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A B S T R A C T

The clinical exploitation of type I interferon (IFN) as an antiviral and antineoplastic agent is based on the

properties originally attributed to this cytokine family, with schedules reflecting only their antiviral and

antiproliferative activities. Nevertheless, type I IFN has emerged as a central activator of the innate

immunity. As current schedules of treatment for chronic hepatitis C and for hematological and solid

tumors, based on the continuous administration of recombinant type I IFN or pegylated formulations,

disregard viral resistance, host genetic variants predicting treatment outcome and mechanisms of

refractoriness, new administration schedules, the combination of type I IFN with new drugs and the

increased monitoring of patients’ susceptibility to type I IFN are expected to provide a new life to this

valuable cytokine.
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1. Introduction

In his book on the history of interferon (IFN), Toine Pieters
affirms that IFN can be considered one of modern medicine’s most
famous and infamous drugs, the history of which has represented
an example of therapeutic survival in the face of several cycles of
promise and disappointment as a ‘miracle drug’. The therapeutic
use of IFN has enhanced our understanding of how drug
manufacturing and marketing has played a role in pushing the
boundaries of research, from the post penicillin era to the genetics
revolution in medicine [1]. It is worth noting that, despite the
enormous efforts to produce natural and recombinant type I IFN,
and the huge amount of research performed on its biology, the
mechanisms of IFN action remain in part elusive and its
exploitation in the clinic is still based on the knowledge of its
biology from an earlier era. The questions also arise as to whether
there is still room for a more appropriate use of type I IFN
in infectious diseases and in cancer, and whether the volumes
of new information about mechanism of action have been
properly incorporated into clinical applications. Before specifically
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addressing the above issues, it is useful to briefly retrace the
history of type I IFN as an anticancer and antiviral drug.

Hyped as a potential antiviral drug, the study of IFN from the
very beginning attracted wide attention [2]. Because the efforts to
molecularly define and purify IFN proteins remained fruitless for
about 20 years, many scientists were openly skeptical about
properties ascribed to IFN, including its very existence. Neverthe-
less, a method for production of IFN had been developed by
culturing human leukocytes in Gresser’s laboratory [3]. In addition,
natural IFN was produced and partially purified at the Finland Red
Cross by Cantell [4], for use in the first clinical trial in osteosarcoma
patients [5], following the observations on type I IFN antitumor
effects obtained in experimental models by Gresser et al. [6]. Many
attempts were made to demonstrate the activity of natural IFN on
other cancer types – those potentially associated with a viral origin
– such as juvenile laryngeal papillomatosis, human condylomata
acuminata, Hodgkin’s disease, acute leukemia in children, multiple
myeloma and others. Early results were considered encouraging
but the treatment schedules required optimization and combina-
tion schemes required formulation for optimal effect [7].

With regard to true viral infections, the recognition that
hepatitis B virus (HBV) may cause a chronic infection leading to
cirrhosis and hepatocellular carcinoma suggested that virus-
infected patients could be efficaciously treated with IFN. All the
‘‘IFN enthusiasts’’ remember the famous sentence ‘‘It is a pleasant
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surprise to learn that interferon may have an effect on an
established chronic infection caused by a poorly understood but
extremely important DNA virus’’ written in 1976 in New England
Journal of Medicine by Ho after the discovery made by Greenberg
and his colleagues on the ability of IFN to depress Dane-particle-
associated DNA, DNA polymerase and core antigen in chronic
active hepatitis [8,9]. Based on these very preliminary ‘‘positive’’
results, IFN-based antiviral and antitumor therapies, quickly
became more than a hope among the potential medical arma-
mentarium against tumor and viral infections (Figs. 1 and 2).
However, it was only after the successful cloning of Type 1 IFN
cDNA (the first cytokine ever cloned) and the identification of the
IFN gene family that IFN research joined the mainstream of the
scientific enterprise [10–12]. Specifically, Shigekazu Nagata and
Sidney Pestka independently identified and expressed IFN alpha 2
in Escherichia coli; the protein was then rapidly purified with
monoclonal antibodies and used for research and clinical trials
[11,13]. Thanks to the expression of the recombinant protein in
yeast [14], pharmaceutical companies then produced these two
types of recombinant IFN in substantial amounts for clinical use in
oncology and infectious diseases. IFN alpha 2a and IFN alpha 2b
were subsequently approved for the therapeutic treatment of hairy
cell leukemia in 1986 (Fig. 1). IFN beta was also cloned, and
produced in sufficient quantities for clinical use [15,16] against
tumors and viral diseases. IFN alpha 2a and 2b were registered in
1990 for the treatment of hepatitis C virus (HCV) infection;
subsequently, IFN therapy for chronic HBV infection documented
two complementary activities of IFN; in HBeAg-positive disease
IFN may act as immunomodulatory agent while in HBeAg-negative
disease IFN may function as a direct antiviral agent [17].

IFNs have been the standard of care for certain diseases for more
than a decade. It is opinion of the authors that during this period,
there has not been an adequate effort made to address the actual
mechanism of IFN action or to characterize the factors that could
influence IFN treatment outcome. Hence our aim is to discuss some
of these issues in the belief that they should be carefully addressed
to fully appreciate the efficacy of IFNs as therapeutic agents.
Fig. 1. Timetable of the most relevant findings in the clin
2. Past and current use of IFN

The Type I IFN family in humans consists of 13 IFN alpha
subtypes, plus IFN beta, IFN epsilon, IFN kappa, and IFN omega [18].
Most of the available IFN preparations used in clinical practice
belong to the type I IFN family (Table 1). All type I IFN subtypes elicit
antiviral, antiproliferative and immunomodulatory responses by
binding to shared cell surface receptors. Interestingly, IFN alpha
subtypes have different gene induction profiles and variable
antiproliferative, antiviral and immunological properties [19–21].
However, only a few subtypes of type I IFN, namely IFN alpha 2a and
2b, have been used in therapeutic practice, and the remaining
IFN subtypes represent an untapped reservoir of opportunity. The
following section summarizes the most common applications of IFN
alpha in oncology and virology.

2.1. Past and current use of IFN in oncology

After the first attempts to use IFN in osteosarcoma, many
other tumors were tested for their sensitivity to IFN treatment,
and among them, a number of sensitive tumors were identified
(see Table 1). The first responsive malignancy was Hairy cell
leukemia (HCL), in which IFN induced the reduction of cytopenia
and the elimination of hairy cells from the blood, as well as the
reduction of bone marrow fibrosis [22]. Although IFN is no longer
considered a first-line therapy in HCL, it is still recommended
for cytopenic patients to increase granulocyte levels, in order
to mount a stronger anti-infective response to antibiotic or anti-
fungal therapy.

Since then, IFN has been used primarily in hematologic
malignancies such as chronic myelogenous leukemia, multiple
myeloma, non-Hodgkin lymphomas, Kaposi’s sarcoma in AIDS
patients and mycosis fungoides. In all these malignancies, despite a
clear in vitro effect on malignant cell proliferation and despite
numerous clinical trials, its exact role in the management of
disease remained uncertain. Continuous administration (about
3–6 million IU every other day), alone or in combination with other
ical exploitation of type I IFN in infectious diseases.



Fig. 2. Timetable of the most relevant findings in the clinical exploitation of type I IFN in oncology.

Table 1
Interferon (IFN) alpha formulations in clinical practice.

Type of IFN Brand name Chemical

modification

Structure Company Source Recommendation

Lymphoblastoid

IFN alpha N1

Wellferon1 Not done Mixture of natural

human IFNs

alpha subtypes

Glaxo Wellcome Lymphoblastoid

(Namalva) cells

Hairy cell leukemia, juvenile

laryngeal papillomatosis,

condylomata acuminata,

chronic hepatitis B or C

Natural human

leukocyte

IFN alpha

Alfaferone1 Not done Mixture of natural

human IFNs

alpha subtypes

Alfa Wassermann Human

leukocyte

Hairy cell leukemia, multiple

myeloma, non-Hodgkin

lymphoma, follicular lymphoma,

chronic myelogenous leukemia,

malignant melanoma,

AIDS-related Kaposi’s sarcoma,

chronic hepatitis B or C

HuIFN alpha-Le Multiferon1 Not done Human leukocyte

IFN alpha (IFN alfa-1,

2b, 8, 10, 14, 21)

Swedish Orphan

International

Human

leukocyte

Malignant melanoma; treatment

of patients who initially respond

to recombinant IFN-alpha,

but for whom treatment

subsequently fails, most likely

as the result of neutralizing

antibodies

IFN alpha 2b Intron A1 Not done 165 amino acids

(19 kDa)

Arginine at position 23,

deletion at position 44

Schering-Plough Trasformed

E. coli

Chronic hepatitis B or C,

hairy cell leukemia,

follicular lymphoma,

condylomata acuminata,

AIDS-related Kaposi’s sarcoma

and malignant melanoma

IFN alpha 2a Roferon-A1 Not done 165 amino acids

(19 kDa)

Lysine at position 23,

deletion at position 44

Hoffmann –

La Roche Inc.

Trasformed

E. coli

Chronic hepatitis B or C,

hairy cell leukemia,

chronic myelogenous leukemia

Consensus IFN

(IFN alfacon-1)

Infergen1 �89% homology

with IFN alpha

and 30% homology

with IFN beta

166 amino acids

(19.4 kDa)

Kadmon

Corporation

Trasformed

E. coli

Chronic hepatitis C,

hairy cell leukemia

Pegylated

IFN alpha 2b

PegIntron1 12 kDa linear

pegylated

molecule

165 amino acids

(19 kDa)

Schering-Plough Trasformed

E. coli

Chronic hepatitis C

Pegylated

IFN alpha 2a

Pegasys1 40 kDa branched

pegylated molecule

165 amino acids

(19 kDa)

Hoffmann –

La Roche Inc.

Trasformed

E. coli

Chronic hepatitis B,

chronic hepatitis C

Pegylated

IFN alpha 2a

Reiferon

Retard1 –

Egypt

20 kDa linear

pegylated

molecule

165 amino acids

(19 kDa)

Rhein-Minapharm Trasformed

Hansenula

polymorpha

Chronic hepatitis C

Pegylated

IFN alpha 2b

SylatronTM 31 kDa pegylated

molecule

165 amino acids

(19 kDa)

Schering

Corporation

Trasformed

E. coli

Melanoma after surgery
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chemotherapeutic drugs, was considered the best treatment
available in the induction as well as in the maintenance phase
of treatment. In multiple myeloma, for example, among the
patients who had an objective response to induction chemothera-
py, those treated with IFN had a significantly longer duration of
survival [23]. In contrast, with indolent non-Hodgkin lymphoma
and follicular lymphoma, IFN treatment was not associated with an
overall survival benefit, although it might prolong progression-free
survival. Currently, the use of IFN competes with ‘‘new drugs’’:
thalidomide, lenalidomide and bortezomib are now successfully
used in myeloma treatment; imatinib and tyrosine kinase
inhibitors are the mainstay of treatment in chronic myelogenous
leukemia, and IFN is rarely used in these malignancies. Despite
evidence that addition of IFN to current protocols (CEOP-Bleo,
CHOP, CVP, CHVP, MOPP) as maintenance therapy for follicular
lymphoma improved progression-free survival, a net benefit for
overall survival was less evident, and IFN was associated with
significant toxicities that may have a major impact on the patient’s
quality of life [24]. In mantle cell lymphoma, rituximab in
combination with CHOP or bendamustine have been carefully
evaluated in clinical trials, while bortezomib (NFkB inhibitor) or
lenalidomide are the approved agents [25]. Similarly, Kaposi’s
sarcoma and mycosis fungoides patients now have different
treatment options in addition to IFN, but the relatively low number
of cases actually reduces the quality of the analyses necessary to
properly define a superior treatment regimen relative to other
treatments [26,27].

Renal cell carcinoma (RCC) and melanoma are two solid tumors
that demonstrate some success with IFN therapy, although the
armamentarium for the systemic therapy of these two tumors
has undergone dramatic changes in recent years. In particular,
cytokine-based therapy including IFN for RCC has been replaced by
vascular-endothelial growth factor (VEGF) and mammalian target
of rapamycin (mTOR) inhibitors. For low and intermediate risk
disease, pazopanib, sunitinib or the combination of bevacizumab
plus IFN are considered, whereas combinations of targeted agents
(e.g. sunitinib combined with IFN) have generally been plagued by
high grade toxicity. Therapy for malignant melanoma has been
object of intense research to assess the efficacy of immunothera-
peutic strategies; while no treatments have yet shown superior
efficacy to IFN in the adjuvant phase, the efficacy of IFN treatment
in this setting at low or high doses is still under debate. A number
of trials are ongoing to assess whether IFN, associated with
different vaccination strategies, reduces the risk of recurrence in
resected metastatic melanoma patients [28,29].

In conclusion, despite the multiple effects of IFN in a variety
of malignancies that range from antiangiogenic [30] to potent
immunomodulatory [31], differentiation-inducing [32], anti-
proliferative and proapoptotic [33], IFN is still administered
following the schedule used in the first clinical trials, and its use
has been superseded by new, more effective and less toxic
drugs.

2.2. Past and current use of IFN as antiviral agent

There are currently several approved IFN formulations used to
treat chronic viral infections (see Table 1 for the main indications).
In addition to hepatitis B virus (HBV) and HCV infections, other
chronic viral infections (such as herpes zoster, herpes simplex,
cytomegalovirus, HIV, papillomavirus infections) have been
effectively treated with both IFN alpha and IFN beta [34]. In
parallel, prophylaxis and treatment of acute respiratory viral
infections (such rhinovirus, influenza virus or coronavirus) have
been evaluated; the introduction of effective antiviral compounds
such as acyclovir and its analogs for herpesviruses or azidothymi-
dine and protease inhibitors for HIV with greater therapeutic effect
(and reduced side effects), rapidly reduced the commercial interest
for IFNs as antivirals.

Evaluation of IFN treatment against all viral infections is an
impossible task, thus our discussion is focused only on type I IFN in
the treatment of HCV infection. Indeed, the use of IFNs as an anti-
HCV agent is an excellent example of ‘‘a mix of partial successes
and pending challenges’’, and reflects the difficulties encountered
in the therapeutic use of such a powerful biological weapon. The
initial choice of IFN alpha as a potential treatment for chronic
hepatitis C (CHC) in 1986 by Hoofnagle was rather empirical [35].
Since then, natural IFN or recombinant IFN alpha formulations
were the only drugs available for the treatment of patients
suffering from CHC but were associated to limited rates of
sustained virological response (SVR), in the range of 12–16%. The
addition of ribavirin (RBV) to recombinant IFN alpha increased the
SVR rate to about 50%. In 2001, PEG-IFN alpha formulations,
specifically PEG-IFN alpha 2a and PEG-IFN alpha 2b, in which inert
polyethylene glycol was attached to conventional IFN molecules,
were introduced into clinical practice, on the basis of a longer half-
life (Fig. 2). The improvement in pharmacokinetic properties of
standard IFN alpha preparations, led to a 40–50 SVR in patients
infected with HCV genotype (GT) 1. It was therefore not surprising
that, after the entry into the market of pegylated forms of IFN alpha
(PEG-IFN), a number of companies developed modified IFN or
novel IFN delivery systems in the hope of achieving improved
pharmacokinetic and pharmacodynamic properties, more potent
immunomodulatory effects, and better tolerability. The list of new
IFN alpha preparations currently available is provided in Table 2.

More recently, the availability of several directly acting
antiviral agents (DAAs) for HCV, mainly inhibitors of NS3, NS5A
and NS5B viral proteins, has offered the possibility of IFN-free, anti-
HCV treatment. Although moving to DAAs therapies will greatly
increase SVR rate and offer new treatments for ineligible or non-
responding HCV positive patients, the actual price of DAAs is
exceedingly high and these new drugs are associated with
development of drug resistance, thus calling into question the
choice to abandon the ‘‘old and consolidated’’ therapeutic road. At
the same time, new antiviral agents that boost host innate
immunity or target specific cellular pathways (host-targeting
antivirals (HTAs)), are also emerging as alternative anti-viral
therapies [36]. Among them are Toll-like receptor (TLR)7, TLR9
(ANA773, GS-9620 and IMO-2125) and retinoic acid-inducible
gene I (RIG-I) (e.g. 50pppRNA) agonists and antimicroRNA122
(Miravirsen). All these strategies are linked with the IFN system,
again emphasizing the critical role of IFN in orchestrating the
innate immune response and the necessity to unravel the
pleiotropic biological actions of IFN [36–38].

Type I IFN preparations remain a valid therapeutic option, due
to their broad-spectrum of antiviral properties and their ready
availability for the treatment of emerging zoonotic viral diseases,
including those in which the time to vaccine availability precludes
vaccination at the onset of an outbreak. Since the 2002–2003
severe acute respiratory syndrome coronavirus (SARS-COV)
outbreak, several other examples illustrate the ability of IFN
alpha/beta to inhibit the replication of new emerging viruses
[e.g. Middle East Respiratory Syndrome coronavirus (MERS-COV),
avian and pandemic H1N1influenza viruses [19,39–44]].

3. Factors affecting the response to type I IFN

The intense clinical research on the therapeutic use of type I
IFN has not been paralleled by similar efforts in defining the
determinants that confer cell sensitivity or refractoriness to it.
More specifically, efforts to characterize the factors affecting IFN
therapy outcome have not been comparable in oncology and
virology, in large part because viral therapy is more suited to the



Table 2
New interferon alpha formulations in clinical practice.

Type of IFN Brand name Chemical modification Structure Company Source Recommendation

Albinterferon

alpha 2b

(Albuferon)

JOULFERON1

ZalbinTM

r-Human albumin modified

IFN alpha 2b

165 amino acids

(19 kDa)

Human Genome Sciences Inc./

Novartis International AG

Transformed

Kluyveromyces

Chronic hepatitis C

IFN alpha 2b Locteron1 PolyActive1 technologya-based

controlled-release recombinant

formulation

165 amino acids

(19 kDa)

Biolex Therapeutics Trasformed

E. coli

Chronic hepatitis C

IFN alpha 2b IFN alfa-2b XL Medusa1 technologyb-based

recombinant formulation

165 amino acids

(19.4 kDa)

Flamel Technologies Trasformed

E. coli

Chronic hepatitis C

IFN alpha Belerofon1 Single aa mutation that lowers

sensitivity to protease-

mediated degradation

N.A.c Nautilus Biotech N.A.c Chronic hepatitis C

IFN alpha Novaferon Artificial design technology

combining DNA-shuffling and

High throughput screening

82% sequence

identity to IFN

alpha 2b (19 kDa)

N.A. N.A. N.A

a Biodegradable polymeric drug delivery system.
b Nanoparticles delivery system.
c Not available.
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complex relationships between host, virus and IFN response.
Likewise, knowledge acquired in the virological field has not been
fully exploited to explain the failure of IFN treatment in cancer
patients.

3.1. General mechanisms of refractoriness to IFN

IFN activity is mediated by the binding to its receptor and the
activation of the JAK–STAT signaling pathway, resulting in the
induction of the expression of hundreds of IFN-stimulated genes
(ISGs), as reviewed in [45]. All type I IFNs signal through a common
heterodimeric receptor composed of a low- (IFNAR1) and a high-
affinity (IFNAR2) subunit and, through an as yet non-completely
elucidated mechanism, drive different biological signals [46].
When administered at high doses, IFNs are not devoid of toxic
effects, indicating that their action must be fine-tuned through
opposing enhancing and suppressive signals. Upon ligand engage-
ment, the signaling complex is rapidly internalized by endocytosis
and, subsequently ubiquitinated and degraded. Marijanovic et al.
showed that while the surface half-life of IFNAR1 is 4 h in
unstimulated cells, its half life is reduced to 1 h in cells stimulated
with IFN alpha [47]. The non-responsive state of IFN-treated cells
was shown to last up to 3 days [48], whereas after IFN removal,
expression of IFNAR1 at the cell surface returned to nearly 100%
control levels within 3 h [47]. The consequence of these observa-
tions is that continuous administration of high dose IFN or the
pegylated formulations can determine an unwanted decrease of
receptor expression at the cell surface, and represents one of the
earliest activated mechanisms of refractoriness to IFN. Given that
all effects of type I IFN on infected, malignant and immune cells
are mediated by its receptor, modulation of IFNAR levels may be
expected to play a dominant role in shaping the extent and the
duration of the type I IFN response. Altogether, these observations
argue that rational design of IFN-based therapies should carefully
consider these aspects of IFN receptor biology, indicating that
new strategies to stabilize IFNAR1 and inhibit its degradation are
needed. Similarly, evaluation of the basal expression of the IFNAR
complex and of its down-regulation following treatment should be
a component of standard care in IFN-treated patients.

Mice repeatedly injected with murine IFN alpha were shown to
become refractory to further stimulation within a few hours after
the first injection [49]. Suppressor of cytokine signaling (SOCS)
proteins, in particular SOCS1 and SOCS3, was shown to be
important for the negative regulation of type I and type II IFN
signaling, through the inhibition of STAT1 binding to IFNAR and
suppression of JAK activity [50] respectively. Similarly, ubiquitin
carboxy-terminal hydrolase 18 (USP18)/Ubiquitin protease 43
(UBP43) was shown to be required for induction of a long-lasting
desensitized state [49]. Binding of UBP43 to IFNAR2 in vivo

displaced JAK1 from IFNAR2 and led to the inhibition of the
downstream phosphorylation cascade and other signaling events
[51]. Of note, administration of PEG-IFN alpha 2b in patients with
CHC was shown to activate the JAK/STAT pathway only during the
first day following injection, and then rapidly induced SOCS1,
SOCS3 and UBP43 expression, despite the fact that the serum
concentrations of PEG-IFN alpha 2 remained high for the entire
week. These observations argued that the superior antiviral
efficacy of PEG-IFN alpha was not related to constitutive activation
of IFN signaling pathways, but rather the induction of immune
response-associated genes by PEG-IFN was the mechanism
underlying increased efficacy [52].

Since the deficiency of either SOCS1 or UBP43 can amplify
IFN antiviral and proinflammatory actions, both activities may
represent promising therapeutic targets to improve the benefits of
IFN treatment in cancer as well as in viral diseases. In this regard,
UBP43 was identified as a poor prognostic marker of IFN alpha
therapy in patients with chronic hepatitis C [53], and its in vitro

silencing in human cells potentiated the antiviral activity of IFN
[54]. Similarly, UBP43 levels were increased in several human
tumors, including non-small cell lung cancer, and its silencing in
mouse lung cancer cells rendered the cells less tumorigenic and
more sensible to the growth-inhibitory and pro-apoptotic effects
of IFN in vitro [55].

Several recent papers suggest a major role for different
microRNAs (miR) in regulating the IFN response. In this regard,
miR-155 broadly suppresses the expression of IFNAR–JAK–STAT
pathway components in CD8+ T cells [56], while miR-221 sup-
presses SOCS1/SOCS3 functions, thus acting as enhancer of the
JAK–STAT signaling [57]. Importantly, patients with hepatocellular
carcinoma with reduced miR-26 expression in tumors displayed
a significant improvement in overall survival after receiving
adjuvant therapy with IFN alpha, indicating that miR-26 expres-
sion status can indeed help to stratify patients with respect to
response to IFN therapy [58].

3.2. Resistance and variability to IFN alpha treatment in CHC patients

Since the beginning of IFN in therapy for CHC, it was evident
that HCV infected subjects responded differently to IFN
administration. Such a variability in responsiveness was totally
unexpected on the basis of results obtained by in vitro

experimentations, and this variability has stimulated intense
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efforts aimed at understanding the underlying mechanisms of
resistance to IFN treatment, as well as characterizing predictive
biomarkers that could be useful in identifying patients who
were likely to respond to IFN treatment. It is important to
emphasize that although many determinants of the IFN response
have been identified, much work is still required to fully
appreciate the potential of type I IFN action. Two variables that
modulate the IFN response – viral and host determinants – will
be discussed separately below.

3.2.1. Viral determinants

The highly variable response rate observed in HCV patients
treated with IFN alpha depends on well-established viral factors
such as viral load; patients with high pretreatment viral loads have
poor long-term outcomes compared to patients with low viral
loads, and an increased risk of treatment failure is observed against
the most predominant HCV GT, GT1 (subtypes 1a and 1b). The
HCV decay kinetics is also an important factor in estimating the
effectiveness of antiviral therapy [59].

To fully appreciate the variability of the IFN response in HCV
patients, it is also important to consider the polymorphism of the
HCV genome. For instance, in 1995 Enomoto et al., found that a
HCV GT1b virus with four or more amino acid substitutions in
the NS5A 2209–2248 region, termed IFN-sensitivity-determining
region (ISDR), prior to therapy was strongly correlated with the
SVR to IFN alpha therapy in Japanese patients, and the number of
amino acid substitutions was thought to be an independent
predictor of IFN treatment success [60,61]. These initial findings
were further confirmed by other studies in Japanese patients
[62,63]. However, several reports from Europe and United States
failed to show a correlation between ISDR mutations and IFN
responsiveness [64]. Later it was established that the ISDR was
necessary but not sufficient for the interaction between NS5A and
the IFN induced PKR enzyme; an additional 26 amino acids, called
PKR binding domain (PKRBD), distal to the ISDR was also required;
the latter region was shown to hinder PKR dimerization and
resulted in the repression of PKR function on the eIF-2alpha
translation factor [64]. Indeed, mutations within the PKRBD of HCV
GT1 have been associated with a long-term sustained response to
IFN alpha and PEG-IFN alpha/RBV therapy [65–67].

Other regions of HCV, especially E2 (PKR/eIF-2alpha phosphor-
ylation homology domain (PePHD)) or the NS5A region (V3 in the
C-terminal portion) have been shown to contain specific sequences
in different HCV genotypes that differentially affect the IFN
response [64,68–70]. Interestingly most of these HCV proteins can
subvert the type I IFN response in vitro [18] but whether these
HCV evasion strategies are active in vivo and influence the IFN
treatment response are unclear. All the above considerations,
together with the indication of a close association between HCV
genetic variability and antiviral treatment outcome lead to an
important general question – ‘‘Is the infection of specific HCV GTs
and/or mutations in specific regions of the genome able to affect
the endogenous production/action of IFNs and expression of
ISGs, or does such a high variability simply reflect an authentic
adaptation of HCV to the immune response including type I IFN
expression and function’’? Some attempts to answer these
questions have been made but the issue remains largely
unresolved [71–73].

3.2.2. Host determinants

Since the initial use of IFN for CHC therapy, it has been
understood that different pre-treatment host factors (such as age,
sex, body weight, insulin resistance, and liver fibrosis) significantly
affect the virological response to IFN or PEG-IFN alpha-ribavirin
therapy. The variability of IFN response however could not
entirely be explained by the above-mentioned factors; recently,
two single nucleotide polymorphisms (SNPs) rs12979860 (T/C)
and rs8099917 (T/G), in the region of interleukin (IL) 28B/IFN
lambda 3 on chromosome 19, have been definitively associated
with spontaneous and IFN treatment-induced viral clearance in
HCV infection [74–77].

Together with the discovery of the above SNPs, it became clear
that the concerted action of multiple ISGs must also be considered
to fully understand the limits of IFN alpha treatment. Administra-
tion of IFN induces an up-regulation of ISGs in PBMC and the liver
of HCV-infected individuals; the type, and especially the magni-
tude, of the IFN induced response differed between responder and
non-responder HCV positive individuals [53,78–80]. HCV infected
patients who were less likely to respond to the IFN alpha therapy
exhibited paradoxically a higher constitutive ISG expression
compared to those that achieved a good response [53,78,80–83].
Notably, the presence of high basal levels of ISGs was associated
with a lack of increased expression after IFN administration
[83,84]. The molecular mechanism linking baseline ISG induction
to IFN non-response remains currently unknown.

It has been proposed that the refractoriness to exogenous IFN
could reflect the presence of high pretreatment levels of the UBP43
negative regulator and/or reflect that IFN transduction pathways
are saturated [49,80,85]. The up-regulation of ISGs in liver-derived
biopsies of chronically HCV infected patients is largely sustained
by hepatocytes [86], although Kupffer cells can be a local source of
IFN that promoted basal expression of ISG in hepatocytes of non-
responders [87]. In addition, there is no significant correlation
between serum or intrahepatic viral loads with ISG expression
levels, suggesting that this response is ineffective in term of HCV
replication control [80]. It is also not clear whether type I or III IFN
is the driver of basal ISGs induction. In this regard, type I and III IFN
differ in their kinetics of production and their level of ISG induction
with a clearly detectable hierarchy [88,89]; these pathways are
severely impaired in liver-derived tissues of chronically HCV
infected patients [86]. The lack of a specific signature of type I and
III IFN in the liver of HCV positive subjects, characterized by the
presence of high endogenous levels of ISGs, could be indicative of a
severe impairment of early host defense pathways. In addition we
speculate that pretreatment ISG response may reflect type I and III
IFN produced in response of HCV replication, as well as an IFN-
independent mechanism triggered by HCV; alternatively other
pathways, for instance mitogen-activated protein kinase/extracel-
lular-regulated kinase (MAPK/ERK) and the phosphoinositide-3
kinase (PI-3K), could be involved in the process. Another possibility
is that the basal ISGs signature is induced by IFN beta rather than
by IFN alpha subtypes, or reflects a deficient IFN gamma signal as
observed in acute vs. chronic HCV infection [85]. In this regard, a
unique IFN beta signaling axis mediated via the receptor IFNAR1
has been recently identified [90].

Several studies have demonstrated that the IL28B/IFN lambda 3
poor-response minor alleles (both the above rs120979860 and
rs8099917) are associated with high basal levels of ISGs, providing
compelling evidence for the involvement of a genetic predisposi-
tion [80]. It should also be mentioned that the very recent
discovery of a dinucleotide polymorphism ss469415590 TT/DG
upstream of IL28B/IFN lambda 3, which generates the novel IFN
lambda 4 (variant allele, DG) protein, may reveal an alternative
scenario to understand the functional architecture of type III IFN
genomic regions and its influence on the outcome of HCV infection,
and also to identify the relationship between endogenous ISG up-
regulation and poor response to IFN alpha treatment [91]. As the
IFN lambda 4 creating allele DG is correlated with the unfavorable
rs12979860 allele T, ss469415590 TT was a better predictor of HCV
clearance than rs12979860, and a role of ss469415590 TT in
predicting response to anti-HCV therapy with or without IFN has
been reported (for a review see [92]). Interestingly, carriers of the
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IFN lambda 4 creating DG allele were found to have significantly
higher amounts of ISG mRNA than patients homozygous for the
disruptive TT allele [93]. Moreover, by relating actual IFN lambda 4
transcription in carriers of the DG allele to ISG induction, HCV
infected patients with measurable quantities of IFN lambda 4
mRNAs presented significantly stronger ISG induction than those
without [93]. This observation may provide a possible explanation
as to why HCV positive patients show ISG stimulation in their
livers in the apparent absence of an induction of other IFN
subtypes [93].

As HCV therapy is evolving rapidly from IFN-based to DAA-only
regimens, the relevance of the endogenous IFN system for IFN-free
therapy treatment outcome could be questioned. However,
recently it has been demonstrated that HCV clearance achieved
during IFN-free treatment with a DDAs regimen is accompanied by
hepatic down-regulation of type II and III IFN, their receptors, and
ISGs [94]. Furthermore, the ability to restore intrahepatic type I IFN
signaling is associated with prolonged HCV suppression [94].
Altogether, the above findings together with the observation that
RBV has been shown in vitro to up-regulate a narrow spectrum of
ISGs [95,96], highlight the importance of evaluating whether
variability in the expression of components of the IFN system may
affect the clinical outcome of IFN-free regimen in HCV patients.

3.3. Immunomodulatory properties of type I IFN

Although the immunoregulatory properties of type I IFN have
been appreciated since the 1970s [97,98], IFNs are still adminis-
tered with schedules and modalities that reflect their antiviral and
antiproliferative activities. Early studies in mouse tumor models
demonstrated that the generation of a long-lasting antitumor
response to type I IFN depended on host immune mechanisms
[99,100], in part reflecting the identification of type I IFN as a
regulator of class I histocompatibility antigen expression [101].
IFNs are indeed important regulators of several components of
the host immunity, with activities ranging from the stimulation
of lymphocyte- and monocyte-mediated cytotoxicity [102], to
the activation of macrophages, natural killer (NK) [103], CD8+
memory T cells [104] and dendritic cells (DC) [105,106]. IFN
alpha/beta, in fact, induces DC maturation, up-regulates their
co-stimulatory activity and enhances their capacity to kill tumor
cells and present or cross-present antigens [107]. IFN alpha also
plays a key role in the polarization of T-helper cells toward a Th-1
subtype [108], in enhancing the primary antibody response to
soluble antigens [109] and in deactivating the suppressive
function of mice [110] and human regulatory T cells (Treg) [111],
thus enhancing T helper cell functions and NK cell tumor
cytotoxicity.

All the immunomodulatory activities of type I IFN and, in
particular, the effects on the innate immune response and on
immunological memory can account for its efficacy as a vaccine
adjuvant, as demonstrated in an influenza infection model in mice
[112], as well as in melanoma patients [28]. Recently, IFN was
shown to have a pivotal role in rendering immunogenic the cell
death induced by chemotherapies, thus supporting the participa-
tion of the immune system in their cytocidal activity [113]. The
observed correlation between a favorable response to systemic
administration of IFN alpha and the appearance of autoimmunity
in metastatic melanoma patients, strongly corroborate the
hypothesis that the induction of a host immunostimulatory
mechanism is a critical factor predicting the antitumor efficacy
of IFN [114]. Nevertheless, in the large majority of clinical studies,
the effect of IFN administration on immune cells is not monitored
and therefore an important part of its mechanism of action is
disregarded, not allowing a mechanistic-based improvement of
the therapeutic efficacy.
4. Conclusions and recommendations

IFNs and their receptors represent early elements in innate and
adaptive immunity evolution and their physiological activity
consists of stimulating immune defenses against the invasion of
foreign pathological elements by a potent, but transient, action
which is quickly extinguished by self-regulatory mechanisms. After
the discovery of IFN, early studies focused only on two of its multiple
properties, the antiviral and anti-proliferative activities. The
identification of additional members of the IFN family, characteri-
zation of the complex properties of distinct IFN subtypes, and
increasing knowledge of the regulation of the IFN response have all
progressed rapidly in the realm of pre-clinical research, but have yet
to be incorporated into the use of IFN in treatments for infectious
disease or cancer. Clinically, IFN has been used at high doses, with
the intent to maintain high concentrations in the body, through
frequent injections or sustained release. The overall therapeutic
results of such a strategy have been beneficial in some infectious or
neoplastic diseases, but in other diseases, especially when used as a
single agent, the value of IFN therapy has been limited, particularly
in light of systemic toxicity. For example, high doses of IFN are
effective in drastically reducing the viremia in HCV-infected patients
after the first treatment cycle, but subsequently, virus loads rise and
ribavirin is required for therapeutic efficacy. Furthermore, the
beneficial effects of continuous exogenous IFN (i.e. after PEG-IFN) are
hampered by the induction of different mechanisms of refractori-
ness – receptor internalization/degradation, rapid induction of
UBP43 and SOCS negative regulators – thus limiting PEG-IFN
activity, despite its persistence in serum [51]. Nevertheless, PEG-IFN
alpha, with its favorable pharmacokinetics and pharmacodynamics,
improves the outcome in CHC patients, although it is not clear that
its activity is related to the acute induction of ISGs. Indeed, since its
approval in the early 1990s for CHC, IFN alpha and PEG-IFN alpha has
been used in HCV patients regardless of whether a pre-existing type I
IFN signature could make the patient intrinsically resistant to IFN
therapy, and may reflect an activated IFN transduction pathway, as
in the case of chronic viral infection or continuous IFN administra-
tion [80,115,116]. The relationships between type I IFN production,
ISG expression, host genetic determinants, virus variability and
clearance of HCV are not understood for IFN alpha-based therapy;
likewise the above properties of the IFN response may also be
important in the new era of DAAs against HCV, since some evidence
indicates that the introduction of DAAs into the IFN regimen may
affect innate immune activation [94,117]. It is thus questionable
whether IFN alpha and/or DAAs can be used effectively without first
assessing endogenous type I IFN activation. Indeed, IFN has known
anti-fibrotic action and there is no proof that patients with advanced
stage liver disease who clear viral infection with DAAs completely
arrest liver disease progression [118].

In addition to the anti-angiogenic effects of high dose IFN,
which lead to the reduction of tumor vasculature, most of the anti-
tumor therapeutic effects of IFN are associated with immune
modulation. A brief but intense production of type I IFN by
plasmacytoid dendritic cells stimulates innate immunity [119]
and, similarly induces the proliferation of memory CD4+ and CD8+
T cells [104] and activates NK cells [120]. In the physiology of the
immune response, type I IFN plays a crucial but brief role, whereas
continuous IFN production leads to pathological consequences
as demonstrated in systemic lupus erythematosus [121]. These
considerations should lead to a reconsideration of the scheduling
of IFN treatment in favor of administration given at progressively
delayed time intervals, to avoid the refractory mechanisms
induced by IFN. Furthermore, IFN therapy should be directed
to its target (vascular endothelium, monocytes/dendritic cells, T
lymphocytes, tumor cells etc.), through targeted delivery strate-
gies, which require lower doses and therefore produce less
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systemic side effects [122]. Also the pro-apoptotic and immuno-
adjuvant activities of IFN should be combined with chemo- or
radio-therapeutic treatment to increase the immunogenicity of
dying tumor cells [113] and their up-take by dendritic cells [107].
Monitoring of immune cell activation should be considered in IFN
treated patients for a mechanistic-based improvement of the
therapeutic efficacy.

Based on the observations that genetic variability (i.e. SNPs in
the IL28B/IFN lambda 3 and IFN lambda 4 on chromosome 19)
rendered CHC patients prone to virus clearance after IFN
treatment, IFN treatment should be personalized to consider
genetic variations that may impact treatment of viral infections or
cancer. Similarly, monitoring the known mechanisms of ‘‘resis-
tance or escape’’ used by viruses and tumors, or developing drugs
that reduce resistance, could improve IFN treatment effectiveness.

The observations that type I IFN response can be deleterious for
the host in secondary bacterial or fungal infections, several
autoimmune diseases, and certain chronic viral infections, should
prompt us to reflect whether IFN alpha has been optimally used in
clinical practice [123]. For instance the detrimental effects of type I
IFN action are clearly demonstrable during lymphocytic chorio-
meningitis virus (LCMV), pathogenic simian immunodeficiency
virus (SIV) and HIV infections where a direct causal link between
type I IFN/ISGs expression and chronic immune activation and
dysfunction has been reported [124–127]. It is not surprising, then,
that the possibility of therapeutically targeting either type I IFN or
its production is now emerging as a new therapeutic strategy
against viral diseases. However, recently it was demonstrated that
blockade of the type I IFN receptor using type I IFN receptor
antagonist after SIV infection of rhesus macaques diminished
antiviral gene expression, increased SIV reservoir size and
accelerated CD4+ T-cell depletion with progression to AIDS,
despite decreased T-cell activation [128]. Thus, an elevated type
I IFN signature can be deleterious in some chronic viral infections,
further emphasizing the difficulties associated with in the in vivo

manipulation of this complex biological system. All these
observations demonstrate that the consequences of manipulation
of IFN signaling are difficult to predict in vivo, and therapeutic
intervention in patients should be conducted with caution, with
careful consideration of the physiology of the IFN action.
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