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Background: Klebsiella michiganensis is an emerging human pathogen that causes nosocomial infections. Its prevalence and spread 
in the environment should not be ignored. This study identified and characterized Klebsiella michiganensis co-harboring blaKPC-2 and 
TmexCD2-ToprJ2 in hospital wastewater samples.
Methods: Twelve K. michiganensis strains were isolated from wastewater samples collected at a tertiary hospital in Beijing, China. 
The genomic characteristics of K. michiganensis strains were analyzed using whole-genome sequences, providing information on the 
comparison between the genome of K. michiganensis strains and the reference genome, antibiotic resistance genes (ARGs), virulence 
genes, secretion systems, and mobile genetic elements (plasmids, insertion sequences [ISs], and prophages).
Results: Genome analysis showed that the twelve multi-drug resistant (MDR) strains carried a variety of ARGs and virulence genes, as 
well as four macromolecular secretion systems (T1SS, T2SS, T5aSS, T5bSS, and T4aP). The genetic environments of both the TmexCD2- 
ToprJ2 gene cluster and blaKPC-2 gene contained ISs. The plasmids carrying TmexCD2-ToprJ2 gene cluster of nine strains in clade 1 and two 
strains in clade 2 were annotated as IncR plasmid and rep_cluster_1254 type, respectively. The plasmids carrying blaKPC-2 in 10 strains in 
clade 1 were identified as IncU, and the plasmids carrying blaKPC-2 in the k11 and k12 strains in clade 2 were IncU and IncX6. The 
phylogenetic tree and heatmap revealed that the secretion system of type VI (T6SSi) existed in 10 strains in clade 1, and Type IV (T4SS) 
only existed in the k11 strain in clade 2. In addition, K. michiganensis strains carried 13 plasmids, 14 ISs, and 138 prophages.
Conclusion: In this study, the whole genome sequencing demonstrated the diversity of K. michiganensis genome despite 12 
K. michiganensis strains from a hospital wastewater, which lays the foundation for further genetic research and drug resistance gene 
transmission.
Keywords: Klebsiella michiganensis, hospital wastewater, whole-genome sequencing, blaKPC-2, TmexCD2-ToprJ2

Introduction
The Klebsiella group is widely distributed in humans, livestock, plants, soil, water and wild animals, with genetic and 
ecological diversity.1 Klebsiella michiganensis (K. michiganensis) is a novel species of the pathogenic genus Klebsiella, and it 
shares a high degree of homology and similarity with Klebsiella pneumoniae in molecular characteristics.2 Meanwhile, 
a review summarized the phylogenetic relationships between Klebsiella pneumoniae and other select members of the 
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Klebsiella genus and family Enterobacteriaceae based on whole-genome sequence, which showed K. michiganensis and 
Klebsiella oxytoca (K. oxytoca) are very close to the tree.3

K. michiganensis was first discovered in a toothbrush holder from Michigan in 2013 and is an emerging Gram- 
negative opportunistic pathogen.4 Several studies have reported that K. michiganensis has been isolated from a variety of 
animals and environments.5–8 In addition, this potential pathogen has also been reported in clinical samples in many 
countries, often associated with numerous hospital-acquired infections.9,10

Carbapenems have become the last line of defense owing to the widespread use of antibiotics in recent years. 
However, the number of carbapenem-producing Klebsiella strains is gradually increasing, which may lead to higher 
morbidity and mortality rates, posing a significant threat to global public health.11,12 Surveillance is key to the effective 
treatment and management of antibiotic resistance and provides guidance for clinical treatment. Hospital wastewater 
contains a variety of microorganisms, antibiotics, and antibiotic metabolites, which are important for the spread of drug- 
resistant bacteria and drug-resistant genes to the environment.13,14 Surveillance of hospital wastewater has become an 
alternative to traditional clinical drug resistance detection, with the potential to reflect the prevalence of MDR bacteria in 
clinical settings.15–17 There has been considerable research on carbapenem-resistant Klebsiella pneumoniae derived from 
wastewater.18,19 The carbapenem-resistant mechanism in Gram-negative bacteria is primarily attributed to the expression 
of carbapenemase enzymes, such as KPC, VIM, OXA-48, and NDM. These β-lactamase genes are harbored on mobile 
genetic elements and conjugated plasmids, which are associated with the widespread dissemination of carbapenem 
resistance.20 However, the genomic characteristics of K. michiganensis in hospital wastewater are yet to be clarified.

In this study, we identified 12 carbapenem-resistant K. michiganensis strains from hospital wastewater in Beijing, China, 
all of which harbored abundant ARGs and virulence genes. The purpose of this study was to understand the overall genomic 
characteristics of K. michiganensis in hospital wastewater, lay the foundation for further studies of K. michiganensis, and 
provide a reference for public health risk assessment.

Materials and Methods
Setting
The Fifth Medical Center of the PLA General Hospital (Beijing, China) is a tertiary hospital with more than 2000 beds, 
comprising 80 departments that treats approximately 100,000 patients annually. There are two hospital campuses: the wastewater 
treatment station in the northern hospital campus generally discharges approximately 300 tons of wastewater per day and one of 
the wastewater treatment stations in the southern hospital campus discharges around 600 tons of wastewater per day.

Isolation and Identification of Bacterial Strain
In June–July 2023, effluent samples were collected at different depths (0.5 to 1 meter below the surface at the inlet of the 
wastewater treatment facilities in both hospital campuses, using 500 mL sterile sampling bags). After collection, samples 
were stored on ice for transportation to the laboratory. Each effluent sample was aspirated 100µL of suspension applied to 
2µg/mL Meropenem on MacConkey agar plates and incubated at 37°C for 18–24 h. Individual colonies were selected 
and subcultured on MacConkey agar plates for purification according to colony size, color, and morphology. Each strain 
was preserved in a 40% sterile glycerol solution and stored at −80°C for further study. Preliminary species identification 
was performed using an automated VITEK 2 system (bioMérieux; Balmes-Les-Grottes, France). Genome annotation was 
performed using GENOME TAXONOMY DATABASE (GTDB) v2.1.0.21

Antimicrobial Susceptibility Test
The VITEK-2 compact system with a vitek2 Gram-negative bacterial drug sensitivity card (AST-N335; bioMérieux) was 
used to test the antimicrobial susceptibility of the strains, which included 14 antibiotics: piperacillin/tazobactam, 
ceftazidime, cefepime, aztreonam, imipenem, meropenem, amikacin, tobramycin, ciprofloxacin, levofloxacin, doxycy-
cline, minocycline, tigecycline, and trimethoprim/sulfamethoxazole. Pseudomonas aeruginosa ATCC 27853 and 
Escherichia coli ATCC 25922 were used as quality control strains for testing, and the results were interpreted according 
to the Clinical and Laboratory Standards Institute criteria (CLSI, 2023).22
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Whole Genome Sequencing and Assembly
To further analyze the strain, whole-genome sequencing was performed by Novogene Co., Ltd. (Beijing, China) using the 
Illumina NovaSeq platform with the PE150 strategy. The sequencing data quality was checked using FastQC v0.11.9.23 

Then, clean data were assembled using Spades v3.13.0,24 Shovill v1.1.0 (https://github.com/tseemann/shovill) and 
Unicycler v0.5.0,25 respectively. The assembly results were evaluated using Quast v5.2.0,26 and the completeness and 
contamination were assessed using CheckM v1.2.2.27 The best-assembled results were selected for further analysis.

Phylogenetic Analysis
The Genomic sequence data were retrieved from all K. oxytoca and K. michiganensis with complete assembly levels in the 
National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/genome/), and CheckM was also used for 
quality assessment. Core genome was determined by Roary v3.13.028 after annotating assembled genome by Prokka v1.14.6.29 

The phylogenetic tree was constructed by IQ-tree2 with 1000 ultra-fast bootstrap replicates.30 Based on the position of the strains 
on the tree and the mash distances between strains, the strains isolated in this study were identified. Additionally, a strain from 
NCBI that was closest in distance to the strains in this study was selected as a reference genome for follow-up analysis.

A phylogenetic tree was constructed using IQ-TREE 230 and visualized using FigTree v1.4.4 graphical viewer (http://tree.bio. 
ed.ac.uk/software/Figtree/).

Bioinformatic Analysis
To understand the genome structure relationship of different strains, we used the Mauve software to perform covariance 
comparisons between the whole genome of the strains and the reference genome (GCA_025263805.1).31

ARGs, virulence factor genes, and plasmid replicons were identified using Abricate v1.0.1, Resfinder, VFDB, and 
PlasmidFinder database, respectively.32–34 The heat map was visualized using TBtools software.35 ISs were predicted by 
ISEScan v1.7.2.3.36 Secretion systems (T1SS to T6SS) were detected by MacSyFinder v2 with the TXSScan model and 
visualized using Easyfig v2.2.5.37,38

Plasmid and chromosome sequences in the genome were predicted by Mlplasmids and Platon v1.7,39,40 while the 
classification of contigs harboring the blaKPC-2 and TmexCD2-ToprJ2 clusters was determined using Mlplasmids and 
MOB-suite v3.0.3.41 The coverage of specific plasmids was calculated using SAMtools v1.20, determine their inter- 
relationships.42 Plasmid comparisons were performed in the PLSDB database (search strategy: mash dist) to find the 
closest plasmid sequences to the reference plasmids43 and visualized by the Proksee v1.0.0a6.44

DBSCAN-SWA software was used to predict and analyze the prophage carriage of the 12 strains,45 and the possible 
ARGs and virulence genes in the prophage genomes were predicted using Abricate software with the Resfinder and 
VFDB databases.

Results
Identification and Comparison of K. Michiganensis
From June to July 2023, samples of 12 bacterial strains were collected from untreated wastewater at the northern campus 
(n = 1) and southern campus (n = 11) of the Fifth Medical Center of the PLA General Hospital. Initial species 
characterization, using Vitek 2, identified twelve strains as K. oxytoca. QUAST assessed the assembly results of the 
three software packages, with Unicycler yielding the best assembly effectiveness, which was subsequently used for 
further analysis (Figure S1 and Table S1). The best assembled sequence showed high completeness and low contamina-
tion (Table S2). According to GTDB classification annotations, 12 strains were identified as K. michiganensis. 
Meanwhile, all K. oxytoca strains and K. michiganensis strains downloaded from NCBI were re-annotated as 42 
K. oxytoca strains, 84 K. michiganensis strains and 9 other strains (Klebsiella grimontii, Klebsiella oxytoca_C, 
Cedecea michiganensis_A) (Table S3). They were used to construct the phylogenetic tree (Figure 1). Finally, 12 bacteria 
were identified as K. michiganensis and K. michiganensis BSI-KPN166 strain (GCA_025263805.1)2 was selected as the 
reference genome. Sequence coverage exceeded 90% (Table S2). Using K. michiganensis BSI-KPN166 strain (km48) as 
the reference genome, multiple genome alignments were performed after reordering the order of contigs for each strain. 
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The 12 strains and the reference genome had many locally collinear blocks (LCBs) of the same color, indicating that the 
genomes were highly consistent (Figure S2).

Results of Antimicrobial Susceptibility Test
Twelve K. michiganensis strains were MDR; resistant to piperacillin/tazobactam, ceftazidime, cefepime, aztreonam, 
imipenem, meropenem, tobramycin, ciprofloxacin, and levofloxacin; and all were intermediate to tigecycline. The 
detection rate of drug resistance to doxycycline and minocycline was 8.3% (1/12). The results of antimicrobial 
susceptibility tests are presented in Table S4.

Characterization of Antimicrobial Resistance Genes
The genomes of 12 K. michiganensis strains encoded 25 ARGs in 10 different antibiotic classes (Table S5), including 
aminoglycoside resistance (aadA5, aph(3’)-Ia, armA), beta-lactams (blaCTX-M-3, blaKPC-2, blaNDM-1, blaOXA-1, blaOXY-1), 
diaminopyrimidine (dfrA1, dfrA14), fluoroquinolone (aac(6’)-Ib-cr, OqxA, OqxB, qnrS1), fosfomycin (fosA, fosA3), macro-
lides (mphE, msrE), phenicol (catB3), rifampicin (arr-3), sulfonamide (sul1, sul2), and tetracyclines (tmexC2, tmexD2, 
TOprJ2). Each strain contained 14 to 21 ARGs. Notably, each strain carried blaKPC-2. The phylogenetic tree comprised two 
lineages: clade 1 and clade 2. ARGs, including aadA5, aph(3’)-Ia, armA, blaCTX-M-3, dfrA1, fosA3, mph(E), msr(E), sul2 were 
only located in 10 strains of clade 1 (Figure 2). blaOXA-1 and catB3 were located in only two strains in clade 2.

Figure 1 The phylogenetic tree and the GTDB classification annotations. The sequencing data of 12 K. michiganensis strains in this study (green strip) and 42 K. oxytoca 
strains, 84 K. michiganensis strains and 9 other strains (Klebsiella grimontii, Klebsiella oxytoca_C, Cedecea michiganensis_A) downloaded from NCBI were used to construct the 
phylogenetic tree. Each color represents a different species.
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Genetic Environment of TmexCD2-ToprJ2 Gene Cluster and blaKPC-2 Gene
We analyzed the genetic environment of blaKPC-2, tmexC2, tmexD2, and TOprJ2 genes. The TmexCD2-ToprJ2 gene 
clusters were inserted into umuC with an IS881 family element located upstream (Figure 3A). Upstream of the blaKPC-2 

gene is klcA, which encodes an anti-restriction protein, accompanied by numerous genes coding for hypothetical proteins. 
There were two main genetic environments for blaKPC-2 genes. One was that the downstream was the IS481 family, and 
the other was that the downstream contained the IS481 and IS3 families (Figure 3B).

Characterization of Plasmids Harboring TmexCD2-ToprJ2 and blaKPC-2 Genes
The contigs carrying TmexCD2-ToprJ2 gene cluster of 11 strains were identified as plasmid sequences using Platon and 
Mlplasmids software. To clarify the relationship between the 11 plasmids, the maximum contig (k12-contig34, 58417bp) 
was selected as the reference sequence to calculate the coverage of each contig carrying the gene cluster (Table S6). The 
coverage of k11-contig45 was 100%, indicating a high level of similarity between plasmids carrying TmexCD2-ToprJ2 
gene cluster in k11 and k12. Coverage of the remaining plasmids in the nine strains was 82.1%. Although the k08 strain 
lacked TmexCD2-ToprJ2 cluster, its coverage was 81.5% (Table S7). The plasmids carrying TmexCD2-ToprJ2 gene 
cluster of nine strains in clade 1 and two strains in clade 2 were annotated as IncR plasmid and rep_cluster_1254 type, 
respectively. The alignments of the closest plasmids from the PLSDB database, K. pneumoniae strain ARLG-4866 
plasmid pC597_5 (complete sequence, CP067603.1, respiratory, USA: South), K. pneumoniae strain S245 plasmid 
pS245-2 (complete sequence, NZ_CP114855.1, blood, China: Guangzhou), and 12 K. michiganensis strains in the two 
clades were visualized using Proksee (Figures S3A and B, Table S8).

Contigs carrying blaKPC-2 from the 12 strains were identified as plasmids. The coverage of k11-contig42 was 100% 
based on the maximum contig (k12-contig47, 30234bp), and the coverage rate of the remaining 10 strains was 38.08% 
(Table S7). After annotation, the contigs carrying blaKPC-2 from the 10 strains in clade 1 were annotated as IncU plasmids, 
and the contigs carrying blaKPC-2 of k11 and k12 in clade 2 were annotated as IncU and IncX6, respectively. The alignments 
among the closest plasmids, including K. pneumoniae strain KP424 plasmid pKPC-2-KP424 (complete sequence, 
NZ_CP109990.1, stool, China: Hangzhou) and K. pneumoniae strain KPN55602 plasmid pK55602_2 (complete sequence, 
NZ_CP042976.1, blood, China: Anhui) and 12 K. michiganensis strains, are shown in Figures S3C and D and Table S8.

Characterization of Virulence Genes and Macromolecular Secretion Systems in 
K. Michiganensis Genome
Twelve K. michiganensis strains encoded 49 different virulence genes (Table S9) that were associated with adherence, 
antimicrobial activity/competitive advantage, biofilms, effector delivery systems, exotoxins, nutritional/metabolic factors, 
and regulation. The virulence genes clpV/tssH and east1 were only located in Clade 1. The dotU/tssL, tssF, vgrG/tssI, 

Figure 2 The heatmap of secretion systems, virulence genes, ARGs and plasmids mapped to the phylogenetic tree. From left to right, distribution of secretion systems, 
virulence genes, ARGs, and plasmid replicons. Gray squares represent none.
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Figure 3 Comparison analysis of the genetic context of specific ARGs. (A) Comparative analysis of the genetic context of tmexCD2-toprJ2 clusters with closely related 
sequences. (B) Comparison analysis of the genetic context of blaKPC-2 with that of closely related sequences. The red arrows indicate target ARGs, the purple arrows 
indicate IS families, the light green and green arrows indicate Umuc and KlcA genes respectively, the yellow arrows indicate hypothetical protein and others. The gray shaded 
regions indicate homology.
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vipA/tssB, vipB/tssC virulence genes were only located in Clade 2. Although hcp/tssD and gndA virulence genes were 
present in all strains, they all carried two virulence genes in 10 strains of clade 1. In addition, the secretion system results 
showed that all 12 strains had type I (T1SS), type II (T2SS), type V (T5aSS and T5bSS), and type IVa pilus (T4aP) pili 
(Figure 3). The type VI secretion system (T6SSi) was present in only 10 strains in clade 1. Type IV (T4SS) was present 
only in the k11 strain in clade 2.

Mobile Genetic Elements in K. Michiganensis Genome
There were 13 plasmids including Col(pHAD28), IncFII(p14), IncU, IncFIA(HI1), IncFIB(pQil), repB(R1701), IncR, 
Col440II, IncFIB(K), IncX6, IncFII(pKP91), IncFII(Yp), IncN in 12 K. michiganensis strains (Figure 3). All 12 strains 
carried IncU plasmids. Notably, both strains of clade 2 carried two Col (pHAD28) plasmids. IncFIB (pQil) and repB 
(R1701) plasmids were found only in clade 1, whereas Col440II, IncFIB (K), and IncX6 plasmids were found only in 
clade 2. The ISs belonged to 14 IS families (IS1, IS3, IS5, IS4, IS21, IS66, IS91, IS110, IS256, IS481, IS1182, ISL3, 
ISAS1, and ISNCY), the most prevalent being IS3 and ISNCY (Figure 4). ISL3 and ISAS1 were only present in clade 2. 
In total, 138 prophages were predicted using DBSCAN-SWA. No ARG was found in the prophage genome predicted by 
Abricate using the Resfinder database for the k12 strain. The other 11 strains were contained to 5–9 kinds of ARGs. 
Furthermore, aac(6’)-Ib-cr, blaCTX-M-3, fosA3 and sul2 were found in the prophage genomes of 10 strains in clade 1. 
Three virulence genes (gndA, ugd, east1) were identified in the prophage genome as predicted by the VFDB database 
(Table S10).

Discussion
Recently, with the extensive use of carbapenem antibiotics, carbapenem-resistant strains have become widespread, 
thereby posing a serious public health problem in many countries. ARGs, such as blaKPC-2, blaNDM-1 and the RND 
efflux pump gene cluster, appear in a variety of aquatic environments, including lake water, rivers, well water, and 
wastewater treatment plants.46–48 The main source of ARGs at these sites is likely to be hospital wastewater. The sources 
of hospital wastewater are complex, including medical and domestic wastewater.49 Hospital wastewater contains highly 
resistant bacteria, which is a suitable reservoir for horizontal gene transfer (HGT).50 There was a study that reported the 
prevalence of Klebsiella spp. in hospital wastewater, but it did not specify the presence of K. michiganensis.51 To our 

Figure 4 IS family distributions of K. michiganensis strains. The color codes represent the IS family.

Infection and Drug Resistance 2024:17                                                                                             https://doi.org/10.2147/IDR.S448256                                                                                                                                                                                                                       

DovePress                                                                                                                       
5123

Dovepress                                                                                                                                                             Long et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=448256.pdf
https://www.dovepress.com
https://www.dovepress.com


knowledge, this was the first report of carbapenem-resistant K. michiganensis co-harboring blaKPC-2 and TmexCD2- 
ToprJ2 gene cluster isolated from hospital wastewater.

In this study, we examined the drug sensitivity and genomic characteristics of 12 K. michiganensis strains isolated from 
hospital wastewater samples in detail. All strains were MDR, and 12 were resistant to most antibiotics. Although the rate of 
resistance to tetracycline-class antibiotics in our antimicrobial susceptibility test was less than 10%, the tetracycline resistance 
gene cluster TmexCD2-ToprJ2 was found in 11 strains, which was inconsistent. There were some discrepancies in anti-
microbial resistance (AMR) between the detection of ARGs and the actual phenotype among strains, indicating that AMR 
predictions relying on in silico analysis of a sequenced genome should always be accompanied by AMR testing to reliably 
determine the AMR of microorganisms.52,53 It is necessary to acknowledge the limitations of the short-read sequencing in our 
study. To mitigate these inaccuracies, we categorized the ISs positions identified in 12 strains into three groups based on the 
length of their flanking sequences: The first category includes ISs that constitute the entire contig, accounting for 259 cases 
(28.0%). The second category consists of IS elements located near the ends of contigs, where the flanking sequences on either 
side of the ISs are shorter than 1000 base pairs, comprising 365 cases (39.5%). The third category encompasses IS elements 
situated in the middle of contigs, with flanking sequences on both sides being at least 1000 base pairs long, totaling 301 cases 
(32.5%). We have incorporated the 301 ISs from the third category into our final set of reliable identification results. In our 
future work, we intend to combine short-read and third-generation long-read technology for analysis to improve accuracy.

As the efflux pump gene cluster, TmexCD2-ToprJ2 has attracted our special attention, which is an orthologous variant 
of TmexCD-ToprJ.54 It has been reported that there was IncHI1B plasmid encoding efflux pump TmexCD2-ToprJ2 in 
carbapenem-resistant K. michiganensis strains.55 In our study, K. michiganensis strains carrying plasmids encoding 
TmexCD2-ToprJ2 gene cluster were also found in hospital wastewater samples. A previous study has shown that 
TmexCD2-ToprJ2 functions as an efflux pump system in efflux inhibition experiments. TmexCD2-ToprJ2 can be resistant 
to a variety of drugs, including tigecyclines.54 The rapid expansion of TmexCD-ToprJ cluster has been attributed to 
various mobile genetic elements, such as integrative and conjugative elements (ICEs), transposons, or IS elements.55–58 

The upstream of the gene cluster also contains an IS element. To avoid the further expansion of K. michiganensis strains 
harboring TmexCD-ToprJ2 gene cluster carrying mobile genetic elements in the environment, it is necessary to 
implement more stringent and effective disinfection measures for hospital wastewater. In addition, we found that 
umuC was located near the gene cluster. A study showed that a larger putative transposon comprised 34827bp harboring 
TmexCD2-ToprJ2 was also inserted into the umuC-like gene.55 The umuC gene seems to be the “hotspot” for TmexCD2- 
ToprJ2 integration, and the specific molecular mechanism of site-specific integration should be worthy of further study.

There are few reports of K. michiganensis strains harboring blaKPC-2 in hospital settings. The global evolutionary 
analysis of K. michiganensis conducted by Zhang et al showed that only 22 of 446 K. michiganensis strains carried the 
blaKPC-2 gene, indicating that the blaKPC-2 carriage rate was low.2 However, all 12 K. michiganensis strains carried 
blaKPC-2 which was located on plasmids, and the surrounding genetic environments contained IS and/or Tn3 family 
transposases. More attention should be paid to further transfer and dissemination of K. michiganensis harboring blaKPC-2 

with the help of mobile elements such as plasmids, IS, and transposons. In a study by Zhang et al, K. michiganensis 
strains carrying blaKPC-2 were isolated from a blood sample of a patient at a tertiary hospital in Beijing, whereas our 
K. michiganensis strain harboring blaKPC-2 was isolated from wastewater samples at another hospital in Beijing. This 
reminds us to guard against further spread of K. michiganensis harboring blaKPC-2 gene.

In this study, four secretion systems were identified in all the genomes. The secretion systems encoded by strains of the 
bacteria confer adaptive advantages according to the niche occupied.59 Macromolecular secretion systems are equipment 
implanted on the cell membrane and secrete effector factors, which are involved in key biological processes, including nutrition 
acquisition, environmental adaptation, inter-communication, and virulence gene expression.60 It indicates that these secretion 
systems play an important role in adaptability and pathogenicity. The T6SS secretion system was present in 10 K. michiganensis 
strains in clade 1, and the T4SS secretion system was present only in the genome of one strain in clade 2. The type VI secretion 
system (T6SS) is a multiprotein complex that delivers effector proteins to the extracellular environment or directly to eukaryotic 
or prokaryotic cells. T6SSs are widely distributed in gram-negative bacteria and are crucial for bacterial virulence and the 
interaction between bacteria and other microorganisms or the environment.59 Type IV secretion system (T4SS) can secrete 
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effector molecules, mediate conjugation and transformation, and play an important role in HGT and improve survival and 
pathogenicity.61

Bacteria can acquire ARGs through mobile genetic elements such as plasmids, transposons, integrons, and IS elements.62 

Due to their mobile nature, these genetic elements can easily spread horizontally across many species of bacterial 
populations.63,64 ISs typically contribute to bacterial genetic diversity by excising or copying themselves and inserting into 
different parts of the genome.65 The genetic environment the TmexCD2-ToprJ2 and blaKPC-2 genes had IS elements inserted, 
suggesting a close relationship between ARGs and IS elements. Plasmids can carry functional genes such as ARGs, allowing 
bacteria to survive in adverse environments. All the strains in this study carried IncU plasmids. The IncU plasmid incompat-
ibility group is a unique group of mobile elements with highly conserved backbone functions and variable ARG cassettes.66 IS 
and plasmids further promoted the transmission of ARGs. In this study, all K. michiganensis strains were found to carry 
prophages, and ARGs and virulence genes were detected. Prophage induction and mobility, which are often increased by the 
action of antibiotics, can favor the dissemination of ARGs and other mobile genetic elements such as pathogenicity islands, 
thereby promoting bacterial evolution.67

Hospital wastewater is usually mixed with municipal wastewater, treated at wastewater treatment plants, and discharged into 
the aquatic environment. Due to the dilution effect, micropollutants are not completely removed, and some pathogens can 
survive, which can persist in the environment and finally be transferred to human, fish, and animal pathogens.68,69 Therefore, it is 
necessary to continuously monitor hospital wastewater and take more stringent disinfection measures. Despite there are few 
reports about K. michiganensis harboring blaKPC-2 from hospital wastewater, in low epidemic environments, monitoring hospital 
wastewater can be used as an early warning system for the emergence and spread of opportunistic pathogens such as 
carbapenemase-producing K. michiganensis.

To sum up, the detailed genomic characteristics of carbapenem-resistant K. michiganensis strains co-harboring blaKPC-2 and 
TmexCD2-ToprJ2 were described in this study. The most similar plasmids from clinical respiratory or blood samples were 
identified when finding the similar plasmids carrying blaKPC-2 or TmexCD2-ToprJ2. It indicated the cross-transmission between 
environmental and clinical K. michiganensis strains and the robust transfer of plasmids between strains, further highlighting the 
potential risk of infection and transmission in hospitals. Because K. michiganensis and K. oxytoca have the resemblance of 
protein spectra, highly comparable phenotypes, biochemical reactions, and 16S rRNA sequences (99% similarity in the 
nucleotide sequence), they cannot be distinguished in conventional detection. However, our study reported that 
K. michiganensis has been present in hospital wastewater, suggesting that routine monitoring of K. michiganensis is urgently 
needed to reduce associated problems. The ability to monitor K. michiganensis has been hampered, and further investigation is 
required in this area.
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