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With the increasing interest devoted to dynamic environments, a crucial aspect is revealed in context-aware systems to deal with
the rapid changes occurring in users’ surrounding environments at runtime. However, most context-aware systems with
predefined context-aware rules may not support effective decision-making in dynamic environments. These context-aware rules,
which take into account different context information to reach an appropriate decision, could lose their efficiency at runtime.
Therefore, a growing need is emerging to address the decision-making issue leveraged by dynamic environments. To tackle this
issue, we present an approach that relies on improving decision-making in the wake of dynamic environments through au-
tomatically enriching a rule knowledge base with new context-aware rules discovered at runtime. The major features of the
presented approach are as follows: (i) a hybridization of two machine learning algorithms for rule generation, (ii) an extended
genetic algorithm (GA) for rule optimization, and (iii) a rule transformation for the knowledge base enrichment in an automated
manner. Furthermore, extensive experiments on different datasets are performed to assess the effectiveness of the presented
approach. The obtained experimental results depict that this approach exhibits better effectiveness compared to some algorithms

and state-of-the-art works.

1. Introduction

In context-aware computing, there exists a shift from static
environments to dynamic environments [1]. This shift re-
flects a growing interest devoted to dynamic environments.
With the growing interest, a crucial need is revealed for
context-aware systems to be aware of and to adapt to their
changing contexts in highly dynamic environments at
runtime [2]. To support this need, a grand challenge is that
context-aware systems should adjust their behaviors to the
dynamics entailed in their surrounding environments at
runtime. In order to meet this challenge, a decision-making
process improvement by providing appropriate services to
users situated in highly changing environments has emerged
to make context-aware systems more resilient to dynamic
environments at runtime. Nevertheless, at present, most

context-aware systems usually work well in static environ-
ments with predefined context-aware rules that can only
behave to changes in environment attributes and context
information [3]. They can handle neither dynamic envi-
ronments nor context changes at runtime since predefined
rules might not be suitable for the dynamic nature of en-
vironments. On that account, rules need to be constantly
evolved to remain relevant over time [4]. This raises more
attention to be paid to how to enrich a rule knowledge base
through the generation of efficient rules to timely react to
arising environment changes at runtime. As data mining and
specifically machine learning could be more accurate for
profiting better rules [5], exploring recent advances in the
application of machine learning might be beneficial in of-
fering a way to learn and generate a set of nonredundant
rules that are easily comprehensible and are capable of
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representing contextual knowledge in a very clear and ef-
ficient way.

To achieve this sustained attention, we propose, in this
work, an approach that aims to automatically improve the
decision-making process to support dynamic environments
at runtime. The main feature of the proposed approach is to
offer a rule knowledge base, where context-aware rules are
fluid and evolutive at runtime for alleviating the burden of
manually creating rules to react toward users’ environment
changes. The novelty and contribution of this approach
could be drawn from threefold: first, we present a novel
hybrid learning approach toward effectively generating a
concise set of nonredundant association rules in an auto-
mated fashion by applying two learning algorithms. We
hybridize machine learning algorithms to generate a more
accurate and complete set of rules, to avoid redundancy, and
to build a strong rule knowledge base in a context-aware
system, in which we are interested. Second, we extend a
genetic algorithm (GA) [6] with a multianalysis technique in
the direction of rule optimization. The rule optimization is
applied to find the well-performed rules from the generated
rules since machine learning algorithms are not much
proficient at optimizing rules. Third, we introduce an au-
tomatic transformation of obtained association rules to rules
expressed in Jena [7]. Rule transformation is performed to
express the well-performed rules in such a way that they can
run over an ontology-based context model and a context-
aware system can reason. Moreover, we conduct a range of
experiments to assess the effectiveness of the proposed
approach on different datasets from the UCI Machine
Learning Repository [8]. First, we compare the proposed
approach with the traditional association rule mining al-
gorithms to analyze the number of generated rules. Then, we
evaluate the performance of the proposed approach with the
most common machine learning algorithms and certain
state-of-the-art works. Finally, we analyze the computational
time of the proposed approach and the machine learning
algorithms. The provided results prove the effectiveness of
the proposed approach by achieving the best result in terms
of the number of rules, precision, recall, and accuracy among
certain state-of-the-art works and algorithms such as apriori,
FP growth, K-nearest neighbor, Naive Bayes, JRip, and
decision table.

The rest of this study is arranged as follows. We review
the related work in Section 2. In Section 3, we introduce the
proposed approach and outline the overall architecture and
modules in detail. We present the experimental setup and
the results obtained with an example of generated context-
aware rules in Section 4. In Section 5, we illustrate the
discussion of the results. Finally, we draw conclusions and
highlight the direction for future work in Section 6.

2. Related Work

Data mining, especially machine learning and association
rule mining, algorithms play a vital role in rule discovery
from data. By searching through the literature, there is an
extensive research basis to support association rule discovery
from data to tackle the challenge of the decision-making
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improvement. In the following, we review first some works
for discovering rules within the area of context awareness.
Then, we provide a discussion to highlight the research gaps
that motivate us to propose our approach.

A large number of works for association rule learning
have been introduced using association rule mining algo-
rithms. In this sense, Gabroveanu and Diaconescu [9]
proposed a recommender system for students. They used
data obtained from the learning database and apriori as an
association rule mining algorithm in order to identify strong
association rules for students. Then, these rules, obtained in
an offline mining process, are translated into Jena rules to
allow reasoning over RDF models. In addition, Kaliappan
and Sai [10] presented a new modified apriori algorithm for
finding the association rules among large datasets to pro-
mote sales and user interaction. They showed that the
proposed algorithm improved the efliciency of generating
association rules. Moreover, Davagdorj and Ryu [11] offered
an association rule mining method to discover useful pat-
terns, which include medical knowledge, from a medical
dataset. They applied the FP growth algorithm to extract a set
of association rules. Then, the obtained rules are used to
support medical decision-making for interpreting diag-
nosing patient information. Furthermore, Asadianfam et al.
[12] introduced a new approach to improve recommenda-
tions that can be used to predict the next navigable page of
users. One of the objectives considered in their approach is
to provide appropriate recommendations to users who have
different profiles from the existing users’ profiles. To deal
with the objective, the authors used the apriori algorithm to
generate association rules from users’ behaviors and then
made appropriate recommendations. They showed that the
generated association rules could increase the overall effi-
ciency of the recommender system. More recently, Miswan
et al. [13] proposed a framework of association rule mining
in readmission tasks. The proposed framework consisted of
two processes, namely, data preprocessing and rule mining
extraction. Apriori algorithm is used to extract the hidden
input variable patterns and relationships among admitted
patients by generating supervised learning rules. The mined
rules are discussed and validated by the domain expert,
which is a valuable guide in making decisions on targeted
patients’ clinical resources based on various readmission
durations.

Apart from these works, there are also few works ex-
ploring the association rule learning using machine learning
algorithms. In this context, Hong et al. [14] proposed an
agent-based framework for offering personalized services
utilizing the extracting users’ preferences and association
rules. The decision tree algorithm is considered to infer
association rules for recommending personalized services
for users. Similarly, Zulkernain et al. [15] introduced an
intelligent mobile interruption management system. The
main idea of their proposed system is to intelligently assist
users in their daily activities. To this end, a decision tree
algorithm is used to make intelligent decisions. Moreover,
Sarker [16] presented an association rule learning approach
that can be used to discover a set of nonredundant and useful
rules. In their approach, they considered, first, the Naive
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Bayes (NB) algorithm to eliminate noise from data and,
second, the decision tree algorithm to generate a set of
association rules. These algorithms are used to build a robust
prediction model that could improve the prediction accu-
racy. Finally, Basha [17] provided a cardiovascular predic-
tion system that combines the traditional K-nearest
neighbor (KNN) algorithm with a GA to extract strong
association rules for facilitating the decision-making pro-
cess. First, the proposed system extracts association rules
using the KNN algorithm. Then, the output rules become the
population of the GA to remove redundant and irrelevant
rules.

Nevertheless, a common weakness that can be found in
the majority of discussed works [9-13] mainly stands in the
use of traditional association rule mining algorithms, such as
FP growth and apriori. This weakness is caused by the
narrow applicability of these algorithms due to the huge
number of association rules generated [18]. However, these
works generate numerous redundant association rules,
which lead to generating a huge number of uninteresting
rules that become useless in making decisions. This re-
dundant generation makes not only the rule set unneces-
sarily large but also makes the decision-making process
more complex and ineffective. Therefore, the traditional
association rule mining algorithms are not able to efficiently
extract interesting association rules. Instead, employing
machine learning algorithms can overcome this weakness
and avoid rule redundancy and conflicts in the mining
process. Despite that, in many cases, works based on ma-
chine learning algorithms [14-17] could not ensure high
accuracy in generating association rules [19]. Furthermore, a
limitation in some of these works [9, 13] is that they are only
suitable for offline mining and not suitable for dynamic
environments where new incoming changes are continu-
ously received at runtime and so decisions may be wrongly
predicted based on rules defined a priori. A further im-
portant limitation is that certain works like the work of
Miswan et al. [13] require domain expert intervention to
validate generated association rules. Following the above
discussion, we aim to close gaps within the discussed works
by proposing an approach that relies on automatically
enriching a rule knowledge base with new context-aware
rules generated at runtime to perform an efficient decision-
making for dynamic environments. The proposed approach
focuses on discovering and generating nonredundant and
well-performed association rules through the use of machine
learning algorithms along with an extended GA to reduce
rule redundancy. To address the decision-making accuracy
question, the proposed approach represents a hybridization
idea that combines the strengths of two supervised machine
learning algorithms, the decision tree, and the random tree
algorithms. Moreover, it proceeds for a rule transformation
to support the automatic enrichment of rule knowledge
bases at runtime.

3. Proposed Approach

In this work, we propose an approach that supports the
improvement of decision-making in dynamic environments

at runtime by allowing an automatic enrichment of a rule
knowledge base with new generated context-aware rules.
The proposed approach first aims to generate a concise set of
nonredundant association rules following the IF-THEN
structure, then to optimize the generated rules, and finally to
transform rules to Jena rules for enriching the rule
knowledge base and providing appropriate services to users
situated in dynamic environments at runtime. Figure 1 il-
lustrates a schematic view of the proposed approach
architecture.

As illustrated in Figure 1, the proposed approach typi-
cally consists of two main modules, namely, the rule gen-
eration module and the rule transformation module. In the
following, we discuss these modules and their roles in
generating association rules and transforming them into
Jena rules.

3.1. Rule Generation Module. The rule generation module is
designed to automatically derive association rules needed to
meet the changes occurring in users’ dynamic environments.
That means, it aims to preprocess a candidate dataset, to
generate decision trees, and to infer the well-performed
association rules in order to further enrich a rule knowledge
base and improve the decision-making process at runtime.
The present module runs every time when new changes are
arrived and a priori rules are deemed not relevant to these
changes. This module is defined considering two main
phases as shown in Figure 1.

3.1.1. Association Rule Learning. The association rule
learning phase is in charge of learning and extracting as-
sociation rules from a candidate dataset. This phase includes
various steps starting from the preprocessing of the dataset
to the validation of rules.

(1) Dataset Preprocessing. This represents the first step of the
association rule learning phase, which is applied to improve
the quality of the candidate dataset so as to ensure accurate,
consistent, and complete generated decision trees and fur-
ther association rules. This step is responsible for preparing
data from the candidate dataset. Hence, two major stages
during the data preprocessing step, namely, data cleaning
and data reduction, are performed. The first stage comprises
both operations like filling missing data and smoothing
noisy data. It aims to replace missing data with the average of
existing data, using different traditional imputation methods
(i.e., mean and median). To smooth noisy data, we carry out
techniques, such as clustering, regression, and binning, to
eliminate the noise in the dataset as it rises due to random
variation. The second stage is data reduction that is used to
obtain a simplified representation of a dataset with relevant
data. To do it in the simplest manner, we remove redundant
and inconsistent data.

(2) Learning-Based Rule Generation. After the data pre-
processing step is completed, the learning-based rule gen-
eration step takes place first to automatically learn training
models for building decision trees, then to derive association
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rules, and finally to integrate them into the association rule
repository. To this end, the present step provides two ele-
mentary mechanisms. The main idea of these mechanisms
can be simply described in Figure 2.

A first mechanism, called hybrid supervised learning,
takes advantage of machine learning and pattern recognition
in learning about data, extracting relevant relationships, and
eliminating redundancy. Thus, it combines widely adopted
supervised machine learning algorithms, namely, J48 deci-
sion tree [20] and random tree [21], to train the preprocessed
dataset. As far as we know, this is the first time that J48
decision tree and random tree algorithms are combined to
the association rule learning. To improve the accuracy of
learning, we come up with the idea of hybridizing J48 de-
cision tree and random tree algorithms as they are tree-based
techniques that provide the highest accuracy diagram of a
decision tree [22]. The resulting training models consist of a
set of decisions in a tree structure, which could be utilized to
generate rules from each leaf node [23]. As shown in Al-
gorithm 1, this first mechanism trains the J48 decision tree to
build the corresponding decision tree on the decision tree-
based training model. Subsequently, it applies the random
tree algorithm to get the second decision tree on the random
tree-based training model.

The second mechanism, called association rule extrac-
tion, acquires association rules from previously trained
decision trees. To do so, it tracks, in an automated fashion,

the path from the root node to each leaf node in both trees in
order to detach the set of association rules.

The output of this mechanism is a set of association rules
following IF-THEN statements: IF <A> THEN <C>, where
the antecedent part <A> represents user’s surrounding
contextual information such as temporal context, spatial
context, social contexts, or others relevant contextual in-
formation, for example, “outlook = overcast,” and the con-
sequent part <C> represents their corresponding behavioral
activities for decision-making, for example, “play =yes.”

(3) Rule Validation. After completing the generation step,
the rule validation step is applied through the following
methods:

(i) Rule structure verification, which is responsible for
checking whether extracted rules are preserving the
inherent IF-THEN structure.

(ii) Rule consistency verification, which is in charge of
verifying the consistency of association rules. Given
the fact that association rules are made up of an-
tecedent constraints and a consequent constraint,
the rule consistency is related to the satisfiability of
constraints. To ensure a conflict-free association rule
repository, a reasoner is used to enumerate all in-
consistent rules, where the consequent constraint
does not refer to the antecedent constraint.
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3.1.2. Association Rule Optimization. The association rule
optimization is the second and last phase in the rule gen-
eration module. The present phase is in charge of identifying
the well-performed rules from a set of earlier validated
association rules. In this sense, a GA is extended to support a
multianalysis technique. The main idea of extending a GA
with a multianalysis technique is to optimize the set of
association rules to find the well-performed rules by
adopting the optimization strategies in GA. To be more
precise, there are two main steps in this phase as depicted in
Figure 3. First, the interesting rule extraction step is carried
out using GA that is a kind of effective optimizing technique
owing to the robust and global search ability [24]. Second,
the evolutionary rule extraction step involves a multianalysis
technique to extend the GA and extract the well-performed
association rules.

(1) Interesting Rule Extraction. This step determines the
interesting association rules by applying a GA to the can-
didate dataset. The GA is used to produce a strong level of
association rules since supervised learning algorithms may
generate irrelevant rules. The motivation behind this choice
is twofold: first, the GA is one of the best methods for rule
optimization [25], and second, it performs a global search
technique to find out interesting rules with less complexity
compared to other algorithms [26]. The GA creates an initial
population as a collection of chromosomes, in which every
chromosome represents an association rule. Then, it evolves
the initial population over multiple generations through
encoding, selection, crossover, and mutation operations to
reach the optimal set of interesting association rules. In the
end, it introduces a set of interesting association rules, which
satisfies a fitness function. The flowchart of GA is shown in
Figure 4.
The specific steps of the GA are as follows:

(i) Step 1. Encoding step: The candidate dataset is
encoded to initiate the experimentation of the GA.
In our case, a binary encoding schema is used.

(ii) Step 2. Initial population generation: An initial
population of size K chromosomes is randomly
generated as a set of solutions to be optimized.
These chromosomes are a representation of the
rules generated from the candidate dataset.

(iii) Step 3. Calculating fitness: The fitness value of each
chromosome in the population is calculated by a
fitness function to find the association rules that
their support and confidence are larger than other
rules. To this end, a fitness function that has been
described in the work of Qodmanan et al. [27] is
considered as given in equation.

fitness =

(1 +sup£(AUC))2 (1)
1+supp(A)

In equation (1), supp (A |JC) is the support of the
A — C and supp (A) is the support of the ante-
cedent part of it.

(iv) Step 4. Selection: A chromosome with a high fitness
value is selected from the population on the basis of
a fitness function.

(v) Step 5. Crossover: The next generation of the
population is generated based on the calculated
fitness values. The idea behind crossover is to
combine the two parent chromosomes to produce
two new offspring. The result of crossover is the
birth of two new chromosomes. Crossover is car-
ried out according to a defined crossover
probability.

(vi) Step 6. Mutation: Mutation randomly changes
chosen bits from 0 to 1 or from 1 to 0. It is applied to
the new offspring with a certain mutation proba-
bility. The purpose is to maintain diversity among
the different generations to increase the global
optimization of the GA.

(vii) Step 7: After a series of selection, crossover, and
mutation, the GA is stopped when the generated
chromosomes meet the optimality or the maximum
number of generations. Otherwise, it turns back to
step 3 to continue the rule optimization.

(2) Evolutionary Rule Extraction. In the previous step, the
interesting association rules are selected. However, we
cannot get the well-performed rules that could lead to
achieve the appropriate decision-making performance due
to the fact that the fitness function, defined in GA, might be
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in conflict. To deal with this issue, the evolutionary asso-
ciation rule step proposes a multianalysis technique for
extending a GA in order to enhance the rule optimization

result. For that, rule ranking and refinement processes are
applied as shown in Figure 3. The multianalysis technique
starts with the rule-ranking process that is in charge of
automatically analyzing and ranking the interesting asso-
ciation rules and the generated rules from supervised
learning algorithms regarding their frequency of occurrence
and their statistical information. In the proposed rule-
ranking process, the rule occurrence frequency is considered
as the highest priority to classify rules, followed by the
statistical information, such as the fitness function weight.
Then, the rule refinement process is performed to derive the
set of well-performed rules. This process begins with finding
a user who is related to generated rules, loading the user
profile of the corresponding user from the ontology-based
context model and inferring the well-performed rules that
could significantly match with the profile.

3.2. Rule Transformation Module. The second module in the
proposed approach is the rule transformation module since
generating IF-THEN association rules is not enough. This
module aims to obtain Jena rules from the well-performed
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grammar org.xtext.example.mydsl. MyDsl with org.eclipse.xtext.common.Terminals
generate myDsl "http://www.xtext.org/example/mydsl/MyDsl"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore
RuleList:

‘rules' name = STRING

T

rules += Rule (', rules += Rule)*

Bt
Rule:

‘rule’ name = STRING

"y
concepts += Concepts (',' concepts += Concepts)*

}

Concepts:
Antecedent | Consequent

FiIGUure 6: A fragment of the textual description of the DSL
metamodel.

association rules in order to reason over an ontology-based
context model and to infer high-level knowledge using the
Jena inference engine. The motivation to opt for Jena is its
built-in support for rule-based inference over RDF and
OWL [28]. In this sense, the rule transformation keeps track
of the well-performed association rule set, generated in the
previous module, and transforms them into Jena rules
according to the rule syntax of Jena. In the following, rules in
Jena format induced from the well-performed association
rules are loaded by the module into the rule knowledge base
for an automatic enrichment purpose at runtime. The rule
transformation module targets design time and runtime. At
design time, a rule translation is ensured, where a meta-
model for Jena rules is proposed to specify the abstract
syntax of a Jena rule. Figure 5 shows the metamodel for Jena
rules. A rule set consists of rules. A Jena rule has a name and
is composed of concepts. A concept is interpreted as an
antecedent and as consequent. Therefore, a Jena rule can
contain one or more atoms in the antecedent part and only
one atom in the consequent part. Each atom has an attribute,
type, and value. Then, the proposed metamodel is translated
into a domain-specific language (DSL) metamodel. The
latter is defined as a textual structure using Xtext. A fragment
of the DSL metamodel is depicted in Figure 6.

During runtime, the transformation module performs
two paramount phases: (i) instantiation of the DSL meta-
model and (ii) generation of the Jena rules on the basis of the
DSL model as depicted in Figure 1.

3.2.1. DSL Rule Instantiation. The DSL rule instantiation
phase is dedicated to introduce a DSL model, which is a
formal rule specification of the defined DSL metamodel. The
DSL model represents the well-performed obtained asso-
ciation rules. Here, the rule instantiation is automatically
performed at runtime.

3.2.2. Jena Rule Generation. The Jena rule generation phase
is considered for automatically generating the corre-
sponding Jena rules based on the DSL model using Xtend as

a transformation language. Therefore, a set of Jena rules is
generated from the DSL model while the semantic of the
DSL metamodel is well-defined.

4. Experimental Results

In this experimental evaluation, we provide an example of
generated rules by our proposed approach. In addition, we
discuss the effectiveness of our proposed approach. For this,
a range of experiments was carried out to investigate the
effectiveness in terms of the number of rules, performance,
and computational time.

4.1. Experimental Setup. All experiments were conducted on
six benchmark datasets of varying complexity. The name,
number of instances, number of attributes, and number of
class labels in each dataset acquired from the UCI Machine
Learning Repository are included in Table 1.

For evaluation purposes, we utilized standard open-
source implementations of supervised learning algorithms
and association rule mining algorithms provided by Weka
[29] in a 10-fold cross-validation evaluation protocol in
order to get accurate results for all datasets. In the 10-fold
cross-validation protocol, the entire benchmark datasets are
partitioned into ten parts of equal size, nine parts of them are
used at a time for training, and the remaining one is used for
testing. The process is repeated ten times, with different
partitions used as training data and test data. In addition, we
set the minimum expected weighted confidence threshold to
1 and support threshold to 0.5 in order to generate the results
described in the next experiments. Furthermore, the various
GA parameters were selected. Crossover and mutation
probabilities were taken, respectively, as 0.5 and 0.01. The
size of the initial population depends on the number of the
generated rules from the benchmark datasets. Thus, the
initial population size ranges from 14 to 439 and the
maximum number of generations is set to 100.

4.2. Experimental Metrics. For analyzing the effectiveness of
the proposed approach, some well-known metrics were
used. Therefore, the following parameters were considered
for these metrics:

(i) True positive (TP) is the number of rules positively
predicted that is actually positive.

(ii) True negative (TN) is the number of rules negatively
predicted that is actually negative.

(iii) False positive (FP) is the number of rules positively
predicted that is actually negative.

(iv) False negative (FN) is the number of rules negatively
predicted that is actually positive.

Based on the previous parameters, the following metrics
were proposed for the evaluation:

(i) Precision reflects the ability of an approach to return
relevant rules among a set of irrelevant and relevant
rules. The precision can be computed by equation.
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(1) Input: DS a preprocessed candidate dataset
(2) Output: Decision trees
(3) Begin
(4) Apply J48 decision tree to learn on the DS and get the decision tree-based training model
(5) Apply random tree to learn on the DS and get the random tree-based training model
(6) Extract decision trees from both training models
(7) End
ArGoriTHM 1: Hybrid with decision tree and random tree.
TaBLE 1: Characteristics of datasets used in experiments.
Dataset Number of instances Number of attributes Number of classes
Breast 286 10 2
Heart 270 13 4
Hepatitis 155 19 2
Weather 14 5 3
Iris 150 4 3
Adult 48842 15 2
o TP 5 Then, we illustrate, in Tables 3 and 4, a sample of well-
Precision = TP + FP' ) performed rules extracted from the generated rules through

(ii) Recall reflects the ability of an approach to return
relevant rules only. The recall is defined as given in
equation.

TP

Recall = — .
T TPLEN

(3)
(iil) Accuracy reflects the ability of an approach to

return the accurate rules over the all rules made in
the dataset as can be seen in equation.

TP+TN

A - . 4
Y = TP FP+TN + FN )

Apart from these metrics, we considered the computa-
tional time that reflects the average time required for gen-
erating the set of IF-THEN association rules in terms of
second.

4.3. Rules for Knowledge Base Enrichment. We present an
example of context-aware rules generated from the weather
dataset mentioned above using our approach. The candidate
dataset contains four condition attributes, such as outlook,
temperature, humidity, windy, and one decision attribute,
that is, “play.” It is considered to generate rules that could
help in making decisions regarding whether a user could go
outside for playing or not. First, we show, in Table 2, a
sample of generated IF-THEN rules obtained through
training both decision tree and random tree algorithms.
Looking more closely at Table 2, we can notice that the
antecedent part of the rules reflects users’ contextual
knowledge, and the consequent part represents their asso-
ciated behavioral actions. Hence, real-time users’ environ-
mental contexts such as outlook, wind, humidity, or
temperature are used to make the play decision.

the optimization process considered in the proposed ap-
proach. As illustrated in Tables 3 and 4, the well-performed
discovered association rules vary from one user to another
according to their current profile. For example, a user with a
pollen allergy, on a windy day, cannot go outside since the
wind can trigger pollen allergy symptoms most. As a result,
association rules, such as R9 and R10, which stated a day is
windy (windy=true) and a user could have fun playing
outside (play = yes), are overlooked for the user with a pollen
allergy.

Finally, after the automatic DSL metamodel instantia-
tion and transformation, we list, in Tables 5 and 6, a sample
of the well-performed rules transformed to Jena rules to
enrich the rule knowledge base and improve the decision-
making process at runtime. Therefore, we can conclude that
our proposed approach is capable of generating rules that
could enrich a rule knowledge base.

4.4. Effectiveness Analysis

4.4.1. Rule Analysis. In the first experiment, the number of
association rules generated by the proposed approach and
the traditional algorithms of association rule mining, such as
apriori and FP growth, was evaluated. Figures 7-12 illustrate
the number of generated rules for the different candidate
datasets.

Observing Figures 7-12, we can see that the traditional
algorithms generate the highest number of rules, while our
approach generates the lowest number of rules on all can-
didate datasets. In particular, our approach generates 4,103
association rules on average against 6 datasets, whereas the
apriori and FP growth algorithms derive 9,211 and 10,582 on
average, respectively. Thus, the results show that the number
of generated association rules using traditional algorithms is
large and huge. The reason beyond these results is that
traditional algorithms simply take into account all



Computational Intelligence and Neuroscience 9
TABLE 2: A sample of generated rules from the weather dataset.
Rules IF-THEN rules
R1 IF outlook = overcast THEN play = yes
R2 IF outlook =rainy AND windy = false THEN play = yes
R3 IF outlook = rainy AND windy = true THEN play = no
R4 IF outlook = sunny AND humidity = high THEN play = no
R5 IF outlook = sunny AND humidity = normal THEN play = yes
R6 IF humidity = normal AND windy = false THEN play =yes
R7 IF humidity = high AND outlook = rainy AND windy = false THEN play = yes
R8 IF humidity = high AND outlook =rainy AND windy = true THEN play =no
R9 IF humidity = normal AND windy =true AND temperature =hot THEN play = yes
R10 IF humidity = normal AND windy =true AND temperature = cool AND outlook = overcast THEN play = yes
TaBLE 3: A sample of well-performed rules for a user with no allergy history.
Rules IF-THEN rule Occurrence frequency Fitness value
RI.1 IF outlook = overcast THEN play = yes 1 0.743
R1.2 IF humidity = normal AND windy = false THEN play = yes 1 0.686
IF humidity = normal AND windy = true AND temperature = cool AND outlook = overcast
R1.3 1 0.675
THEN play = yes
R1.4 IF humidity = normal AND windy =true AND temperature = hot THEN play = yes 1 0.611

TaBLE 4: A sample of well-performed rules for a user with a pollen allergy.

Rules IF-THEN rule Occurrence frequency Fitness value
R2.1 IF outlook = overcast THEN play = yes 1 0.743
R2.2 IF humidity = normal AND windy = false THEN play = yes 1 0.686
R2.3 IF outlook = sunny AND humidity = high THEN play = no 2 0.611
R2.4 IF outlook =rainy AND windy = true THEN play = no 1 0.611
TaBLE 5: A sample of well-performed rules in Jena format for a user with no allergy history.

Rules Jena rules
R1.1 (rule R1: (?outlookValue uni:outlook “overcast”) — (?playValue uni:play “yes”))
R1.2 (rule R2: (?humidityValue uni:humidity “normal”) (?windyValue uni:windy “false”) — (?playValue uni:play “yes”))

(rule R3:(?humidityValue uni:humidity “normal”) (?windyValue uni:windy “true”) (?temperatureValue uni:temperature “cool”)
R1.3 . « » : PR

(?outlookValue uni:outlook “overcast”) — (?playValue uni:play “yes”))

R14 (rule R4: (*humidityValue uni:humidity “normal”) (?windyValue uni:windy “true”) (?temperatureValue uni:temperature

“hot”) — (?playValue uni:play “yes”))

NUMBER OF ASSOCIATION
RULES GENERATED

Apriori FP-Growth Our approach

FIGURE 7: Rule analysis for the breast dataset.

combinations of attributes while generating rules. In con-
trast, the results indicate that the number of generated rules
by our approach is small. The downtrend reveals that our
approach could generate the minimum number of associ-
ation rules comparing the apriori and FP growth and could
keep the number of discovered rules as small as possible. As
a result, for a high confidence value, traditional algorithms
satisfy significantly more associations than our proposed

approach. Therefore, our proposed approach could generate
a reasonably smaller number of association rules compared
with traditional association rule mining algorithms since it
abandons the redundant rules and retains the nonredundant
rules.

4.4.2. Performance Analysis. In the second experiment, we
discussed the effectiveness of our approach in terms of
performance measures such as precision, recall, and accu-
racy. For this purpose, we compare the performance of the
proposed approach with well-known supervised learning
algorithms, namely, NB, JRip, and decision table (DT). The
reason for selecting these algorithms is that they generate
rule-based classifiers and have high performance compared
with other algorithms [30]. We also compare the perfor-
mance of our approach with some similar state-of-the-art
works, including Hong et al. [14], Sarker [16], and Basha
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TaBLE 6: A sample of well-performed rules in Jena format for a user with a pollen allergy.

Rules Jena rules

R2.1 (rule R1: (?outlookValue uni:outlook “overcast”) — (?playValue uni:play “yes”))

R2.2 (rule R2: (?humidityValue uni:humidity “normal”) (?windyValue uni:windy “false”) — (?playValue uni:play “yes”))
R2.3 (rule R3: (?outlookValue uni:outlook “sunny”) (?humidityValue uni:humidity “high”) — (?playValue uni:play “no”))
R2.4

(rule R4: (?outlookValue uni:outlook “rainy”) (?windyValue uni:windy “true”) — (?playValue uni:play “no”))

NUMBER OF ASSOCIATION
RULES GENERATED

Apriori FP-Growth Our approach

FIGURE 8: Rule analysis for the heart dataset.

[17]. Experimental results on performance measures are
highlighted in Figures 13-18.

Our observations on candidate datasets show that our
approach consistently outperforms the compared supervised
learning algorithms for generating association rules by
maximizing the precision and recall. In addition, our ob-
servations reveal that our proposed approach achieved better
accuracy than NB, JRip, and DT on heart, hepatitis, weather,
and iris datasets. For instance, the accuracies for NB, JRip,
and DT on the iris dataset are 95.33%, 96%, 95.3%, and
92.66%, respectively, whereas for the proposed approach the
accuracy is 98%. Moreover, the obtained results confirm that
our approach has outstanding performance compared with
state-of-the-art works. For instance, we achieve an ap-
proximately 2% and 3.2% accuracy gain compared with the
works of Hong et al. [14], Sarker [16], and Basha [17] when
dealing with breast and adult datasets, respectively. Thus,
obtained results proved that our proposed approach tends to
get reasonably high accuracy on all datasets. Therefore, we
can conclude that our proposed approach is more effective
relative to the compared supervised learning algorithms and
state-of-the-art works while generating association rules
since we capture association rules from both more per-
formant supervised learning algorithms that lead to improve
the performance results.

4.4.3. Computational Time Analysis. In the third experi-
ment, we compared and analyzed the computational time of
the proposed approach, the supervised learning algorithms
mentioned earlier, and the state-of-the-art works [14, 16]. In
this experiment, we did not consider the work presented by
Basha [17] since its GA is not publicly available. To this end,
the sizes of the datasets were fixed since the computational
time may vary based on the dataset size. Table 7 illustrates
the time consumed by the proposed approach for generating
association rules against the selected supervised learning
algorithms and the state-of-the-art works in all datasets.
From the illustrated results, the average time spent on
each dataset to generate a set of association rules is 0.38
seconds in the proposed approach. The experimental results
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FIGURE 9: Rule analysis for the hepatitis dataset.
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FiGure 10: Rule analysis for the weather dataset.
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FIGURE 11: Rule analysis for the iris dataset.
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FIGURre 12: Rule analysis for the adult dataset.

0
0

[ SR -
=T}
I
.
]
p—
.
e
.
]
|
-
.
]
|
|
.

Precision Recall Accuracy
= NB w  Sarker [16]
= JRip Basha [17]
= DT Our approach

= Hongetal. [14]

FIGURE 13: Performance analysis for the breast dataset.
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FIGURE 14: Performance analysis for the heart dataset.
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FIGURE 15: Performance analysis for the hepatitis dataset.
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FIGURE 16: Performance analysis for the weather dataset.
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FIGURE 17: Performance analysis for the iris dataset.

clearly show that the computational time of the proposed
approach is slightly increased compared with the selected
supervised learning algorithms and with the state-of-the-art
works, but the computational time on the whole is not much
different. The slight increase can be explained by the fact that
we apply the GA for optimization on the basis of both
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FIGURE 18: Performance analysis for the adult dataset.

TaBLE 7: Computational time analysis for our six datasets in
seconds.

Dataset NB JRip DT Hong et al. [14] S;[ilrlg]er ap}g‘l;rach
Breast 0.05 0.04 0.02 0.03 0.05 0.06
Heart 0.02 0.05 0.06 0.04 0.06 0.10
Hepatitis 0.05 0.04 0.03 0.03 0.05 0.08
Weather 0.02 0.02 0.05 0.04 0.06 0.16
Iris 0.02 0.01 0.02 0.02 0.04 0.06
Adult 1.13 1.48 194 1.08 1.10 1.82
Average 0.29 0.27 0.35 0.21 0.23 0.38

supervised learning algorithms, which could slightly in-
crease the time complexity of the rule generation process
compared with the selected supervised learning algorithms.

5. Discussion

We discuss the encouraging obtained results of the proposed
approach. First, our approach outperformed compared to
the well-known traditional association rule mining algo-
rithms in terms of the number of rules by eliminating the
redundant generation for each dataset. It generated, on
average far, fewer association rules than those generated by
the traditional algorithms included in the comparison. Thus,
it provided a reasonably smaller number of rules on smaller
and bigger datasets compared to the traditional algorithms.
This is due to the fact that our approach is based on hybrid
supervised learning that takes advantage of machine
learning to extract the relevant relationships and to eliminate
the redundancy while generating association rules. In brief,
our approach significantly reduces the total number of
generated rules and outputs a well-performed set of asso-
ciation rules using the GA. Such nonredundant and well-
performed association rule generation makes our approach
more effective and can be used to automatically improve a
decision-making process regarding changes occurring in
users’ surrounding environments at runtime. Second, our
approach exceeded the well-known selected supervised
learning algorithms and certain state-of-the-art works in
terms of precision, recall, and accuracy. In particular, our
approach achieved the best accuracy on heart, hepatitis,
weather, and iris datasets among all selected supervised
learning algorithms. However, it got slightly worse results in
terms of accuracy on breast and adult datasets since
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imbalanced datasets may lead to slightly worse accuracy
results. Even though not achieving the best accuracy results
on these datasets, our approach achieves almost reasonably
high accuracy in most datasets. Moreover, we must stress
that the main advantage of our approach in contrast to the
compared state-of-art works is its ability to achieve a good
trade-off between precision, recall, and accuracy on multiple
datasets. Third, our approach could be somewhat more time-
consuming than the selected supervised learning algorithms
and the compared state-of-the-art works. The slight increase
in time is reasonable due to the hybridization and opti-
mization. However, this loss of the little running efficiency
will result in a significant improvement in the quality of the
results in terms of the number of rules, precision, recall, and
accuracy. Regarding the time-consuming results, it is noted
that the effectiveness of the proposed approach does have
room for improvement, which is also the need for further
improvement in the future work.

Overall, the findings of the experimental study reveal
that our approach can (i) effectively minimize the issues of
redundant rule generation, (ii) provide a promising per-
formance and a high accuracy to extract a concise set of
association rules, and (iii) take slightly more time for
generating a set of well-performed rules.

6. Conclusions

This work aimed to propose an approach for the decision-
making improvement to face dynamic environments at
runtime, where the enrichment of a rule knowledge base is
performed through automatically generating and trans-
forming context-aware rules. The proposed approach
focused first on generating nonredundant association
rules with a hybrid supervised learning mechanism,
second on optimizing association rules using an extended
GA, and finally on transforming association rules to
context-aware rules in Jena syntax. As part of this work,
we presented an experimental evaluation to assess the
effectiveness of the proposed approach. The results
showed that the proposed approach has the potential for
achieving the best results in terms of the number of rules,
precision, recall, and accuracy among all compared al-
gorithms. Moreover, these results pinpointed the limi-
tation of the proposed approach in terms of time-
consuming that is mainly due to hybridization and op-
timization. Furthermore, in the near future, we intend to
apply our approach to real scenarios for a context-aware
system.
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