native human MSCs, a

population of substantial therapeutic interest.

Introduction
Within mammalian white adipose tissue (WAT), a perivascular population of mesenchymal progenitor

cells is well documented with respect to multipotency and tissue renewal capabilities (Corselli et al.,

2012; Kramann et al., 2016). The ability of human WAT-resident perivascular cells to differentiate

into bone-forming osteoblasts and incite or participate in bone repair is also well known

(Askarinam et al., 2013; Chung et al., 2014; James et al., 2012a; James et al., 2012b;

James et al., 2012c; Lee et al., 2015; Meyers et al., 2018b; Tawonsawatruk et al., 2016) (see

(James et al., 2017; James and Péault, 2019) for reviews). The bulk of WAT-resident perivascular

cells with mesenchymal progenitor cell attributes reside in the tunica adventitia – the outer collagen-

rich sheath of blood vessels (Corselli et al., 2012; James et al., 2012a; West et al., 2016). Micro-

vascular pericytes, although less frequent in absolute numbers, also demonstrate progenitor cell

attributes (Chen et al., 2013; Crisan et al., 2009; Crisan et al., 2008). With several recent studies
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from our group in human (Ding et al., 2019; Hardy et al., 2017) and mouse WAT (Wang et al.,

2020), it is clear that perivascular cells, including those found within the tunica adventitia (adventitial

cells or adventicytes), demonstrate more phenotypic and functional diversity than previously

understood.

CD107a (lysosome-associated membrane protein-1, LAMP1) is a member of a family of structur-

ally related type one membrane proteins predominantly expressed in lysosomes and other intracellu-

lar vesicles (Carlsson et al., 1988; de Saint-Vis et al., 1998; Defays et al., 2011; Ramprasad et al.,

1996). CD107a is far less frequently expressed on the cell surface, which is the result of both traffick-

ing of nascent protein to the plasma membrane as well as the fusion of late endosomes and lyso-

somes to the cell membrane (Akasaki et al., 1993; Dell’Angelica et al., 2000). In inflammatory

cells, surface CD107a reflects the state of activation (Janvier and Bonifacino, 2005) and has been

implicated in cell adhesion (Kannan et al., 1996; Min et al., 2013). In separate reports, CD107a has

been described in intracellular vesicles in both osteoblasts and adipocytes (Bandeira et al., 2018;

Solberg et al., 2015), yet beyond this, essentially nothing is known regarding CD107a in mesenchy-

mal stem cell fate or differentiation decisions.

Here, antibody array screening of FACS-defined stromal vascular fraction (SVF) perivascular cells

identified several novel cell surface antigens, including CD107a, enriched within subpopulations of

human adventicytes and pericytes. Flow cytometry and immunohistochemical analyses confirmed

that cells with membranous surface CD107a expression reside in a perivascular microanatomical

niche within WAT. CD107ahigh cells represent an adipocyte precursor cell, while CD107alow cells rep-

resent progenitors with increased osteoblast potential. CD107a trafficking to the cell surface was

observed to occur during early adipocyte differentiation – results confirmed by single-cell RNA

sequencing datasets from mouse and human adipose tissues. Upon transplantation into immuno-

compromised rodents, CD107alow cells robustly induce bone formation, both in an intramuscular

ectopic ossicle assay in mice and a lumbar spine fusion rat model. These results suggest that cell sur-

face CD107a divides osteoblast from adipocyte perivascular precursors within human tissues.

Results

Identification of CD107a as a novel cell surface antigen expressed
among adipose tissue (AT)-resident perivascular stem cells
To identify new markers that may define subsets of perivascular cells, a cell surface antigen screen

(Lyoplate) was performed on previously defined perivascular cell fractions (Crisan et al., 2008;

James et al., 2012c; Xu et al., 2019), including CD34+CD146- adventitial cells and CD146+CD34-

pericytes after exclusion of non-viable, endothelial, and hematopoietic cells (PI+ CD31+ or CD45+

fractions) (Table 1). Several markers were confirmed to be highly expressed among both adventi-

cytes and pericytes, including, for example, the progenitor cell and MSC marker CD90 (Thy-1) and

the perivascular cell antigen CD140b (PDGFRb). Novel markers to divide perivascular progenitors

ranged broadly, including the endolysosomal protein CD107a (32% and 82% expression among

adventicytes and pericytes, respectively). Another endolysosomal protein, CD107b, was also present

on each perivascular cell fraction (13% and 46% expressing adventicytes and pericytes, respectively).

Other markers noted to be expressed differentially in subsets of adventicytes and pericytes included

CD98, CD140a (PDGFRa), CD142, CD165, CD200, and CD271 (NGFR) (Table 1).

Next, previously derived transcriptomics data on human perivascular cells were analyzed to con-

firm LAMP1 gene expression, encoding CD107a. Using WAT-derived pericytes (n = 3 samples, GEO

dataset: GSE125545) or adventitial perivascular stem cells (n = 3 samples, GEO dataset: GSE130086)

(Xu et al., 2019), high expression of the LAMP1 gene was confirmed (mean FPKM values of 9.576

and 9.619, respectively).

Spatial localization of CD107a was next assessed by immunostaining of subcutaneous WAT

(Figure 1A–E, n = 3 samples). CD107a immunoreactivity was found most frequently within the outer-

most layers of larger arteries (Figure 1B) and veins (Figure 1C). Within arteries, the outer tunica

adventitia showed a high frequency of CD107a+CD34+ cells (Figure 1B1), while the inner adventitia

showed predominantly CD107a-CD34+ cells (Figure 1B2). The smooth muscle media largely did not

show CD107a immunoreactivity (Figure 1B3), which was confirmed by dual immunohistochemistry

for CD107a and aSMA (Figure 1—figure supplement 1A). Co-expression with the recently
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described adventitial marker Gli1 was assessed (Kramann et al., 2016), which showed little overlap

with CD107a immunoreactive adventitial cells (Figure 1—figure supplement 1B). Smaller caliber

arteries (Figure 1D) and veins showed a high frequency of dual expressing CD107a+CD34+ cells

within the adventitia. Capillaries within WAT showed some CD107a immunoreactive pericytes, which

co-expressed CD146 but not CD31, and were present in an abluminal location (Figure 1E, appear-

ing yellow). CD107a immunoreactivity within the perivascular mesenchymal niche was confirmed

across other AT depots, including pericardial, perigonadal, perirenal, and omental human fat (Fig-

ure 1—figure supplement 2, n = 3 samples per depot). Small and medium caliber vessels showed

perivascular immunoreactivity across all adipose depots.

Next, flow cytometry demonstrated a spectrum of CD107a membranous staining across the via-

ble, non-endothelial/noninflammatory cells of human WAT (Figure 1F). The PI-CD31-CD45- compo-

nent of SVF was divided by FACS into CD107alow and CD107ahigh cell populations for further

analysis (Figure 1F,G). Mean frequency of CD107alow mesenchymal cells represented 33.75% of via-

ble SVF, while mean frequency of CD107ahigh mesenchymal cells represented 5.20%

(Supplementary file 1). Flow cytometry analysis was next performed within CD107ahighCD31-CD45-

and CD107alowCD31-CD45- mesenchymal populations (Figure 1H,I). High expression of CD107a

was confirmed by flow cytometry among freshly sorted CD107ahigh cell preparations (Figure 1I).

Concordant with histological observations, CD34+ and CD146+ cells were identified in both CD107a-
low and CD107ahigh cell fractions (Figure 1H,I, mean frequencies reported in Supplementary file 2,

3). These data confirmed that surface CD107a expression is present in both perivascular native MSC

niches within WAT, and that surface CD107a could be used to prospectively purify mesenchymal cell

subpopulations with disparate staining intensities.

Next, canonical markers of culture-expanded human MSCs were examined by flow cytometry in

freshly sorted CD107alow and CD107ahigh cells, including CD44, CD73, CD90, and CD105

(Supplementary file 4, Figure 1—figure supplement 3). With the exception of CD105, all markers

showed overall similar expression patterns across CD107alow and CD107ahigh cell populations (n = 3

samples per group). CD105 expression was disproportionately present within CD107ahigh mesenchy-

mal cells (mean frequency 0.44% and 8.12% among CD107alow and CD107ahigh cells, respectively).

Table 1. Surface antigens expressed within human adventitial cells versus pericytes.

Results derived from Lyoplate analysis of CD34+CD146-CD45-CD31- adventitial cells or CD146+CD34-CD45-CD31- pericytes.

CD marker Protein name
Frequency in adventitial cells
(CD34+CD146-CD45-CD31-)

Frequency in pericytes
(CD146+CD34-CD45-CD31-)

CD90 Thy-1 97% 70%

CD91 Low-density lipoprotein-related receptor 97% 61%

CD95 Fas receptor (TNFRSF6) 42% 22%

CD98 Large neutral amino acid transporter (LAT1) 17% 65%

CD105 Endoglin 47% 14%

CD107a Lysosomal-associated membrane protein 1 (LAMP1) 32% 82%

CD107b Lysosomal-associated membrane protein 2 (LAMP2) 13% 46%

CD130 Interleukin six beta transmembrane protein 39% 61%

CD140a Platelet-derived growth factor receptor alpha (PDGFRA) 82% 13%

CD140b Platelet-derived growth factor receptor beta (PDGFRB) 97% 34%

CD142 Tissue factor, PTF, Factor III, or thromboplastin 47% 75%

CD147 Basigin (BSG) 99% 99%

CD151 Raph blood group 71% 100%

CD164 Sialomucin core protein 24 or endolyn 91% 97%

CD165 AD2 77% 21%

CD271 Nerve growth factor receptor (NGFR) 64% 10%
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Figure 1. Perivascular CD107a expression typifies a subset of perivascular cells within human subcutaneous white

adipose tissue (WAT). Immunofluorescent staining of CD107a (green) and CD34 (red) in human adipose tissue. (A)

Tile scan. (B) Larger artery in cross-section, including (B1) outer tunica adventitia, (B2) inner tunica adventitia, and

(B3) tunica media and intima. (C) Larger vein in cross-section, including (C1) high magnification of vessel wall. (D)

Smaller caliber artery in cross-section, including (D1) high magnification of vessel wall. (E) Capillary in longitudinal

cross-section, and (E1) high magnification. (F) Representative FlowJo plot to demonstrate partitioning

CD107alowCD31-CD45- and CD107ahighCD31-CD45- fractions from human stromal vascular fraction (SVF).

Frequency of CD107alow/high cells across samples is shown in Supplementary file 1 (N = 8 samples). (G)

Confirmatory immunofluorescent staining of FAC-sorted CD107alow and CD107ahigh mesenchymal cells

Figure 1 continued on next page
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CD107alow AT-derived stromal cells represent osteoblast precursor
cells
CD107alow and CD107ahigh cells were again derived from the CD31-CD45- fraction of adipose tissue

samples, and in vitro properties examined (Figure 2). Morphology of adherent CD107alow and

CD107ahigh cells was broadly similar, with a fibroblastic shape (Figure 2—figure supplement 1).

CD107alow cells demonstrated a higher proliferative rate in comparison to CD107ahigh cells

(Figure 2A). Among freshly isolated cells, the vast majority of colony forming units-fibroblast (CFU-

F) was identified within the CD107alow cell fraction (Figure 2B,C). Among equivalent cells at passage

4, an enrichment in CFU-F was still observed in CD107alow cells (Figure 2D). CFUs-osteoblast (CFU-

OB) likewise showed a similar enrichment among CD107alow cells. CFU-OB assays performed in

growth medium showed alkaline phosphatase (ALP)+ colonies among CD107alow cells only

(Figure 2E,F). The same experiment performed in osteogenic differentiation medium showed an

enrichment in CFU-OB among CD107alow cells (Figure 2G,H). Among passaged cells in sub-conflu-

ent monolayer, osteogenic differentiation was next examined (Figure 2I–O). ALP staining and quan-

tification demonstrated an enrichment among CD107alow cells (Figure 2I,J). Bone nodule formation

was likewise increased in CD107alow cells as compared to CD107ahigh counterparts (Figure 2K,L).

Osteogenic gene expression across timepoints of differentiation likewise showed an enrichment for

RUNX2 (Runt related transcription factor 2), ALPL, and osteopontin (SPP1) (Figure 2M–O). Thus, the

CD107alow mesenchymal component of human WAT contains a precursor cell population with high

osteoblastogenic potential.

CD107ahigh AT-derived stromal cells represent adipocyte precursor
cells
Converse experiments to assay adipogenesis were next performed among cell subsets with differen-

tial CD107a expression (Figure 3). Among freshly isolated cells, essentially all CFU-adipocyte (CFU-

AD) were found within the CD107ahigh cell population (Figure 3A,B). Next, sub-confluent CD107alow

and CD107ahigh cells were propagated under adipogenic differentiation conditions (Figure 3C–G).

Oil red O staining was significantly more abundant among the CD107ahigh cells (Figure 3C,D). Adi-

pogenic gene expression was next assessed along adipogenic differentiation (Figure 3E–G). All

marker gene transcripts showed significant enrichment among CD107ahigh cells in comparison to

CD107alow counterparts, including peroxisome proliferator-activated receptor gamma (PPARG), lipo-

protein lipase (LPL), and fatty acid-binding protein 4 (FABP4).

Finally, to confirm that CD107alow and CD107ahigh mesenchymal cell fractions both represented

multipotent precursor cells, parallel chondrogenic differentiation assays were performed in three

dimensional micromass culture (Figure 3—figure supplement 1). Here, both cell populations dem-

onstrated a progressive increase in cartilage associated gene expression after 7 d in chondrogenic

differentiation conditions. No significant differences in cartilage gene expression were observed

between CD107alow and CD107ahigh cell fractions (Figure 3—figure supplement 1A). Alcian blue

stained sections of micromass cultures at 21 d of differentiation likewise showed a similar appear-

ance between CD107alow and CD107ahigh cells (Figure 3—figure supplement 1B). Thus, CD107alow

and CD107ahigh subpopulations of human SVF both house multipotent mesenchymal cells, but with

considerably divergent osteoblastic and adipocytic differentiation potentials.

Figure 1 continued

(CD31-CD45-PI- cells). (H,I) Representative flow cytometry analysis of freshly isolated CD107alow and CD107ahigh

mesenchymal cells, including CD107a, CD34, and CD146. Frequency of expression is shown in relation to isotype

control (blue vs. red lines). Frequency of CD34+ and CD146+ cells across all samples is shown in

Supplementary file 2, 3 (N = 4 samples). Scale bars: 500 mm (A), 50 mm (B,C,G) and 10 mm (B1–B3,C1,D,D1,E,E1).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Comparison of CD107a expression with either aSMA or Gli1 in human adipose tissue.

Figure supplement 2. Perivascular CD107a immunohistochemical staining in diverse human adipose tissues.

Figure supplement 3. Flow cytometry of canonical human mesenchymal stem cell (MSC) markers among freshly

isolated CD107alow/high cells from a representative patient sample.
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Figure 2. Stem/osteoprogenitor cell identity of CD107alow mesenchymal cells. CD107alowCD31-CD45- and CD107ahighCD31-CD45- cells derived from

the same sample of human subcutaneous WAT were exposed to the indicated growth or osteogenic conditions. (A) Cell proliferation among

CD107alow and CD107ahigh mesenchymal cells, by MTS assays at 48 hr. (B–D) Fibroblastic colony formation frequency (CFU-F) among human CD107alow

and CD107ahigh mesenchymal cells, shown by (B) representative images among freshly isolated cells, (C) CFU-F quantification among freshly isolated

cells, (D) CFU-F quantification among passage 4 cells. Whole well images are shown. (E–H) Osteoblastic colony formation frequency (CFU-OB) detected

in human CD107alow and CD107ahigh cells. Experiments performed in growth medium (GM) (E,F) or osteogenic differentiation medium (ODM) (G,H).

Whole well images are shown. (I,J) Alkaline phosphatase (ALP) staining and photometric quantification at d 10 of osteogenic differentiation among

human CD107alow and CD107ahigh cells. Representative whole well and high magnification images are shown. (K,L) Alizarin red (AR) staining and

photometric quantification at d 10 of osteogenic differentiation among human CD107alow and CD107ahigh cells. Representative whole well and high

magnification images are shown. (M–O) Osteogenic gene expression among human CD107alow and CD107ahigh cells by qRT-PCR at d 3, 7, and 10 of

Figure 2 continued on next page
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CD107a traffics to the cell surface during early adipocyte
differentiation
Cell surface expression of CD107a results predominantly from trafficking of endolysosomal CD107a+

vesicles to the cell surface. To investigate, unpurified ASCs were exposed to growth conditions or

adipogenic differentiation conditions and cell surface CD107a was assessed by immunocytochemis-

try or flow cytometry (Figure 3H–J). After 3 d exposure to adipogenic conditions, a 12.03 fold

increase in immunostaining intensity and a 253.5% increase in the number of CD107ahigh cells were

noted. Flow cytometry across several other human cell types confirmed this finding, including FACS-

purified perivascular stem cells (PSCs) (Figure 3K) and culture-defined human bone marrow mesen-

chymal stem cells (BMSCs) (Figure 3L) (188.1–455.4% increase in CD107ahigh cell frequency). Parallel

experiments were performed under osteogenic differentiation conditions, which found no significant

increase in CD107a staining intensity (Figure 3—figure supplement 2). The increase in membranous

CD107a during early adipogenesis was reversed by vacuolin-1 (Vac-1), an inhibitor of Ca2+-depen-

dent fusion of lysosomes with the cell membrane. Treatment with Vac-1 significantly decreased the

frequency of CD107ahigh ASCs, and prevented an increase of cell surface CD107a by adipogenic

conditions (Figure 3M,N).

In order to confirm that exocytosis is a common feature of early adipogenic differentiation, exist-

ing single-cell RNA sequencing datasets of human and mouse AT-derived cells were re-assessed

(Merrick et al., 2019). Among human AT-derived cells, re-clustering and cell trajectory analysis iden-

tified early progenitor cells (expressing DPP4 and CD55), late progenitor cells (expressing GGT5 and

F3), as well as an intermediate cell type (middle progenitor cells) (Figure 3O–Q). KEGG terms for

exocytosis showed enrichment within early and middle progenitor cells, as visualized by heatmaps

across pseudotime (Figure 3R) and normalized expression of overall exocytosis gene activation

(Figure 3S). Similar results linking activation of exocytosis to early adipogenic differentiation were

obtained from mouse subcutaneous WAT (Figure 3—figure supplement 3; Merrick et al., 2019).

Here, after re-clustering and cell trajectory analysis (Figure 3—figure supplement 3A–C), normal-

ized expression of exocytosis gene activation identified similar trends as in human cells (Figure 3—

figure supplement 3D,E). Normalized exocytosis gene activation scores were again enriched within

early Dpp4-expressing progenitor cells in comparison to more mature Dlk1-expressing pre-

adipocytes.

Knockdown (KD) experiments in human ASCs and CD107alow/high cells did not identify a signifi-

cant functional role for CD107a in osteo/adipogenesis (Figure 3—figure supplement 4). SiRNA-

mediated KD of LAMP1 (encoding CD107a) showed no appreciable effect on the osteogenic differ-

entiation of human ASCs (Figure 3—figure supplement 4A–F). During adipogenesis, LAMP1 KD

ASCs and CD107alow adventicytes showed a modest increase in lipid droplet accumulation (Fig-

ure 3—figure supplement 4G,K,L,P,Q) and likewise a modest increase in expression of adipogenic

marker genes (Figure 3—figure supplement 4H–J,M–O). The high adipogenic differentiation

potential of CD107ahigh cells was not significantly altered with LAMP1 KD (Figure 3—figure supple-

ment 4P,Q). Thus, high expression of membranous CD107a, rather than having vital function in cel-

lular differentiation, correlates with exocytosis during early adipogenic differentiation.

Transcriptomic analysis suggests a progenitor cell phenotype for
CD107alow cells
Differences in differentiation potential were next investigated using transcriptomic analysis of

CD107alow and CD107ahigh stromal cells. RNA sequencing comparative analysis was performed

Figure 2 continued

differentiation, including (M) Runt related transcription factor 2 (RUNX2), (N) ALPL, and (O) Osteopontin (SPP1). Osteogenic differentiation examined in

N = 3 human cell preparations, and at least experimental triplicate. Dots in scatterplots represent values from individual wells, while mean and one SD

are indicated by crosshairs and whiskers. In column graphs, mean values and one SD are shown. *p<0.05; **p<0.01; ***p<0.01 in relation to

corresponding CD107alow cell population. Statistical analysis was performed using a two-tailed Student t-test (A–L) or two-way ANOVA followed by

Sidak’s multiple comparisons test (M–O). Experiments performed in at least biologic triplicate. Scale bars: 200 mm.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Representative morphology of confluent human CD107alow and CD107ahigh cells.
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Figure 3. Adipoprogenitor cell identity of CD107ahigh human mesenchymal cells and correlation to exocytosis during early adipogenic differentiation.

(A–G) CD107alowCD31-CD45- and CD107ahighCD31-CD45- cells derived from human subcutaneous WAT were exposed to adipogenic differentiation

conditions. (A,B) Adipocyte colony formation frequency (CFU-AD) detected in human CD107alow and CD107ahigh cells. Whole well images shown. (C,D)

Oil red O (ORO) staining and photometric quantification at d7 of adipogenic differentiation among human CD107alow and CD107ahigh cells.

Figure 3 continued on next page
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across these two stromal cells. Clear separation between gene expression profiles was observed

when comparing CD107alow with CD107ahigh stromal cells, as assessed by principal component anal-

ysis (Figure 4A). Further confirming our FACS purification, endothelial and inflammatory marker

genes were rarely or not expressed among CD107alow and CD107ahigh stromal cells (Figure 4—fig-

ure supplement 1). Progenitor cell markers were expressed among both CD107alow and CD107ahigh

stromal cells, with some subtle differences noted (Figure 4B). Transcripts of MYC, LEPR (Leptin

receptor), MCAM (CD146), and PDGFRA (Platelet-derived growth factor receptor a) while expressed

across all samples were enriched among CD107alow cells. Likewise, NES (Nestin), THY1 (CD90),

PDGFRB (Platelet-derived growth factor receptor b) and TBX18 (T-Box transcription factor 18) were

expressed across all samples, but more highly among CD107ahigh cells. Other typical MSC markers

were more evenly distributed across cell preparations, including CD44, and NT5E (CD73). Consistent

with in vitro differentiation potential, genes associated with adipogenic differentiation were highly

expressed among CD107ahigh stromal cells, such as FABP4 (Fatty acid-binding protein 4), LPL (Lipo-

protein lipase), PPARGC1A (PPARG coactivator 1 a), and CEBPA (CCAAT enhancer binding protein

a). In addition, negative regulators of adipogenesis were increased among CD107alow stromal cells,

such as KLF2 (Krüppel-like factor 2), KLF3, SIRT1 (Sirtuin 1), and DDIT3 (DNA Damage Inducible

Transcript 3) (Figure 4C; Banerjee et al., 2003; Pereira et al., 2004; Sue et al., 2008; Zhou et al.,

2015).

QIAGEN Ingenuity Pathway Analysis (IPA) showed that the activated pathways in CD107ahigh stro-

mal cells are associated with the positive regulation of adipogenesis, including, for example, white

adipose tissue browning pathway and Sirtuin signaling (Z scores 1.342 and 1.387; CD107ahigh com-

pared with CD107alow stromal cells; Figure 4D; Kurylowicz, 2019). Conversely, upregulated signal-

ing pathways in CD107alow stromal cells included Wnt/b-catenin signaling as well as pathways

associated with cellular respiration and metabolism, including Oxidative Phosphorylation and Gluta-

thione metabolism (Z scores �1; CD107ahigh compared with CD107alow stromal cells; Figure 4D and

Figure 4—figure supplement 2). In order to further evaluate differences in CD107a cell fractions,

pathway analyses were next cross-referenced with prior AT-derived single-cell RNA sequencing data

(see again Figure 3O). Highly enriched GO terms among CD107alow stromal cells were likewise

found to be enriched among DPP4+ cell fractions during ‘early’ pseudotime (Figure 4E). This

Figure 3 continued

Representative whole well and high magnification images shown. (E–G) Adipogenic gene expression among human CD107alow and CD107ahigh cells by

qRT-PCR at d 3, 7, and 10 of differentiation, including (E) Peroxisome proliferator-activated receptor-g (PPARG), (F) Lipoprotein lipase (LPL), and (G)

Fatty acid-binding protein 4 (FABP4). (H) Immunocytochemical staining of membranous CD107a in the presence of growth medium (GM) or adipogenic

differentiation medium (ADM) after 3 d using human, culture-defined adipose-derived stem cells (ASCs). CD107a immunoreactivity appears red, nuclear

counterstain appears blue. (I) Photographic quantification of membranous CD107a immunofluorescence under GM or ADM conditions. (J–L) Induction

of membranous CD107a expression after adipogenic differentiation across cell types, including (J) culture-defined human ASCs, (K) FACS-purified

human perivascular stem cells (PSC), and (L) culture-defined human BMSCs, assessed by flow cytometry after 3 d under GM or ADM conditions. (M,N)

Trafficking of CD107a to the cell surface during adipogenesis was inhibited after treatment with Vacuolin-1 (Vac-1, 1 mM), assessed by CD107a

immunostaining (M) and flow cytometry (N) after 3 d under GM and ADM conditions. The cell membrane was labeled using Wheat Germ Agglutinin

Conjugates (red), while overlap with CD107a immunostaining appears yellow, and DAPI nuclear counterstain appears blue. (O) Dimensional reduction

and unsupervised clustering of human stromal vascular fraction (SVF) adipogenic lineage from subcutaneous WAT revealed three cell groups. (P)

Trajectory analyses of human SVF adipogenic lineage, colored based on their unsupervised clustering identity. DPP4 (early) and GGT5 (late) expression

were used to identify trajectory origin. (Q) Pseudotemporal cell ordering along differentiation trajectories. Pseudotime is depicted from red to purple.

(R) Expression heatmap across pseudotime of genes associated with exocytosis. (S) Combined, normalized expression of exocytosis genes shows

enrichment (>1) in early progenitors (green shaded area), while more differentiated cells show reduced average expression. Dots in scatterplots

represent values from individual wells, while mean and one SD are indicated by crosshairs and whiskers. In column graphs, mean values and one SD are

shown. *p<0.05; **p<0.01; ***p<0.001. Statistical analysis was performed using a two-tailed Student t-test (B,D,I–L) or two-way ANOVA followed by

Sidak’s multiple comparisons test (E–G,N). Experiments performed in at least biologic triplicate. Black scale bar: 100 mm; white scale bar: 20 mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Chondrogenic differentiation among human CD107alow and CD107ahigh cells.

Figure supplement 2. No change in membranous CD107a during osteogenic differentiation among human ASCs.

Figure supplement 3. Single-cell RNA sequencing and cell trajectory analysis delineate exocytosis of adipocyte progenitors in mouse subcutaneous

white adipose tissue (WAT).

Figure supplement 4. Effect of LAMP1 knockdown (encoding CD107a) on osteogenic and adipogenic differentiation in human ASCs and CD107alow/

high cells.
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Figure 4. Bulk RNA sequencing among uncultured CD107alow and CD107ahigh mesenchymal cells and relationship to putative adipose cell hierarchy.

(A–F) Total RNA sequencing comparison of CD107alowCD31-CD45- and CD107ahighCD31-CD45- mesenchymal cells from a single human subcutaneous

WAT sample. (A) Principal component analysis among CD107alowCD31-CD45- and CD107ahighCD31-CD45- cells. (B) Heat map demonstrating mRNA

expression levels of stemness-related markers and perivascular cell markers among CD107alowCD31-CD45- and CD107ahighCD31-CD45- mesenchymal

cells. (C) Expression of adipogenic gene markers among CD107alowCD31-CD45- and CD107ahighCD31-CD45- mesenchymal cells, shown in heat map.

(D) Ingenuity pathway analysis (IPA) identified representative pathways that were upregulated (Z-score >0; red color) or downregulated (Z-score <0;

blue color) in CD107ahighCD31-CD45- compared with CD107alowCD31-CD45- mesenchymal cells. (E,F) Comparison of CD107ahigh/low bulk sequencing

data to human SVF single-cell sequencing data (see again Figure 3O–Q). (E) Pathways enriched in both CD107alow bulk RNA-seq and early pseudotime

genes derived from scRNA-seq. (F) Pathways enriched in both CD107ahigh bulk RNA-seq and late pseudotime genes derived from scRNA-seq.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Additional RNA sequencing analysis of CD107alow and CD107ahigh mesenchymal cells.

Figure supplement 2. Expression of wnt-related genes among CD107alowCD31-CD45- and CD107ahighCD31-CD45- mesenchymal cells.
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included terms associated with Wnt signaling as well as energy metabolism. Conversely, GO terms

enriched within CD107ahigh stromal cells were likewise enriched among GGT5+ cell fractions within

‘late’ pseudotime (Figure 4F). This included terms associated with the regulation of cellular prolifera-

tion, cell adhesion, as well as remodeling of extracellular matrix.

CD107alow rather than CD107ahigh cells induce ectopic bone formation
We next sought to extend our findings to xenotransplantation studies. If a CD107alow mesenchymal

cell population over-represents stem/osteoblast precursor cells, we hypothesized that CD107alow

cells would preferentially form ectopic bone within an intramuscular transplantation model (Figure 5;

James et al., 2012c; Meyers et al., 2018b). First, CD107alow and CD107ahigh cell subsets were

derived from the same patient sample and mixed mechanically with a demineralized bone matrix

Figure 5. CD107alow mesenchymal cells promote ectopic bone formation in vivo. (A) FACS-purified

CD107alowCD31-CD45- and CD107ahighCD31-CD45- mesenchymal cells from the same human subcutaneous WAT

sample were implanted intramuscularly in equal numbers in the hindlimbs of NOD-SCID mice. A demineralized

bone matrix (DBM) carrier was used, and an acellular control used as a further comparison. Bone formation was

assayed after eight wks. Further details on implant composition and animal allocation are found in

Supplementary file 5. (B) Representative micro-computed tomography (mCT) reconstruction images of the

implant site among control (DBM only), CD107alow, and CD107ahigh cell grafts. Mineralized bone appears gray. (C–

E) mCT based quantification of ectopic bone formation, including (C) Bone volume (BV), (D) fractional Bone volume

(BV/TV), and (E) bone surface (BS). (F) Representative histologic appearance by routine H and E of the implant

sites among control (DBM only), CD107alow, and CD107ahigh cell grafts. (G–I) Bone histomorphometric

measurements among each treatment group, including (G) osteoblast number (N.Ob), (H) osteoblast number per

bone surface (N.Ob/BS), and (I) osteocyte number (N.Ot). (J,K) Representative alkaline phosphatase (ALP) staining

appearing blue (J), and photographic quantification (K). (L,M) Representative Osteocalcin (OCN)

immunohistochemical staining (L), and photographic quantification (M). OCN immunostaining appears red, while

DAPI nuclear counterstain appears blue. Dots in scatterplots represent values from individual implants, while mean

and one SD are indicated by crosshairs and whiskers. M, muscle. *p<0.05; **p<0.01; ***p<0.001. Statistical analysis

was performed using a one-way ANOVA followed by Tukey’s post hoc test. N = 8 implants per group. Black and

white scale bars: 50 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Persistence of human CD107alow and CD107ahigh cells within intramuscular implants within

NOD-SCID mice.
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putty carrier (DBX Putty, MTF Biologics) before intramuscular implantation in NOD-SCID mice. The

carrier without cells was used as an acellular control. Details of cell implant composition and animal

allocation are summarized in Supplementary file 5. Intramuscular implants were imaged by micro-

computed tomography (mCT) at 8 weeks, demonstrating an accumulation of bone tissue among

CD107alow laden implants in relation to either CD107ahigh implants or acellular control (Figure 5A).

Quantitative mCT analysis demonstrated a significant increase in bone volume (BV, 97.7% increase),

fractional bone volume (BV/TV, 73.4% increase), and bone surfaces (BS, 91.4% increase) among

CD107alow as compared to CD107ahigh implants (Figure 5B–D). Albeit to a lesser degree, CD107a-
high cells did exhibit bone-forming potential in comparison to acellular control (292.1–473.3%

increase in mCT quantitative metrics, Figure 5B–D). Histologic analysis revealed conspicuous areas

of woven bone among CD107alow laden implants, which were not commonly seen among CD107a-
high implants (Figure 5E). Bone histomorphometric analysis confirmed these observations, demon-

strating significantly increased osteoblast number (N.Ob, 237.5% increase), increased osteoblast

number per bone surface (N.Ob/BS, 232.5% increase), and osteocyte number (N.Ot, 460.3%

increase) (Figure 5F–H). ALP staining and semi-quantitative analysis confirmed an overall increase in

serial sections of CD107alow treated implants (Figure 5I,J, 14.3% increase among CD107alow implant

sites). Enrichment in the terminal osteogenic differentiation marker osteocalcin (OCN) was also con-

firmed among CD107alow implants, shown by immunostaining and semi-quantitative analysis

(Figure 5K,L, 345.3% increase among CD107alow implant sites). Detection of human nuclear antigen

(HNA) among implant sites confirmed the persistence of human cells across both groups, which

were overall similar in frequency (Figure 5—figure supplement 1).

CD107alow rather than CD107ahigh mesenchymal cells induce spine
fusion
Having observed that CD107alow cell preparations demonstrate enhanced ectopic bone formation,

we next challenged these cells to a posterolateral lumbar spine fusion model within athymic rats

(Figure 6; Chung et al., 2014; Lee et al., 2015). CD107alow and CD107ahigh cell subsets from

patient-identical samples were implanted bilaterally in an L4-L5 spine fusion model (Figure 6—figure

supplement 1). Details of cell implant composition and animal allocation are summarized in

Supplementary file 6. A qualitative increase in radiodensity was observed among CD107alow

treated animals within the spine fusion bed over the post-operative period by high-resolution roent-

genography (Figure 6—figure supplement 2). Progressive increase in density of the implant sites

was confirmed by dual-energy X-ray absorptiometry (DXA)-based quantification, with a gradual and

significant increase in CD107alow treated spinal implants in comparison to either CD107ahigh treated

cells or control (Figure 6A). Fusion rate was next assessed by a validated manual palpation scoring

(Figure 6B; Grauer et al., 2001). Consistent with prior studies (Chung et al., 2014), after 8 weeks

acellular control-treated animals showed 14.3% fusion (1/7 animals). Analyses performed after 8

weeks demonstrated 62.5% spine fusion among CD107alow treated animals (6/8 animals). In compar-

ison, CD107ahigh treated animals showed 37.5% fusion (3/8 animals). mCT imaging and reconstruc-

tions demonstrated lack of bone bridging within the spinal fusion segments of control-treated and

CD107ahigh treated implant sites (Figure 6C). In comparison, more robust evidence of bone bridging

was observed among CD107alow spine fusion segments (Figure 6C). Quantitative mCT analysis dem-

onstrated a significant increase in bone volume (BV), fractional bone volume (BV/TV), and bone surfa-

ces (BS) among CD107alow implant sites in comparison to acellular control (Figure 6D–F, 58.6–

80.7% increase across mCT metrics). In contrast, CD107ahigh spine fusion segments demonstrate no

statistically significant change in mCT assessments in comparison to acellular control (Figure 6D–F,

15.3–25.2% change in comparison to acellular control). These findings were confirmed using histo-

logic and histomorphometric assessments of the spinal fusion segment across treatment groups

(Figure 6G–J). Histologic analysis revealed conspicuous areas of woven bone among CD107alow

implants, which were not commonly seen among CD107ahigh implants (Figure 6G). Bone histomor-

phometric analysis confirmed these observations, demonstrating significantly increased osteoblast

number (172.2% increase among CD107alow implant sites in comparison to CD107ahigh implant

sites), increased osteoblast number per bone surface (183.5% increase), and osteocyte number

(357.1% increase) (Figure 6H–J). ALP enzymatic staining and OCN immunohistochemical staining

confirmed the above findings (Figure 6K–N). In summary, CD107alow but not CD107ahigh mesenchy-

mal cell demonstrate improvements in bone-forming potential across two orthopaedic models.
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Figure 6. CD107alow mesenchymal cells induce spine fusion in vivo. FACS-purified CD107alowCD31-CD45- and

CD107ahighCD31-CD45- mesenchymal cells from the same human subcutaneous WAT sample were implanted in

equal numbers in a posterolateral spinal fusion model in athymic rats. A demineralized bone matrix (DBM) carrier

was used, and an acellular control used as a further comparison. Animals were analyzed at up to eight wks post-

operatively. (A) Bone mineral density (BMD) assessed by DXA (dual-energy X-ray absorptiometry) within the

lumbar implantation site, at 0, 4, and 8 wks. (B) Spine fusion rate, assessed by manual palpation after eight wks. *:

CD107alow compared with acellular control. (C) Representative micro-computed tomography (mCT) reconstruction

images of the spine fusion site among CD107alow and CD107ahigh treated samples, in comparison to acellular

control. Images are shown from the dorsal aspect. (C1) Corresponding high magnification mCT reconstruction of

the fusion site. (C2) Corresponding coronal mCT cross-sectional image. (D–F) mCT-based quantification of bone

formation within the spine fusion site, including (D) Bone volume (BV), (E) fractional Bone volume (BV/TV), and (F)

bone surface (BS). (G) Representative histologic appearance by routine H and E of the implant sites among control

(DBM only), CD107alow, and CD107ahigh cell grafts within the spine fusion site. (H–J) Bone histomorphometric

measurements among each treatment group, including (H) osteoblast number (N.Ob), (I) osteoblast number per

bone surface (N.Ob/BS), and (J) osteocyte number (N.Ot). (K,L) Representative alkaline phosphatase (ALP) staining

appearing blue (K), and photographic quantification within the spine fusion site (L). (M) Representative Osteocalcin

Figure 6 continued on next page
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Discussion
Mesenchymal progenitor cells are broadly distributed in post-natal organs, where they are concen-

trated principally in perivascular areas. Microvascular pericytes were first recognized to include such

progenitors since they grow into mesenchymal stem cells in culture (Crisan et al., 2008). The outer-

most layer enwrapping arteries and veins, or tunica adventitia, that used to be considered as a mere

fibroblast-populated collagen sheath anchoring vessels within tissues, is also home to presumptive

MSCs (Corselli et al., 2012; Kramann et al., 2016). Here, we have used an antibody array targeting

all human CD surface markers to identify several novel antigens expressed by human adipose tissue-

resident perivascular cells. We found, among other surface antigens, that CD107a, aka LAMP-1, is

expressed at the surface of subsets of adventitial cells and pericytes, which was confirmed in terms

of gene expression on RNA sequencing libraries, and corroborated by immunohistochemistry, sur-

face CD107a being co-expressed with canonical markers of pericytes and adventitial cells. Further,

flow cytometry analysis of the total stromal vascular fraction extracted from adipose tissue showed a

continuum of non-endothelial, non-hematopoietic CD107a expressing cells that could be gated back

to pericytes and adventitial cells. Altogether, these results confirmed unequivocally that surface

CD107a/LAMP-1, used generally as a marker of NK cell activity (Bryceson et al., 2005), is present

on subsets of human MSC-related perivascular cells, and established the conditions for the purifica-

tion of these cells by flow cytometry.

Albeit not described before at the surface of human pericytes and other perivascular cells,

CD107a has been earlier detected on human bone marrow and dental conventionally cultured

MSCs, where it binds the enamel matrix protein amelogenin and in turn induces cell proliferation

(Huang et al., 2010). Besides, CD146+CD107a+ human bone marrow MSCs have been recently

described as endowed with the highest immunomodulatory and secretory, hence therapeutic,

potential in experimental joint inflammation (Bowles et al., 2019). Besides suggested association of

surface CD107a with progenitor cell proliferation and immunomodulation related tissue repair

(Bowles et al., 2019; Huang et al., 2010), lysosomal CD107a has also been linked to neural stem

cell potential (Yagi et al., 2010). Here, we show that surface expression of CD107a divides adipo-

cyte- from osteoblast precursors within human perivasculature. Adipocyte progenitor distribution

was virtually confined to the CD107ahigh cell subset; in agreement, adipogenic potential in culture

was restricted to this cell compartment. However, knockdown of CD107a in ASCs slightly promoted

adipogenic differentiation, suggesting that CD107a can be used for identification of functionally rel-

evant subsets, which is likely not explained by intrinsic function of CD107a protein. CD107a is

thought to be responsible for maintaining the structural integrity of the lysosomal compartment

(Eskelinen, 2006). Lysosomes provide the degradative enzymes for autophagy and are involved in

autophagy regulation, primarily through its relationship with the master kinase complex, mTORC1

(Mrschtik and Ryan, 2015; Yim and Mizushima, 2020). Therefore, CD107a may also play an essen-

tial role in autophagy, which itself has been shown crucial for adipocyte differentiation (Guo et al.,

2013). Whether CD107ahigh cells enhance adipogenesis by promoting autophagy is an interesting

and worthy follow-up topic. Conversely, osteogenic ability in vitro was almost totally restricted to

purified CD107alow cells, which also exhibited the highest CFU-F potential. We confirmed the exclu-

sive bone-forming potential of CD107alow cells in vivo, in situations of ectopic intramuscular ossifica-

tion and lumbar spine fusion. Thus, CD107alow cells likely represent a more progenitor cell, while

Figure 6 continued

(OCN) immunohistochemical staining (M), and photographic quantification within the spine fusion site (N). OCN

immunostaining appears red, while DAPI nuclear counterstain appears blue. Dots in scatterplots represent values

from individual animal measurements, while mean and one SD are indicated by crosshairs and whiskers. #p<0.05

and ###p<0.001 in relation to corresponding 0 wk timepoint; *p<0.05; **p<0.01; ***p<0.001. Statistical analysis was

performed using a two-way ANOVA (A) or one-way ANOVA followed by Tukey’s post hoc test (D–N). N = 6–8

animals per group. Black and white scale bars: 50 mm.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Illustration of procedure for posterolateral lumbar spine fusion in athymic rats.

Figure supplement 2. High-resolution roentgenography (XR) demonstrates ossification of spinal fusion implants

within CD107alow treated sites.
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CD107ahigh cells are a more mature, differentiated cell population. Similar results are found in the

hematopoietic system, where the most primitive hematopoietic stem cells are Thy-1low, whereas

Thy-1high cells belong to a well-defined blood cell lineage (Spangrude et al., 1988).

The natural function of these ubiquitous perivascular mesenchymal progenitor cells remains a

dominant, yet unanswered question. While subsets of mouse pericytes are known, in contexts of

experimental disease or injury, to give rise in situ to white adipocytes, follicular dendritic cells, myo-

blasts, and myofibroblasts (Dellavalle et al., 2011; Dulauroy et al., 2012; Krautler et al., 2012;

Murray et al., 2017; Tang et al., 2008), the osteogenic and chondrogenic potentials present in

these microvascular cells are unlikely to be ever used in the turnover and repair of soft tissues. On

the other hand, a contribution to blood vessel pathologic remodeling of perivascular presumptive

MSCs has been recognized, as osteoblast and smooth muscle cell forerunners for calcific arterioscle-

rosis and atherosclerosis, respectively (Kramann et al., 2016). How such pathogenic side effects

exerted by perivascular progenitors are counterbalanced by beneficial contributions to tissue

homeostasis is not known, but might be related to differential recruitment of uni- or multipotent pro-

genitors, as well as activation in these cells of mechanisms independent of cell differentiation such as

growth factor production or cell contact-mediated immunomodulation (Pittenger et al., 2019). A

precise phenotypic and functional characterization of perivascular progenitor cells is a requisite for

the understanding of the role of these cells in developmental, regenerative, and pathophysiologic

processes. In particular, unwrapping the intrinsic heterogeneity of these cells is a prioritized, ongoing

process.

Although abundant evidence of the osteogenic potential of perivascular cells exists in humans

and mice (Askarinam et al., 2013; Chung et al., 2014; Corselli et al., 2012; Crisan et al., 2008;

James et al., 2017; James and Péault, 2019; James et al., 2012a; James et al., 2012a;

James et al., 2012b; James et al., 2012c; Kramann et al., 2016; Lee et al., 2015; Meyers et al.,

2018b; Meyers et al., 2018b; Tawonsawatruk et al., 2016; Wang et al., 2020; Xu et al., 2019),

there is recent proof that this competence is restricted to discrete cell subsets. For instance, CD10

expression marks a subset of human adipose tissue adventitial cells with higher bone-forming poten-

tial (Ding et al., 2019), and the highest calcification potential is attributed to mouse adventitial cells

co-expressing CD34 and PDGFRa (Wang et al., 2020). On the other hand, human perivascular cells

expressing the ROR2 Wnt receptor exhibit stronger chondrogenic ability than ROR2 negative coun-

terparts (Dickinson et al., 2017). Therefore, the concept is emerging of a developmental micro-het-

erogeneity of perivascular cells, the surrounding niches being suggested to host a whole hierarchy

of mesenchymal progenitor cells already documented to include adipocyte-, chondrocyte-, and oste-

oblast progenitors. Although the data herein were obtained on abdominal subcutaneous adipose tis-

sue, our preliminary results indicate that the same cell partition can be achieved in other fat depots.

Moreover, we have observed the same restriction of adipogenic and osteogenic potentials, respec-

tively, to CD107ahigh and CD107alow perivascular cells sorted from the human placenta, which sug-

gests the broad and possibly ubiquitous distribution of these functionally distinct subpopulations.

Strikingly, these tissues are not natural sites of ossification, which raises the recurring question of the

physiologic significance of these unrelated developmental potentials. It is conceivable that meso-

dermal cell turnover and regeneration in adult tissues be mediated exclusively by multipotent, MSC

like cells, irrelevant potentials in a given tissue being always repressed. It is more difficult to justify

that progenitors committed to a given cell compartment be maintained in a tissue devoid of this

very cell lineage, such as osteogenic dedicated progenitors in adipose tissue, at the expense of adi-

pogenic cells. Since the hypothesis that these unrelated progenitors can be mobilized through blood

circulation to drive regeneration in other organs is not supported for the moment, we can only spec-

ulate that such atypical differentiation potentials are irreversibly associated with other tissue repair

mechanisms of broader applicability, which remain to be identified. Further characterization of the

role of CD107a at the cell surface may contribute to clarifying this issue.

Our in vitro studies, coupled with single-cell transcriptomics, suggest that CD107a, an endolyso-

some transmembrane protein, traffics to the cell surface during early adipogenesis, suggesting a

specific function in this cell lineage. Future studies will tell whether CD107a/LAMP-1, a unique novel

marker of the perivascular mesenchymal stem cell hierarchy, will also shed light on the tissue regen-

eration mechanisms initiated in this niche.
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Materials and methods

Immunohistochemistry and microscopy
All human tissues were obtained under Johns Hopkins University institutional IRB approval with a

waiver of informed consent. For histology, human subcutaneous fat tissue was obtained from three

anonymized female donors from the abdominal or thigh area. Human fat tissue was embedded in

optimal cutting temperature compound (OCT) (Sakura, Torrance, CA), and cryo-sectioned at 30 mm

thickness. For immunofluorescent staining, all sections were blocked with 5% goat serum in PBS for

1 hr at room temperature (RT). The following primary antibodies were used: anti-aSMA (RRID:AB_

1951138, 1:100), anti-CD107a (RRID:AB_1727417/RRID:AB_10719137/RRID:AB_470708/RRID:AB_

449893, 1:100), anti-CD31 (RRID:AB_448167/RRID:AB_726362, 1:100), anti-CD34 (RRID:AB_

1640331, 1:100), anti-CD146 (RRID:AB_2143375, 1:100), or anti-Gli1 (RRID:AB_880198, 1:100; see

antibody details in Supplementary file 7) for overnight incubation at 4o C. Next, anti-rabbit Alexa

Fluor 647-conjugated (RRID:AB_2722623, 1:200), anti-mouse Alexa Fluor 488-conjugated (RRID:AB_

2688012, 1:200), anti-goat Alexa Fluor 647-conjugated (RRID:AB_2687955, 1:200), or anti-rat Alexa

Fluor 647-conjugated secondary antibodies (RRID:AB_2864291, 1:200, Abcam, San Francisco, CA)

were used (incubation 2 hr at RT). DAPI mounting medium was used (RRID:AB_2336788, Vector lab-

oratories, Burlingame, CA), and visualized using a Zeiss 800 confocal microscope (Zeiss, Thornwood,

NY). For colorimetric immunohistochemistry staining, sections were blocked with 2.5% horse serum

for 20 min at RT. Anti-CD107a primary antibody (RRID:AB_470708, Abcam, 1:100) was added and

incubated overnight at 4˚ C. Next, incubation with alkaline phosphatase (AP) polymer anti-mouse

IgG reagent was performed for 30 min (RRID:AB_2336535, MP-5402, Vector laboratories), followed

by AP substrate solution (RRID:AB_2336847, SK-5100, Vector laboratories), followed by hematoxylin

counterstain and microscopic imaging using a Leica DM6 B microscope (Leica Microsystems Inc,

Wetzlar, Germany).

Adipose-derived stromal cells (ASCs) isolation and FACS isolation of
human AT cell populations
For cell isolation, human lipoaspirate was obtained from healthy adult donors and was stored no

more than 72 hr at 4˚C before processing with some modifications from prior protocols

(Wang et al., 2019; Xu et al., 2019). Patient gender and donor area are shown in

Supplementary file 1. Equal volume of phosphate-buffered saline (PBS) was used to wash lipoaspi-

rates. The washed lipoaspirate was digested with 1 mg/ml type II collagenase (Washington Biochem-

ical; Lakewood, NJ) in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 0.5% bovine serum

albumin (Sigma-Aldrich, St. Louis, MO) at 37˚C for 60 min under agitation, followed by centrifugation

to remove adipocytes. The cell pellet was resuspended and incubated in red cell lysis buffer (155

mM NH4Cl, 10 mM KHCO3, and 0.1 mM EDTA) at RT for 10 min. After centrifugation, the stromal

vascular fraction (SVF) was resuspended in PBS and filtered at 40 mm. In select studies, SVF was cul-

ture- expanded as adipose-derived stromal cells (ASCs) for further evaluation. Human ASCs were

cultured and used for experiments at passage 2–6. Fluorescence activated cell sorting (FACS) was

next performed using a Beckman MoFlo (Beckman, Indianapolis, IN), with analysis performed using

the FlowJo software (RRID:SCR_008520, BD Biosciences, San Jose, CA). Cells were incubated with

anti-CD45-allophycocyanin-cyanin 7 (RRID:AB_396891, 1:30; BD Pharmingen, San Diego, CA), anti-

CD31-allophycocyanin-cyanin 7 (RRID:AB_2738350, 1:100, BD Pharmingen), anti-CD34 (RRID:AB_

11154586, 1:60, BD Pharmingen), anti-CD146 (RRID:AB_324069, 1:100, Bio-Rad, Hercules, CA), and/

or anti-CD107a-allophycocyanin (RRID:AB_1727417, 1:20; BD Pharmingen), for 20 min on ice. Propi-

dium iodide (PI) staining solution (BD Pharmingen) was used to gate out non-viable cells. See

Supplementary file 7 for a list of antibodies used. Gating was performed to isolate either CD146+

pericytes (CD146+CD34-CD31-CD45-), CD34+ adventicytes (CD34+CD146-CD31-CD45-), CD107alow

cells (CD107alowCD31-CD45-) or CD107ahigh cells (CD107ahighCD31-CD45-). Cell surface markers

were analyzed using either Lyoplate (BD Biosciences) or flow cytometry. For flow cytometry, cells

were incubated with the following antibodies for 20 min on ice: anti-CD34 PE-CF594 (RRID:AB_

11154586), anti-CD146 FITC (RRID:AB_324069), anti-CD44 Alexa Fluor 700 (RRID:AB_10645788),

anti-CD73 PE (RRID:AB_2033967), anti-CD90 FITC (RRID:AB_395969), anti-CD105 PE-CF594 (RRID:

AB_11154054), and anti-CD107a APC (RRID:AB_1727417, Supplementary file 7). For select studies
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using culture-expanded cells, flow cytometry was performed after trypsinization and cell re-suspen-

sion in HBSS (Life Technologies, Gaithersburg, MD) with 0.5% bovine serum albumin (Sigma-Aldrich).

All cells were cultured at 37˚C in a humidified atmosphere containing 95% air and 5% CO2. Unless

otherwise stated, cells were cultured in Endothelial Cell Growth Medium-2 (EGM-2; Lonza, Gaithers-

burg, MD).

Human bone marrow mesenchymal stem cell isolation
Bone marrow mesenchymal stem cells (BMSCs) from anonymized human femur and tibia were iso-

lated using previously reported methods (Xu et al., 2019). Marrow cells were flushed with PBS and

passed through a 70 mm cell strainer (BD Biosciences) to obtain single cells, which were seeded into

T75 flasks. Non-adherent cells were removed after 5 d and medium was changed every 3 d. BMSCs

were cultured in growth medium consisting of DMEM, 15% fetal bovine serum (FBS; Gibco, Grand

Island, NY), 1% penicillin/streptomycin (Gibco).

Identification of novel human perivascular cell markers using lyoplate
The BD Lyoplate Human Cell Surface Marker Screening Panel contains 242 purified and lyophilized

monoclonal antibodies to cell surface markers, along with AlexaFluor 647 conjugated goat anti-

mouse Ig and goat anti-rat Ig secondary antibodies, distributed in three 96-well plates, as well as

mouse and rat isotype controls for assessing isotype-specific background. The Lyoplate array was

used according to manufacturer’s instructions. Aspirated human subcutaneous fat was digested with

collagenase, washed by centrifugation and the SVF recovered as described above. After washing

and red cell lysis, SVF cells were stained with the following reagents: DAPI 1/100 (1 mg/ml final),

FITC-CD146 1/40, PE-CD45 1/20, PE-Cy7-CD34 1/33. Using a multi-channel pipette, 100 ml aliquots

of antibody stained SVF (500,000 to 1 million cells) were distributed in the wells, and 50 ml of recon-

stituted Lyoplate antibody solution were added to each well according to the template. Plates were

incubated on ice in the dark for 30 min, then cells were washed twice by adding 100 ml of staining

solution to each well and spinning at 300xg for 5 min. 100 ml of 4% paraformaldehyde (PFA) were

added to each well and incubated at RT for 30 min. Labeled cells were washed again and either

stored at 4˚C or analyzed directly on a LSR II flow cytometer (BD Biosciences).

Transcriptomics
In select experiments, global gene expression analysis of CD107alowCD31-CD45- and CD107a-
highCD31-CD45- cells from adipose tissue was performed. The RNA content of CD107alow and

CD107ahigh cells was detected by total RNA sequencing. Briefly, total RNA was extracted from

CD107alow and CD107ahigh cells with Trizol (Life Technologies). After purification and reverse tran-

scription, cDNA samples were sent to the JHMI Transcriptomics and Deep Sequencing Core and

quantified by deep sequencing with the Illumina NextSeq 500 platform (Illumina, San Diego, CA).

Data were analyzed using software packages including Partek Genomics Suite (RRID:SCR_011860),

Spotfire DecisionSite with Functional Genomics (RRID:SCR_008858), and QIAGEN Ingenuity Pathway

Analysis (RRID:SCR_008653).

Single-cell RNA sequencing (scRNA-seq)
ScRNA-seq data were obtained from the Gene Expression Omnibus (GEO) repository, accession

number GSE128889 (GSM3717979, GSM3717977). Initial quality control removed cells express-

ing >200 and<6000 genes and a mitochondrial content >5%. Data normalization, dimensional reduc-

tion and clustering were conducted in Seurat (RRID:SCR_016341) as previously described in the

original publication with the exception of altered clustering resolutions. Trajectory plots were gener-

ated in Monocle (RRID:SCR_018685) as previously described. For exocytosis pathway activation, a

gene list of exocytosis activating/promoting genes was generated from the previously annotated

KEGG pathway. Gene lists were filtered for genes that met the Monocle cutoff criteria as an

expressed gene (expressed in a minimum of 10 cells). Expression levels were normalized first for

individual cell UMI counts, then to the average gene expression across the whole sample population.

This normalized expression across pseudotime was displayed following average with nearest neigh-

bors. Values above one indicate enriched expression of genes associated with exocytosis while val-

ues below one indicate expression below population averages. Pathway analyses were conducted
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on CD107alow and CD107ahigh cells from bulk RNA-seq experiments, as well as on early- and late-

expressing, pseudotemporally-regulated genes derived from scRNA-seq data.

Osteogenic differentiation assay and ALP/Alizarin red staining
For osteogenic differentiation, cells were seeded at the density of 2.5 � 105/ml in 12- or 24-well

plates. Upon confluency, medium was changed to osteogenic differentiation medium, composed of

DMEM, 10% FBS (Gibco), 1% penicillin/streptomycin, with 50 mM ascorbic acid, 10 mM b-glycero-

phosphate, and 100 nM dexamethasone (Sigma-Aldrich) (Xu et al., 2019). Medium was changed

every 3 d. Leukocyte Alkaline Phosphatase Kit (Sigma-Aldrich) was used for alkaline phosphatase

staining at 3 or 7 d of differentiation. Image J (RRID:SCR_003070) was used to detect the integrated

density of ALP staining. Alizarin red S (Sigma-Aldrich) was used to stain cultures at 7 or 10 d of dif-

ferentiation to detect mineralization. Next, calcium precipitate was dissolved with 0.1N sodium

hydroxide and quantified by absorbance at 548 nm. Experiments were performed in N = 3 biological

replicates, and in experimental triplicates in each case.

Adipogenic differentiation assay and oil red O staining
For adipogenic differentiation, cells were seeded at the density of 2.5 � 105/ml in 12- or 24-well

plates. Upon subconfluency, adipogenic differentiation medium (DMEM, 1% penicillin/streptomycin,

10% FBS with 1 mM dexamethasone, 200 mM indomethacin, 10 mg/ml insulin, and 500 mM 3-isobutyl-

1-methylxanthine (Sigma-Aldrich)) was used. Medium was changed every three d. Cells were fixed

with 4% PFA and stained with Oil Red O solution at 5 to 7 d of differentiation (Meyers et al.,

2018a). Experiments were performed in N = 3 biological replicates, and in experimental triplicates

in each case.

Chondrogenic differentiation assay and Alcian blue staining
For chondrogenic differentiation, cells were seeded at high-density micromass environment (1 �

107/ml, 10 ml/drop) in 12-well plates and cultured in 37˚C. After 4 hr, chondrogenic differentiation

medium (DMEM, 1% penicillin/streptomycin, 10% FBS with 10 ng/ml transforming growth factor-b3

(R and D Systems, Minneapolis, MN), 100x ITS+ Premix (Corning Incorporated, Corning, NY), 50 mg/

ml ascorbic acid, 40 mg/ml proline, 100 mg/ml pyruvate, and 100 nM dexamethasone (Sigma-

Aldrich)) was added. Medium was changed every three d. Cells were fixed with 4% PFA and embed-

ded in OCT for cryosectioning at 18 mm thickness. Slides were stained with Alcian Blue and Fast

Red.

Proliferation assay
Proliferation assays were performed in 96 well plates (2 � 103 cells/well) and measured at 72 hr using

the CellTiter96 AQueous One Solution Cell Proliferation Assay kit (MTS, G358A; Promega, Madison,

WI). Briefly, 20 ml of MTS solution was added to each well and incubated for 1 hr at 37˚C. The absor-

bance was assayed at 490 nm using Epoch microspectrophotometer (Bio-Tek, Winooski, VT).

CFU assay
For all CFU assays, 1,000 cells / well were seeded in 6-well plates. For CFU-F analysis, cells were cul-

tivated for 14 d in growth medium, fixed with 100% methanol and stained with 0.5% crystal violet.

For CFU-OB assays, cells were cultivated for 7 d in growth medium, followed by 3 d culture in osteo-

genic differentiation medium followed by alkaline phosphatase staining. For CFU-AD assays, cells

were cultured for 8 d in growth medium, followed by 8 d in adipogenic differentiation medium, fol-

lowed by Oil red O staining. For quantification, the total number of positive colonies was calculated

per well. All CFU assays were performed with N = 6 wells per group.

Immunocytochemistry
Cells were seeded at the density of 1.5 � 105/ml in EZ SLIDE (Merck Millipore, Billerica, MA). After

confluence, medium was changed to osteogenic differentiation medium or adipogenic differentia-

tion medium for 3 d. To visualize the membranous expression of CD107a, cells were directly stained

with anti-CD107a-allophycocyanin (RRID:AB_1727417, 1:20; BD Pharmingen) for 20 min at 4℃. Then
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cells were washed with PBS and fixed with 4% PFA, followed by DAPI mounting medium (RRID:AB_

2336788, Vector laboratories).

Vacuolin-1 treatment
To inhibit exocytosis, cells were pre-treated with vacuolin-1 (1 mM; Sigma-Aldrich) for 24 hr before

adipogenic differentiation medium was added. Cells were incubated in the presence or absence of

vacuolin-1 (1 mM) in adipogenic differentiation medium for 3 d. Surface CD107a expression was

detected by flow cytometry or confocal microscopy (Zeiss 800). For immunofluorescence staining,

the cell membrane was labeled using Wheat Germ Agglutinin Conjugates (Thermo Fisher Scientific,

Waltham, MA).

siRNA knockdown
In select experiments, siRNA-mediated knockdown of LAMP1 was performed among primary human

ASCs prior to osteogenic or adipogenic differentiation. LAMP1 siRNA (Cat# s8080 and s8082) and

negative control siRNA (Cat# 4390843) were obtained from Thermo Fisher Scientific. TransIT-LT1

Transfection Reagent (Mirus Bio, Madison, WI) was used as described by the manufacturer. The

medium was changed after 4 hr. Validation by qRT-PCR was performed.

Real-time polymerase chain reaction
Gene expression was analyzed with quantitative real-time polymerase chain reaction (qRT-PCR)

(Xu et al., 2019). Total RNA was isolated from cells using TRIzol (Life Technologies). Next, RNA was

reverse transcribed into cDNA by iScript cDNA Synthesis Kit (Bio-Rad) following manufacturer’s

instructions. SYBR Green PCR Master Mix (Life Technologies) was used for RT-PCR. See

Supplementary file 8 for primer information. N = 3 wells per group were used, with all studies per-

formed in biologic triplicates.

Western blot
Proteins were extracted from cultured cells following lysis in ice cold RIPA buffer (Thermo Scientific)

with protease inhibitor cocktail (Cell Signaling Technology, Danvers, MA, USA). Proteins were sepa-

rated by SDS–polyacrylamide gel electrophoresis and transferred onto a nitrocellulose membrane.

The blotted nitrocellulose membranes were blocked with 5% bovine serum albumin for 1 hr and

then probed with primary antibodies at 4˚C overnight. Finally, membranes were incubated with a

horseradish-peroxidase (HRP)-conjugated secondary antibody and detected by ChemiDoc XRS+ Sys-

tem (Bio-rad). Quantification of protein bands was performed using Image J software (RRID:SCR_

003070).

Intramuscular implantation
Animals were housed and experiments were performed in accordance with institutional guidelines at

Johns Hopkins University under ACUC approval. A DBX putty (courtesy of Musculoskeletal Trans-

plant Foundation, Edison, NJ) was used for ectopic bone formation in mice. Briefly, CD107alow or

CD107ahigh cells derived from the same human WAT sample at passage five were prepared at a den-

sity of 3 million total cells in 40 ml PBS and mechanically mixed with 45 mg DBX putty. DBX alone

was used as an acellular control. The cell preparation was then implanted intramuscularly into the

thigh muscle pouch of 8-week-old male NOD-SCID mice (RRID:IMSR_JAX:001303, The Jackson Lab-

oratory, Bar Harbor, ME) as previously described with some modifications (James et al., 2012c).

Mice were anesthetized by isoflurane inhalation and premedicated with buprenorphine. Incisions in

the hindlimbs were made, and pockets were cut in the biceps femoris muscles by blunt dissection,

parallel to the muscle fiber long axis. Dissection methods and the surgical manipulation of tissues

were kept as constant as possible across animals. The muscle and skin were each closed with 4–0

Vicryl*Plus sutures (Ethicon Endo-Surgery, Blue Ash, OH). See Supplementary file 5 for an outline of

animals per experimental group. Surgical implantations and subsequent analyses were performed

blinded to treatment group.
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Lumbar spine fusion
Posterolateral lumbar spinal fusion was performed on 23-week-old male athymic rats (RRID:RGD_

2312499) as previously described (Chung et al., 2014). Posterior midline incisions were made over

the caudal portion of the lumbar spine, and two separate fascial incisions were made 4 mm bilater-

ally from the midline. L4 and L5 lumbar spines were exposed by blunt muscle splitting technique and

decorticated using a low speed burr and micro-drill (Roboz Surgical Instrument Co., Gaithersburg,

MD). Next, DBX (300 ml per side) mixed with CD107alow or CD107ahigh cells from the same AT sam-

ple (1.5 million cells, P3-5 passage) or DBX alone were implanted between the transverse processes

bilaterally into the paraspinal muscle bed. Finally, the fasciae and skin were each closed using contin-

uous suture (4–0 Vicryl*Plus, Ethicon Endo-Surgery). In vivo imaging was performed by a combina-

tion X-ray/DXA (Faxitron Bioptics, Tucson, AZ) at 0, 4, and 8 weeks after surgery. Rats were

sacrificed 8 weeks after surgery, and the spines were harvested for further analysis. See

Supplementary file 6 for animals per experimental group. Surgical procedures and subsequent anal-

yses were performed blinded to treatment group.

Post mortem analyses
Samples were fixed in 4% PFA for 24–48 hr and evaluated using a high-resolution micro-computed

tomography (mCT) imaging system (SkyScan 1275; Bruker MicroCT N.V, Kontich, Belgium). For intra-

muscular implants, scans were obtained at an image resolution of 15 mm with a 1 mm of aluminum

filter (X-ray voltage of 65 kVP, anode current of 153 uA, exposure time of 218 ms). For spine fusion

samples, scans were obtained at an image resolution of 22 mm with a 1 mm of aluminum filter (X-ray

voltage of 55 kVP, anode current of 181 uA, exposure time of 218 ms). NRecon software (SkyScan,

Bruker) was used to reconstruct images from the 2D X-ray projections. For the 3D morphometric

analyses of images, CTVox and CTAn were used (SkyScan, Bruker). For muscle pouch implantation

and spine fusion analysis, volumes of interest were shaped to encompass all the implant and exclude

native bone, with a threshold value of 65.

After radiographic imaging, samples were transferred to 14% EDTA for decalcification for 28–60

d. Samples were then embedded in OCT for cryosectioning at 18 mm thickness. H and E and ALP

staining were performed on serial sections (Leukocyte Alkaline Phosphatase Kit, Sigma-Aldrich). For

immunofluorescent staining, sections were washed with PBS three times and blocked with 5% goat

serum in PBS for 1 hr at 25˚ C. Antigen retrieval was performed by trypsin enzymatic antigen retrieval

solution (ab970; Abcam) for 10 min at 25˚ C. Primary anti-osteocalcin antibody (RRID:AB_10675660,

1:100, Abcam) was added to each section and incubated at 4˚ C overnight. Next, an Alexa Fluor 647

goat anti-rabbit IgG (H+L) polyclonal (RRID:AB_2722623, 1:200, Abcam) was used as the secondary

antibody. Sections were counterstained with DAPI mounting medium (RRID:AB_2336788, Vector

laboratories).

Statistical analysis
Quantitative data are expressed as mean ±one SD. Statistical analyses were performed using the

SPSS16.0 software (RRID:SCR_002865) or GraphPad Prism (RRID:SCR_002798, Version 7.0). Our in

vitro studies comparing CD107alow to CD107ahigh cells resulted in effect size of 3.75. Based on

a = 0.05 and power = 0.8, statistical significance should be observed with N = 6 animals per group

assuming a one-way ANOVA with a 0.05 significance level. Student’s t-test was used for two-group

comparisons, and one-way ANOVA test was used for comparisons of three or more groups, followed

by Tukey’s post hoc test. Two-way ANOVA test was used for comparisons of two or three groups

with different time points. Differences were considered significant with *p<0.05, **p<0.01, and

***p<0.001.
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Sun H, Péault B. 2019. CD10 expression identifies a subset of human perivascular progenitor cells with high
proliferation and calcification potentials. Stem Cells 418:3112. DOI: https://doi.org/10.1002/stem.3112

Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L. 2012. Lineage tracing and genetic ablation of ADAM12+
perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nature Medicine 18:
1262–1270. DOI: https://doi.org/10.1038/nm.2848

Eskelinen E-L. 2006. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Molecular Aspects of
Medicine 27:495–502. DOI: https://doi.org/10.1016/j.mam.2006.08.005

Grauer JN, Patel TC, Erulkar JS, Troiano NW, Panjabi MM, Friedlaender GE. 2001. 2000 young investigator
research award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine
26:127–133. DOI: https://doi.org/10.1097/00007632-200101150-00004, PMID: 11154530

Guo L, Huang JX, Liu Y, Li X, Zhou SR, Qian SW, Liu Y, Zhu H, Huang HY, Dang YJ, Tang QQ. 2013.
Transactivation of Atg4b by C/EBPb promotes autophagy to facilitate adipogenesis. Molecular and Cellular
Biology 33:3180–3190. DOI: https://doi.org/10.1128/MCB.00193-13, PMID: 23754749

Hardy WR, Moldovan NI, Moldovan L, Livak KJ, Datta K, Goswami C, Corselli M, Traktuev DO, Murray IR, Péault
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Appendix 1

Appendix 1—key resources table

Reagent type
(species) or

resource Designation
Source or
reference Identifiers

Additional
information

Strain, strain
background
(mouse)

NOD-SCID Jackson
Laboratory

Strain
#001303,
RRID:IMSR_
JAX:001303

Male, 8 week old

Strain, strain
background
(rat)

RNU Nude Rat Charles River
Laboratories
Inc

Strain #316,
RRID:RGD_
2312499

Male, 23 week old

Transfected
construct
(human)

Negative Control siRNA ThermoFisher
Scientific

Cat#4390843

Transfected
construct
(human)

LAMP1 siRNA ThermoFisher
Scientific

Cat#4392420
Assay ID
s8082

Transfected
construct
(human)

LAMP1 siRNA 2# ThermoFisher
Scientific

Cat#4392420
Assay ID
s8080

Antibody anti-Human CD31-APC-Cy7
(Mouse monoclonal)

BD Pharmingen Cat# 563653,
RRID:AB_
2738350

FACS/Flow
cytometry (1:100)

Antibody anti-Human CD31
(Mouse monoclonal)

Abcam Cat#
ab24590,
RRID:AB_
448167

Immunofluorescent
staining (1:100)

Antibody anti-Human CD31
(Rabbit polyclonal)

Abcam Cat#
ab28364,
RRID:AB_
726362

Immunofluorescent
staining (1:100)

Antibody anti-Human CD34-PE-
CF594 (Mouse monoclonal)

BD Pharmingen Cat# 562383,
RRID:AB_
11154586

Flow cytometry (1:60)

Antibody anti-Human CD34
(Rabbit monoclonal)

Abcam Cat#
ab81289,
RRID:AB_
1640331

Immunofluorescent
staining (1:100)

Antibody anti-Human CD44-AF700
(Mouse monoclonal)

BD Pharmingen Cat# 561289,
RRID:AB_
10645788

Flow cytometry (1:20)

Antibody anti-Human CD45-APC-Cy7
(Mouse monoclonal)

BD Pharmingen Cat# 557833,
RRID:AB_
396891

FACS/Flow cytometry (1:30)

Antibody anti-Human CD73-PE
(Mouse monoclonal)

BD Pharmingen Cat# 561014,
RRID:AB_
2033967

Flow cytometry (1:5)

Antibody anti-Human CD90-FITC
(Mouse monoclonal)

BD Pharmingen Cat# 555595,
RRID:AB_
395969

Flow cytometry (1:20)

Antibody anti-Human CD105-
PE-CF594 (Mouse
monoclonal)

BD Pharmingen Cat# 562380,
RRID:AB_
11154054

Flow cytometry (1:20)

Antibody anti-Human CD107a-APC
(Mouse monoclonal)

BD Pharmingen Cat# 560664,
RRID:AB_
1727417

FACS/Flow cytometry
(1:20)/Immunocytochemistry (1:100)
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Appendix 1—key resources table continued

Reagent type
(species) or

resource Designation
Source or
reference Identifiers

Additional
information

Antibody anti-Human CD107a
(Mouse monoclonal)

R and D
Systems

Cat#
MAB4800,
RRID:AB_
10719137

Immunofluorescent
staining (1:100)

Antibody anti-Human CD107a
(Mouse monoclonal)

Abcam Cat#
ab25630,
RRID:AB_
470708

Immunohistochemistry (1:100)/
Western blot (1:1000)

Antibody anti-Human CD107a
(Rat monoclonal)

Abcam Cat#
ab25245,
RRID:AB_
449893

Immunofluorescent
staining (1:100)

Antibody anti-Human CD146-FITC
(Mouse monoclonal)

Bio-Rad Cat#
MCA2141F,
RRID:AB_
324069

Flow cytometry (1:100)

Antibody anti-Human CD146
(Rabbit monoclonal)

Abcam Cat#
ab75769,
RRID:AB_
2143375

Immunofluorescent
staining (1:100)

Antibody anti-human GAPDH
(Rabbit monoclonal)

Cell Signaling
Technology

Cat# 5174,
RRID:AB_
10622025

Western blot (1:1000)

Antibody anti-human Gli1
(Rabbit polyoclonal)

Abcam Cat#
ab49314,
RRID:AB_
880198

Immunofluorescent
staining (1:100)

Antibody anti-human Nuclei
(Mouse monoclonal)

Sigma-Aldrich Cat#
MAB1281,
RRID:AB_
94090

Immunofluorescent
staining (1:500)

Antibody anti-human Osteocalcin
(Rabbit polyclonal)

Abcam Cat#
ab93876,
RRID:AB_
10675660

Immunofluorescent
staining (1:100)

Antibody anti-human aSMA
(Rabbit polyclonal)

Abcam Cat#
ab21027,
RRID:AB_
1951138

Immunofluorescent
staining (1:100)

Antibody Anti-rabbit IgG, HRP-linked
(Goat polyclonal)

Cell Signaling
Technology

Cat# 7074,
RRID:AB_
2099233

Western blot (1:5000)

Antibody Anti-mouse IgG, HRP-linked
(Horse polyclonal)

Cell Signaling
Technology

Cat# 7076,
RRID:AB_
330924

Western blot (1:5000)

Antibody anti-mouse IgG H and
L-AF488 (Goat polyclonal)

Abcam Cat#
ab150117,
RRID:AB_
2688012

Immunofluorescent
staining (1:200)

Antibody anti-rabbit IgG H and
L-AF488 (Goat polyclonal)

Abcam Cat#
ab150077,
RRID:AB_
2630356

Immunofluorescent
staining (1:200)

Antibody anti-rabbit IgG H+L-
DyLight 594 (Goat)

Vector
Laboratories

Cat# DI-1594,
RRID:AB_
2336413

Immunofluorescent
staining (1:200)
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Appendix 1—key resources table continued

Reagent type
(species) or

resource Designation
Source or
reference Identifiers

Additional
information

Antibody anti-goat IgG H and L-AF647
(Donkey polyclonal)

Abcam Cat#
ab150135,
RRID:AB_
2687955

Immunofluorescent
staining (1:200)

Antibody anti-mouse IgG H and
L-AF647 (Goat polyclonal)

Abcam Cat#
ab150119,
RRID:AB_
2811129

Immunofluorescent
staining (1:200)

Antibody anti-rabbit IgG H and
L-AF647 (Goat polyclonal)

Abcam Cat#
ab150079,
RRID:AB_
2722623

Immunofluorescent
staining (1:200)

Antibody anti-rat IgG H and L-AF647
(Goat polyclonal)

Abcam Cat#
ab150167,
RRID:AB_
2864291

Immunofluorescent
staining (1:200)

Antibody ImmPRESS-AP Anti-
Mouse Reagent antibody
(Horse)

Vector
Laboratories

Cat# MP-
5402,
RRID:AB_
2336535

Immunohistochemistry (200 ml)

Sequence-
based reagent

ACAN_F This paper PCR primers AGGCTGGGGAGAGAAC
TGAAAAG

Sequenced-
based reagent

ACAN_R This paper PCR primers GCTCACAATGGGGTATC
TGACAG

Sequenced-
based reagent

ACTB_F This paper PCR primers CTGGAACGGTGAAGGTGACA

Sequenced-
based reagent

ACTB_R This paper PCR primers AAGGGACTTCCTGTAACAA
TGCA

Sequenced-
based reagent

ALPL_F This paper PCR primers ACCACCACGAGAGTGAACCA

Sequenced-
based reagent

ALPL_R This paper PCR primers CGTTGTCTGAGTACCAGTCCC

Sequenced-
based reagent

COL2A1_F This paper PCR primers CCGCGGTGAGCCATGATTCG

Sequenced-
based reagent

COL2A1_R This paper PCR primers CAGGCCCAGGAGGTCCTTTGGG

Sequenced-
based reagent

COMP_F PMID:23382851 PCR primers CAACTGTCCCCAGAAGAGCAA

Sequenced-
based reagent

COMP_R PMID:23382851 PCR primers TGGTAGCCAAAGATGAAGCCC

Sequenced-
based reagent

FABP4_F This paper PCR primers ACGAGAGGATGATAAACTGG
TGG

Sequenced-
based reagent

FABP4_R This paper PCR primers GCGAACTTCAGTCCAGGTCAAC

Sequenced-
based reagent

GAPDH_F PMID:31482845 PCR primers CTGGGCTACACTGAGCACC

Sequenced-
based reagent

GAPDH_R PMID:31482845 PCR primers AAGTGGTCGTTGAGGGCAATG

Sequenced-
based reagent

LAMP1_F This paper PCR primers GTCTTCTTCGTGCCGGCGT

Sequenced-
based reagent

LAMP1_R This paper PCR primers GCAGGTCAAAGGTCATGTTCTT
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Appendix 1—key resources table continued

Reagent type
(species) or

resource Designation
Source or
reference Identifiers

Additional
information

Sequenced-
based reagent

LPL_F This paper PCR primers TTGCAGAGAGAGGACTCGGA

Sequenced-
based reagent

LPL_R This paper PCR primers GGAGTTGCACCTGTATGCCT

Sequenced-
based reagent

SPP1_F This paper PCR primers CCTCCTAGGCATCACCTGTG

Sequenced-
based reagent

SPP1_R This paper PCR primers CCACACTATCACCTCGGCC

Sequenced-
based reagent

RUNX2_F PMID:31482845 PCR primers TGGTTACTGTCATGGCGGGTA

Sequenced-
based reagent

RUNX2_R PMID:31482845 PCR primers TCTCAGATCGTTGAACCTTGCTA

Sequenced-
based reagent

PPARG_F This paper PCR primers GACAGGAAAGACAACAGACAAA
TC

Sequenced-
based reagent

PPARG_R This paper PCR primers GGGGTGATGTGTTTGAACTTG

Sequenced-
based reagent

RUNX2_F This paper PCR primers TGGTTACTGTCATGGCGGGTA

Sequenced-
based reagent

RUNX2_R This paper PCR primers TCTCAGATCGTTGAACCTTGCTA

Sequenced-
based reagent

SOX9_F This paper PCR primers GAGGAAGTCGGTGAAGAACG

Sequenced-
based reagent

SOX9_R This paper PCR primers ATCGAAGGTCTCGATGTTGG

Commercial
assay or kit

Leukocyte Alkaline
Phosphatase Kit

Sigma-Aldrich Cat#85L2-1KT

Chemical
compound,
drug

Vacuolin-1 Sigma-Aldrich Cat#673000

Chemical
compound,
drug

TransIT-LT1
Transfection Reagent

Mirus Bio Cat#MIR2300 Transfection

Software,
algorithm

FlowJo FlowJo RRID:SCR_
008520

Software,
algorithm

ImageJ NIH RRID:SCR_
003070

Software,
algorithm

Prism GraphPad RRID:SCR_
002798

Software,
algorithm

Seurat Seurat RRID:SCR_
016341

Software,
algorithm

Monocle 3 Monocle RRID:SCR_
018685

Software,
algorithm

Partek Genomics Suite Partek RRID:SCR_
011860

Software,
algorithm

Spotfire Spotfire RRID:SCR_
008858

Software,
algorithm

Ingenuity
Pathway Analysis

QIAGEN RRID:SCR_
008653

Software,
algorithm

SPSS SPSS RRID:SCR_
002865
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Appendix 1—key resources table continued

Reagent type
(species) or

resource Designation
Source or
reference Identifiers

Additional
information

Other DAPI stain Vector
Laboratories

Cat# H-1500,
RRID:AB_
2336788

Other Vector Red
Substrate Kit

Vector
Laboratories

Cat# SK-5100,
RRID:AB_
2336847
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