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Abstract: Flavonoids are a group of natural products with a great structural diversity, widely
distributed in plant kingdom. They play an important role in plant growth, development and defense
against aggressors. Flavonoids show a huge variety of biological activities such as antioxidant,
anti-inflammatory, anti-mutagenic, antimicrobial and antitumor, being able to modulate a large
diversity of cellular enzymatic activities. Among natural flavonoids, some classes comprise chiral
molecules including flavanones, flavan-3-ols, isoflavanones, and rotenoids, which have one or more
stereogenic centers. Interestingly, in some cases, individual compounds of enantiomeric pairs have
shown different antitumor activity. In nature, these compounds are mainly biosynthesized as pure
enantiomers. Nevertheless, they are often isolated as racemates, being necessary to carry out their
chiral separation to perform enantioselectivity studies. Synthetic chiral flavonoids with promising
antitumor activity have also been obtained using diverse synthetic approaches. In fact, several
new chiral bioactive flavonoids have been synthesized by enantioselective synthesis. Particularly,
flavopiridol was the first cyclin-dependent kinase (CDK) inhibitor which entered clinical trials. The
chiral pool approaches using amino acid as chiral building blocks have also been reported to achieve
small libraries of chrysin derivatives with more potent in vitro growth inhibitory effect than chrysin,
reinforcing the importance of the introduction of chiral moieties to improve antitumor activity. In
this work, a literature review of natural and synthetic chiral flavonoids with antitumor activity is
reported for the first time.
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1. Introduction

Cancer is a heterogeneous disease resulting from uncontrolled proliferation and
deregulation of the cell cycle, producing abnormal cells that are often able to invade and
metastasize other organs from the body [1]. According to World Health Organization
(WHO), cancer was responsible for about 9.6 million deaths worldwide in 2018, being
the second leading cause of death after cardiovascular diseases [2]. In the last year, this
global health problem became even more pressing due to the coronavirus disease 2019
(COVID-19) which delayed the diagnosis and treatment due to conditioned access to health
care institutions [3]. The growing incidence associated with cancer diseases along with
problems of multiple side effects and resistance inherent to classical chemotherapeutic
agents renders the search for new compounds with antitumor effects increasingly urgent [4].

Nature is an interesting source of new anticancer drugs [5]. Indeed, some of the drugs
currently in therapeutics as anticancer agents are natural products or derived from natural
products, most of them being chiral [6]. Flavonoids are a class of natural products with a
broad spectrum of pharmacological activities [7]. Many of them are chiral and associated
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with relevant biological activities, including antitumor by being able to interfere with
carcinogenesis processes [8].

2. Flavonoids

Flavonoids are important natural products widely present in nature, namely in terres-
trial plants and herbs [9], but also in the marine environment [10]. So far, about 8000 differ-
ent flavonoids have been described that assume a defensive role once they are essentially
produced to protect plants from exterior damage including biotic and abiotic factors [11].
With the exposure to stress conditions, such as lack of water or oxygen, extreme tem-
perature or high salinity, the accumulation of these metabolites increases [12]. Among
these, temperature is believed to be the most influential factor for the biosynthesis of
flavonoids [13]. However, flavonoid biosynthesis is also affected by plant growth regula-
tors such as auxin and cytokinin [12]. Flavonoids can also act as UV filters, signal molecules
and on antimicrobial defence as phytoalexins [14].

In plants, many flavonoids are present in flowers and fruits, being responsible for the
colour and aroma to attract pollinators that provide seed and spore germination [14].

Chemically, flavonoids are polyphenolic compounds with low molecular weight,
characterized by a fifteen carbon skeleton (C6-C3-C6), where two benzene rings (A and B)
are linked through a three carbon bridge which usually arises as an oxygenated heterocyclic
ring (C) [15].

Depending on the degree of saturation and oxidation of C-ring, and the position of
the B-ring, flavonoids can be organized into different classes (Table 1). Flavones, flavonols,
flavanones, flavanols, and anthocyanins, include the largest number of compounds in
nature, representing the narrow-sense flavonoids with a 2-phenylchromone nucleus [16].
Isoflavonoids are a class of flavonoids with several subgroups, including isoflavones, isofla-
vanones, isoflavans, pterocarpans and rotenoids, which share a common 3-phenylchromone
scaffold where the B-ring is linked to the C-ring in position 3 [17]. Some of these subclasses
are made up of chiral compounds which have stereogenic centers [18,19].

Flavonoids are also frequently present in diet, in diverse foods such as vegetables,
fruits, tea, wine or cocoa and considered as privileged compounds for cosmetic, medicinal
and pharmaceutical applications [20]. The great diversity of structures is reflected in a
wide variety of biological activities reported for this class of natural products and their
synthetic analogues, namely antitumor, antibacterial, antimicrobial, antiviral, antimalarial,
neuroprotective, anti-inflammatory and antioxidant [21]. In recent years, several reports
have pointed to the health benefits associated with flavonoids intake, sensitizing the
population to the consumption of foods rich in these compounds [22].

Plant polyphenols such as flavonoids are important antioxidants capable of reducing
levels of reactive oxygen species (ROS) through chelating transition metals ions such as
iron(II)/copper(I) and iron(III)/copper(II), preventing damage and mutation effects on
DNA [23]. In addition to their chelating effect, flavonoids also have free radicals scavenging
activity, which is dependent on the number and position of hydroxyl groups along with
conjugation and resonance effects [24,25]. Dietary flavonoids are also able to bind onto
signaling molecules involved in carcinogenesis and regulate their activity.

Because of their structural diversity that allows reaching various biological targets
beyond low adverse effects and toxicity, flavonoids are considered a promising class for
the discovery of new potential anticancer drugs [26].

However, flavonoids usually have low bioavailability that somehow will affect their
biological activity [27]. Consequently, many efforts have been made to improve their
bioavailability and absorption through the use of absorption enhancers, delivery systems,
alteration of the absorption site and metabolic stability [28]. Moreover, in order to improve
the potency and the pharmacokinetic profile of natural chiral flavonoids several synthetic
analogues have been prepared as herein reported.
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Table 1. Basic skeleton structure of classes of flavonoids.
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2.1. Natural Chiral Flavonoids with Antitumor Activity

Flavanones have one stereogenic center in position 2 of the C-ring, making this class
of flavonoids chiral molecules (Table 1) [29]. Naringenin (1), hesperetin (2) and hesperidin
(3) are found in vegetables and citrus fruits in aglycone forms (Figure 1 [30]. Despite these
compounds being able to exist as both enantiomers, in nature they are mainly found as the
S-enantiomer [31]. Nevertheless, both enantiomers (R and S) can have biological activities
including antioxidant, anti-inflammatory and antitumor [32].

The antitumor effects of naringenin (1) have been reported in several studies. Beyond
its ability to interfere on the cell cycle, this compound can inhibit the proliferation and
migration of hepatocellular carcinoma (HepG2), human gastric cancer (SGC-7901) and
human melanoma cells (B16F10 and SK-MEL-28) [33–35]. A recent study also suggested the
effectiveness of naringenin (1) to induce cell apoptosis in A549 lung cancer cells through
the activation of caspase-3 cascade [36].

Hesperidin (3) and its aglycone hesperetin (2) can act on different cancer targets,
namely those involved in processes of oxidative stress, inflammation and cell death [37,38].
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Their main mechanism of action is related to the induction of apoptosis in many cancer cells
such as gastric, breast, prostate, colon, lung and liver [39]. A recent study indicated that
hesperetin (2) is important to ensure the balance of antioxidant/oxidant state, minimizing
the pulmonary toxicity induced by the antineoplastic agent doxorubicin. So, this flavanone
could be used as a therapeutic strategy to overcome this problem [38].

Alpinetin (4, Figure 1) is a natural flavanone found in seeds of Alpinia katsumadai
Hayata with anti-inflammatory, antibacterial and antitumor activities [40]. Its antitumor
potential is supported by studies that demonstrate that alpinetin (4) can inhibit proliferation
of lung and gastroenteric cancer cells [40]. Alpinetin (4) can also decrease the expression
of anti-apoptotic protein Bax while enhancing the expression of pro-apoptotic proteins
such as Bcl-2 and caspase-3, translating into inhibition of proliferation and induction
of apoptosis on SKOV3 ovarian cancer cells [41]. In addition, this compound is able to
block the cell cycle in the G1 phase through downregulation of fundamental kinases and
suppress the migration of ovarian cancer cells. Alpinetin (4) also has the ability to inhibit
the proliferation and viability of three pancreatic cancer cells (BxPC-3, PANC-1 and AsPC-1)
in a dose- and time-dependent manner [42]. This flavanone is considered as a potential
breast cancer chemotherapeutic agent due to its ability to decrease intracellular levels of
ROS and the expression of HIF-1α which results in the induction of mitochondria apoptosis
and suppression of migration [43].

Persicogenin (5, Figure 1) and homoeriodictyol (6, Figure 1) are important flavanones
isolated from Rhus retinorrhoea that present similar structures [44]. Whereas persicogenin
(5) display anti-mutagenic, antitumor, as well as antibacterial activities, homoeriodictyol
(6) is relevant to fight osteoporosis and usually used as antioxidant and bitterness masking
agent [45–47]. According to an MTT assay, these flavanones decrease the survival of MCF-7
(breast cancer), HeLa (cervical cancer), and HT-29 (colon adenocarcinoma) cells through the
increased production of ROS and dysfunction of mitochondria. Nevertheless, persicogenin
(5) induces a more demarcated apoptotic response which is believed to be related to the
presence of an additional methyl group on its structure. Interestingly, the selectivity of
persicogenin (5) is higher for HeLa cells than for MCF-7 whereas homoeriodictyol (6) is
more selective towards MCF-7 than for HT-29 cells [44].

Didymin (7, Figure 1) is a dietary flavonoid glycoside widely present in citrus fruits
such as orange, mandarin and bergamot [48]. It behaves as an antioxidant agent whose
structure allows scavenging free radicals, attenuating harmful effects associated with prod-
ucts resulting from lipid peroxidation and also activating some antioxidant enzymes [49].
Moreover, recent studies have suggested its antitumor effects mainly on neuroblastoma,
lung and breast cancer cell lines although its mechanisms are not completely elucidated [50].

Didymin (7) also enhances Raf kinase inhibitory protein (RKIP) and reduces the
expression of multiple targets such as cancer-promoting kinases and cyclins, inducing
apoptosis and inhibiting proliferation on neuroblastoma cells. In addition, in vivo studies
indicate that didymin (7) at a dose of 2 mg/kg body weight effectively reduces the tumor
size on MYCN-amplified NB xenografts. Gathering all these features, didymin (7) is
considered a promising compound proposed for neuroblastomas in children [48].

In 2010, Hung et al. studied the antitumor potential of didymin (7) both in vitro and
in vivo. This flavonoid was shown to induce apoptosis on H460 and A549 lung cancer
cells with IC50 values of 11.06 µM and 12.57 µM, respectively, through the activation of
Fas/Fas ligand apoptosis system. Studies performed with in vivo mice xenograft models
revealed that didymin (7) at a dose of 6 mg/kg/day notably suppress tumor growth
without reported adverse effects [49].

Later, the influence of didymin (7) on breast cancer eventually developed by exposure
to phthalates was demonstrated. The results suggested that this flavanone (7) was able to
prevent the progression of this type of cancer, mitigating the processes of invasion, migra-
tion and proliferation on MDA-MB-231 cells. The overall results suggested the potential
efficacy of didymin (7) in preventing phthalate ester-associated cancer aggravation [51].
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Figure 1. Natural chiral flavanones with antitumor activity.

Vitexin (8, Figure 2) is a flavone present in many plants such as mung beans, bam-
boo or passiflora which has many pharmacological activities including antioxidant, anti-
inflammatory, antibacterial, antitumor, antiviral and cardioprotective [52]. Beyond demon-
strating antitumor efficacy against leukemia, glioblastoma and hepatocellular carcinoma,
vitexin (8) can induce apoptosis on human non-small cell lung cancer A549 cells through
the increased expression of pro-apoptotic protein Bax and suppressing the intracellular
pathway PI3K/Akt/mTOR signaling [53]. This compound was also able to induce apopto-
sis of a drug-resistant colon cancer cell line, suggesting its potential as a chemotherapeutic
agent [54].

Baicalin (9, Figure 2) is a flavone glycoside abundant on the roots of the traditional
Asian herb Scutellaria baicalensis that show many biological activities including antioxidant,
anti-inflammatory, and antiviral [55]. Many studies point also to its antitumor potential
both in vitro and in vivo without marked toxicity [56]. Baicalin (9) promoted apoptosis
in HT-29 cells in a dose and time-dependent manner as well as inhibition of the tumor
growth [55]. Treatment with baicalin (9) was responsible for silencing the expression
of oncogenic transcription factor c-Myc while decreasing the expression of apoptosis-
related oncomiRs involved in cell growth and tumor progression in HT-29, SW-480 (colon
adenocarcinoma) and CACO2 cells (colorectal adenocarcinoma) [55]. This flavone can
also induce apoptosis in many cancer cell lines such as breast, colon, prostate, lung,
gastric, pancreatic, among others, through the control of anti-apoptotic Bcl-2 and pro-
apoptotic Bax related to the apoptotic pathway [57]. The expression of caspases 3 and 9
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was enhanced on SW1990 (pancreatic adenocarcinoma), A2780 (ovarian cancer) and MG-63
(osteosarcoma) cells treated with flavone 9. Additionally, 9 increased the expression of
tumor suppressor protein p53 on breast cancer cells while on human osteosarcoma cells it
enhanced the expression of PARP [58,59]. Furthermore, baicalin (9) is also able to interfere
with the cell cycle and inhibit the proliferation on many cancer cell lines. For example,
treatment with baicalin (9) causes G0/G1 cell cycle arrest on U87-MG (glioma), CCRF-CEM
(acute lymphocytic leukemia), SKMES-1 (lung), DU145 (prostate), SW620 and HCT116
(colon adenocarcinoma), KIM-1 (hepatocellular carcinoma) and HSC-3 (tongue squamous
carcinoma) cells [60–64]. On hepatocellular HepG2 and SMMC-7721 cells, baicalin (9)
induced G2/M cell cycles arrest [65].

Cytokines and growth factors are involved in the preservation of angiogenesis, which
behave as important targets for cancer treatment. On ovarian carcinoma cells, baicalin (9)
suppress the expression of vascular endothelial growth factor (VEGF), thus reducing cell
proliferation [66].
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The major catechins found in green tea, (−)-epigallocatechin-3-gallate (EGCG, 10),
(−)-epicatechin-3-gallate (ECG, 11), (−)-epigallocatechin (EGC, 12) and (−)-epicatechin
(EC, 13) showed potent antioxidant activity through their ability to scavenge free radicals
and chelate metal ions (Figure 3) [67]. Among them, EGCG (10) was reported as the most
efficient component to neutralize ROS, contributing to its antitumor effects [68]. Multiple
studies reported its potential therapeutic applications on cancer, cardiovascular, liver and
neurogenerative diseases and diabetes [69]. EGCG (10) main effects as a potential antitumor
agent include the inhibition of important targets from the signaling pathways that result in
prevention of proliferation and induction of apoptosis on many cancer cell lines including
colon, kidney, breast, prostate and brain [70,71]. The use of this flavanol has recently been
studied for the treatment of metastatic malignant melanoma once EGCG (10) increases
apoptosis in IM-9 (myeloma) cells despite its possible hepatic side effects [72,73]. On HT-29
colorectal cell line, treatment with EGCG (10) stabilized the activity of transferrin receptor
(TfR) and even inhibited the expression of ferritin-H protein [74]. Hepatotoxicity, poor
stability and low absorption are some drawbacks inherent to EGCG (10) that led to the
search for strategies to overcome these limitations, including encapsulation techniques [75].
For example, Chen and co-workers developed an EGCG nanoemulsion that proved to be
responsible for activating the AMPK signaling pathway preventing proliferation, migration
and invasion on H1299 and A549 lung cancer cells [71].
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Taxifolin (14, Figure 4) also known as dihydroquercetin, belongs to a flavanol subclass
whose major sources include onions, olive oil, grapes, milk thistle and citrus fruits [76].
This flavonoid has many reported pharmacological properties such as antioxidant, anti-
inflammatory, antiangiogenic and hepatic-, cardio and neuroprotective effects, its potential
in Alzheimer’s disease also being described as it can mitigate the formation of β-amyloid
aggregates [77]. Recently, the antitumor activity of flavanol 14 has drawn the attention of
several researchers. For example, 14 has been shown to be an efficient inducer of apoptosis
and inhibitor of cell growth in both colorectal cancer HCT116 and HT29 cells in a dose
dependent manner. The expression levels of cyclin-dependent kinase (CDK) inhibitor
p21 and p27 were enhanced on taxifolin (14)- treated cells promoting cell cycle arrest in
the G2 phase [77]. In addition, 14 was responsible for the induction of apoptosis by the
upregulation of pro-apoptotic Bax while downregulating the expression of anti-apoptotic
Bcl-2. Finally, more detailed results indicate that taxifolin (14) displays a crucial role to
change the expression of cell cycle regulators such as β-catenin gene, AKT gene and sur-
vivin genes on human colorectal cancer [77]. On another study, researchers reinforced the
potential antitumor activity of taxifolin (14) through the inhibition of viability, proliferation,
migration and invasion of aggressive breast cancer cells both in vitro and in vivo. Again,
the downregulation of β-catenin gene demonstrated the taxifolin (14) beneficial effects [76].

Cancer stem cells are a recurring problem to fight cancer once they are involved on
tumor growth, metastasis, drug resistance and tumor recurrence. Taxifolin (14) shows
itself to be able to mitigate the viability of A549 and H1975 cells (lung cancer) in a dose-
dependent manner by targeting PI3K and TCF4, blocking phosphorylation. Still, A549 cell
line proved to be more sensitive to taxifolin (14) than H1975 cell line. Likewise, treatment
with taxifolin (14) suppresses tumor growth in vivo by downregulation of SOX2, OCT2,
p-PI3K/PI3K, and TCF4 [78].

In liver carcinoma, taxifolin (14) treatment results in decreased expression of matrix
metalloproteinases MMP-9 and MMP-2 which translates into inhibition of angiogenesis and
invasion [79]. Docking studies showed that the hydroxyl group of taxifolin (14) interacts
specifically with amino acids from the binding pocket of VEGF, Akt and Hif1α which are
upregulated in hepatic cancer cells. The cytotoxic potential of taxifolin (14) was proven by
the low IC50 values in HepG2 (0.15 µM) and Huh7 cells (0.22 µM) [80].
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Silibinin or silybin is the major bioactive compound isolated from the milk thistle
(Silybum marianum) extract, commonly used in the Mediterranean diet. Frequently, an
equimolar mixture of two diastereoisomers, Silibinin A (15) and Silibinin B (16) (Figure 4)
is found [81]. This flavonolignan has strong antioxidant and anti-inflammatory activities
as a result of the presence of five hydroxyl groups on its structure that contribute to its
ability to scavenge free radicals, including reactive nitrogen species (RNS) and ROS [82].
The first reported therapeutic benefits of silibinin were the hepatoprotective effects on
acute and chronic liver diseases [83]. However, more studies have drawn attention to its
antitumor activity in multiple in vitro and in vivo assays of liver, breast, prostate, skin
and colorectal cancers [84–87]. Silibinin can effectively modulate the expression of many
cancer targets and affect signal transduction pathways to promote apoptosis, stop cancer
cells proliferation and invasion and mitigate metastasis [88]. In addition, silibinin showed
beneficial synergistic action combined with some traditional chemotherapeutic drugs
towards ovarian, gastric and hepatocellular cancer cells [89–91]. Chemotherapy remains
one of the main treatments to fight breast cancer, even though it is increasingly associated
with multidrug resistance (MDR) [92]. Silibinin has proven to be able to suppress the
growth of MDA-MB-435 and MCF-7 resistant breast cancer cell lines through the inhibition
of AKT, ERK and STAT3 pathways, enhancing their susceptibility to the cytotoxic effects
of some chemotherapeutic agents [93]. Thereby, many efforts have been made to improve
silibinin bioavailability using novel nanotechnological tools in order to allow its clinical
use [94].
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Daidzein (17, Figure 5), also known as soy isoflavone, through intestinal metabolism
form the enantiomer S-(−)-equol (18) [95]. Isoflavones show potential estrogenic and antie-
strogenic effects which is a great concern regarding the consumption of these compounds
in patients with breast cancer, since estrogen receptors are overexpressed in tumor cells [96].
Unlike its precursor, S-(−)-equol has several structural similarities with estrogen which
guarantees a high affinity for estrogen receptor-β (ERβ) [96] while R-(+)-equol (19) show
low affinity for both ERα and ERβ [97]. However, the association between dietary foods
containing isoflavones and the risk of developing cancer is not always clear [95]. In the
case of prostate cancer, equol acts as an antagonist for dihydrotesterone, promoting the
reduction in cell proliferation [98]. In some human breast cancer cells, equol increases
estrogenic activity which promotes cell proliferation, but does not affect tumor growth in
mice [96]. However, other studies indicate that equol can inhibit the growth and invasion
of ERα and ERβ human breast cancer cells through apoptosis induction and cell cycle
arrest [99,100].
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Because S-(−)-equol is the only enantiomer found in the organism as the result of
the enantiomeric-specific metabolism of daidzein [101], researchers synthesize both enan-
tiomers in order to study their biological activities [97]. Figure 5 shows the two enantiomers
of equol.

Animals that were fed with R-(+)-equol showed a significant decrease in the number
of palpable tumors contrary to what happen to those who were fed with S-(−)-equol [97].
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Flavoalkaloids are relatively rare natural products with a flavonoid framework con-
taining nitrogen fragments attached on position 6 and/or 8 of the A-ring (Figure 6) [102].
In nature, these compounds are found mostly in plants, but also in animals and bacte-
ria [102,103].
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Figure 6. Natural flavoalkaloids with reported antitumor activity.

In 2012 it was found that natural compounds having a flavoalkaloid skeleton were
potent CDK inhibitors, particularly those with S configuration and a piperidine or a
pyrrolidine group in position 8 [104]. Ficine (20, Figure 6), a flavoalkaloid with a pyrrolidine
moiety, isolated from Ficus pantoniana has proven to be a great inhibitor of CDK1 and CDK5,
with an IC50 value of 0.04 µM against both isoforms [105].
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Another flavoalkaloid that presents a piperidine heterocycle, (−)-O-demethylbuchenavianine
(21, Figure 6), can be found in the fruit of B. macrophylla. Although 21 displayed some
cytoprotective effects on antiviral assays, this compound was also able to effectively inhibit
CDK1 and CDK5 with IC50 values of 0.03 and 0.05 µM, respectively [105,106].

R- and S-Leucoflavonine (22 and 23, Figure 6) are flavoalkaloids obtained from
L. canum leaves, which were isolated as a racemate [103]. After enantioseparation the
antitumor activity of both enantiomers was evaluated. While the S-enantiomer (22) did not
show any type of cytoxicity in the cancer cell lines studied (NCI-H1975, PC9, and HepG2),
the R-enantiomer (23) exhibited weak cytotoxicity in HepG2 cells. These results suggest
the importance of the stereochemistry for the antitumor activity of leucoflavonine [103].

In 2016, a group of researchers isolated twelve chiral flavan derivatives from the stem
bark and roots of Daphne giraldii, including four pairs of enantiomers and two pairs of
epimers. The isolation was performed by liquid chromatography (LC) with a Chiralpak
AD-H column in reversed elution mode. Daphnegiralin A4 (24) and daphnegiralins B1–B4
(25–28, Figure 7) showed in vitro growth inhibitory activity in liver cancer Hep3B cell line,
with IC50 values below 10 µM [107].
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2.2. Synthetic Chiral Flavonoids with Antitumor Activity

There are basically two strategies to achieve enantiomeric pure compounds [108].
One of them refers to the conventional synthesis and further implementation of one
resolution method to achieve pure enantiomers from the racemate [108]. This process
allows obtaining up to 50% of the desired product, but it is usually time consuming and too
expensive when compared to other strategies to achieve enantiomerically pure compounds
that may compromise its application on a large scale [109,110]. However, at an early stage
of drug discovery and development it is necessary to have both enantiomers to perform
biological assays and enantioselective studies in order to understand their pharmacological
behavior [111].

Methods describing the enantioseparation of chiral flavonoids are scarce. Enantiosep-
aration of flavonoids by LC with chiral stationary phases (CSP) started with polysac-
charide columns, including cellulose and amylose derivatives, followed by cyclodextrin
columns [112,113]. Dynamic kinetic resolution has also been recently described [114].

Stereoselective synthesis or asymmetric synthesis is another strategy widely employed
to achieve enantiomerically pure compounds having complex structures [115]. Chiral
derivatives of flavonoids have been synthesized following multiple approaches.

Flavopiridol (29, Figure 8) is a semi-synthetic analogue based on the natural bioac-
tive chromone alkaloid, Rohitukine, being the first CDKI to reach clinical trials [116,117].
Flavopiridol competes with ATP to reach the active site of the kinase (CDK1, CDK2, CDK4,
CDK6, CDK7 and CDK9), inducing apoptosis by reducing the expression of Bcl-2 anti-
apoptotic members, consequently blocking transitions phases G1/S and G2/M from the



Pharmaceuticals 2021, 14, 1267 11 of 29

cell cycle in chronic lymphocytic leukemia and acute myeloid leukemia cells [118]. The
chronic and acute leukemia treatment seems to have better responses to the administration
of flavopiridol (29) in comparison with other chemotherapeutic drugs, namely cytosine,
arabinoside or mitoxantrone [119]. In many studies, flavopiridol (29) has demonstrated
antiproliferative and cytotoxic effects in solid tumors [120]. It was revealed to be a potent
CDK7 and CDK9 inhibitor with an IC50 value of 10 nM [119,121,122].

Due to its promising results, flavopiridol (29) has been the target of several studies,
namely, to elucidate its mechanism of action, as well as the possible structural modifications
allowing obtaining new CDK inhibitors [105]. Riviciclib (30, Figure 8) is a flavopiridol
analogue with a pyrrolidine moiety able to induce cell cycle arrest and apoptosis by ef-
fectively inhibiting CDK 1 and 9 [123]. It is currently in Phase II clinical trials for the
treatment of multiple myeloma, advanced refractory neoplasms and relapsed or refractory
mantle cell lymphoma [121,122]. Furthermore, in order to understand the importance of
the C-ring for the activity of flavopiridol, several analogues were prepared through the
coupling reaction between iodine-flavopiridol with sugars, amino acids and heterocycles
using PdG3-Xanthphos precatalyst in mild conditions [118]. Among these, flavopiridol ana-
logues with a benzimidazole group showed greater cytotoxic activity than flavopiridol (29).
Compound 6-(2-chloro-4-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)phenyl)-4-(1-methyl-
1,2,3,6-tetrahydropyridin-4-yl)-8-methylene-5,8-dihydronaphthalene-1,3-diol (31, Figure 8)
showed the best antiproliferative activity, with low IC50 values against all tested cell lines,
behaving as a CDK9 and GSK3β inhibitor [118].
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Chrysin (5,7-dihydroxyflavone) is a dietary phytochemical belonging to the flavone
class widely found in honey and propolis which has been shown to have antiproliferative
activity in several human tumor cell lines, such as colorectal [124], gastric [125], lung [126],
melanoma [127] and prostatic [128]. Moreover, the antitumor activity of this flavone has
been demonstrated in hepatocellular [129] and thyroid tumors in animal models [130].

Despite its promising in vitro antitumor activity, chrysin showed disappointing results
in in vivo assays due to its low solubility, absorption and rapid metabolism [131].

Amino acids are essential organic chiral small molecules that act as the building blocks
of proteins having high biocompatibility [132]. Their introduction in bioactive natural
products such as chrysin can be a strategy to improve the interactions and selectivity of
these compounds for cancer cells, as well as to improve their bioavailability and minimize
adverse effects [133,134]. Therefore, the introduction of amino acids into the synthesis of
derivatives of chrysin could lead to an increase in interaction and selectivity to the target-
cells, improve the permeability of cell walls and enhance bioavailability [135]. Several
approaches can be followed to synthesize amino acid derivatives, such as, for instance, the
method of activated esters, which is widely used in peptide chemistry and has been used
before to successfully synthesize amino acid derivatives of chrysin (Figure 9) [136].
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Several derivatives of chrysin were obtained by the incorporation of amino acids
alanine, leucine, isoleucine and phenylalanine at C7 position via an acetyl or butyryl
group (Figure 10) [131]. Beyond eliminating in vivo problems of chrysin, the introduction
of amino acids moiety was considered as a potential pharmacophore responsible for
upgrading the antiproliferative activity against cancer cell lines [131]. Among all the
synthesized compounds, N-[4-(5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)butyryl]-
L-isoleucine methyl ester (32) proved to be the most effective and to induce apoptosis on
MGC-803 cells (human gastric carcinoma) with an IC50 value of 3.8 µM [131].

Later, the same group found out that the derivative N-(7-((5-hydroxy-4oxo-2-phenyl-
4H-chromen-7-yl)oxy)valeryl)-L-leucine (33) was shown to induce apoptosis and inhibit
the activity of epidermal growth factor receptor (EGFR), a protein tyrosine kinase which
is overexpressed in several cancers, beyond having the most potent activity with IC50
values of 16.6 µM against MCF-7 cells [134]. Comparing the results of the antitumor
activity it was verified that amino acid derivatives have better inhibitory effects than amino
acid ester derivatives, possibly due to the formation of a hydrogen interaction between
the carboxyl group and the target protein. In addition, chrysin derivatives containing L-
leucine showed greater potency by establishing three hydrogen bonds with EGFR, blocking
phosphorylation [134].
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Figure 10. Chemical structure of amino acid derivatives and amino acid ester derivatives of chrysin.

Quercetin (34) belong to the flavonol subclass that is widely found in fruits such as
apples, berries, vegetables and teas [137]. The presence of multiple hydroxyl groups in
its structure, namely at C3 and a catechol group in B-ring, is responsible for its potent
scavenging and metal ions chelate effects [138]. However, beyond the antioxidant activity,
this flavonoid has antidiabetic, anti-inflammatory and anti-proliferative activities towards
multiple cancer cells including lung, breast, kidney, prostate, colorectal, nasopharyngeal,
pancreatic and ovarian [139]. So, due to its biological potential, quercetin can serve as a
pharmacophore for drug design strategy in combination with other elements to improve
molecular recognition [140].
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The structure of quercetin served as an inspiration for a study based on the devel-
opment of new MDR modulators. Thus, six new quercetin-amino acid derivatives were
prepared by the combination of alanine and glutamic acid at C3 and C7 via carbamate
and ester bond (Figure 11) [141]. Compounds with amino acid moiety at the 7 position
of quercetin via an amide linkage were the most potent MDR-reversal agents, with IC50
values of 0.41 µM (alanine) and 0.14 µM (glutamic acid). Especially, quercetin−glutamic
acid conjugate, 7-O-Glu-Q (35), enhanced about 31 times MDR-reversal activity when
compared to quercetin itself, establishing a stronger interaction at the P-glycoprotein (Pgp)
binding site. In addition, glutamic acid moiety improved quercetin bioavailability and
cellular uptake [141].
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Figure 11. Chemical structure of quercetin (34) and quercetin-amino acid conjugates with a carbamate
and ester linkage.

Later, the same research group designed two non-hydrolysable quercetin-glutamic
acid derivatives (36 and 37, Figure 12) that showed to be more potent MDR-reversal than
quercetin (34), enhancing the cytotoxicity of tested anticancer drugs such as doxorubicin,
vinblastine, paclitaxel and actinomycin D on MES-SA/Dx5 cells, with EC50 values ranging
between 2.1 and 2.8 µM. Nevertheless, those quercetin-glutamic acid conjugates were not
as potent MDR-reversal agents as verapamil [142].
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Figure 12. Chemical structure of quercetin- glutamic acid derivatives with non-hydrolysable linkage.

The combination of quercetin (34) with metal ions leads to the formation of complexes
that, due to their spatial orientation at the active site, allowed obtaining better in vitro and
in vivo effects, in particular tin and organotin (IV) derivatives [143]. With the addition of
organic donor ligands, organotin derivatives can change their coordination number which
can go from four to seven [144]. Its functionalization allowed improving biocompatibility,
specificity and selectivity as well as reduce toxicity. Organotin (IV) complexes have shown
very good IC50 values when compared to other drugs in therapeutics [145]. Taking this into
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account and in order to study the stereoselective recognition with target molecules, valine
enantiomer’s was used as a chiral auxiliary to form quercetin organotin derivatives [145].
The conjugation of quercetin pharmacophore with organotin (IV) and with the chiral
recognition domain by valine can lead to induce cell death [140]. A complex containing
the L-enantiomer was found to have the higher binding affinity with DNA in vitro when
compared to D-enantiomer. Among L-enantiomeric complexes, 2L (38) was the compound
which revealed the best binding ability, showing GI50 values below 10 µg/mL, against
cervix, breast, hepatoma and pancreas cancer cell lines (Figure 13) [140].
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Figure 13. Chemical structure of L-valinequercetin diorganotin (IV) (38).

Recently, data related to molecular docking helped to prepare a pair of chiral baicalin
(9) derivatives, BAD (39) and BAL (40) through the conjugation with phenylalanine
methyl ester moiety in order to improve the antitumor activity of this bioactive com-
pound (Figure 14). the introduction of phenylalanine methyl ester is a well-known strategy
to confer chirality that will give spatial specificity and enhance the selectivity of cancer
cells [146]. Results show that BAD (39) and BAL (40) have better antitumor activity than
baicalin itself against MCF-7, T47D (human breast cancer), H460 and A549 cells (lung can-
cer). Particularly on lung cancer cell line A549, BAL (40) showed better affinity, followed by
BAD (39) and by baicalin (9). However, BAD (39) may lead to a higher inhibition rate over
time since usually D-enantiomer of chiral drugs have better access to cancer cells [147].
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The development of Buchwald-Hartwig amination of different bromoflavones with
amino acid and peptide derivatives as nitrogen source giving unique structures allowed
the synthesis of a series of flavone amino acid derivatives (Figure 15) [117]. The synthesis
of these unique derivatives was also demonstrated by the deprotection of flavone-amino
acid hybrids followed by classical peptide synthesis. The biological assays exhibited that
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these special structures are promising cytotoxic compounds against different cell lines. The
previously observed racemization, which occurred during the synthesis of flavone-amino
acid hybrids, was successfully prevented in most cases [117].
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Figure 15. General scheme for synthesis of flavone amino acid derivatives through the Buchwald-Hartwig reaction.

It is important to refer that the coupling enantiomerically pure amino acid under
basic conditions usually leads to racemization. In addition, the racemization process can
also occur in reactions with palladium catalyst, but this situation can be mitigated by
combining bulky ligands such as BINAP with catalysts that form a more stable complex
during reaction [148]. In addition, high temperature and long reaction times lower the
enantiomeric ratio although suggesting good overall yields. All flavone dipeptide hybrids
that were studied show cytotoxic effects on different cancer cell lines such as osteosarcoma,
leukemia, lung, and colorectal cancer [117]. Among them, flavone−dipeptide hybrid
constituted by L-Val-OH (41) moiety shows the lowest IC50 value (9.2 µM) against T-
lymphoblastic leukemia cell line (Figure 16) [117].
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Figure 16. Chemical structure of flavone−dipeptide hybrid L-Val-OH (41).

Total synthesis of chiral flavanols has been gaining importance over the years giving
rise to new compounds with unique structure and promising pharmacological activities.
The way in which stereogenic centers are built and stereoselective cyclization occurs to form
the C ring can be achieved through Sharpless asymmetric dihydroxylation, Shi epoxidation,
Sharpless epoxidation and chiral resolution (Figure 17) [149].
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Figure 17. Dihydroxylation and epoxidation to construct chiral centers (Retrosynthesis).

Asymmetric dihydroxylation of olefins with AD-mix-α or AD-mix-β catalyst create
syn-diols with good yields and optical purity (Figure 18) [150]. In this way, two stereogenic
centers were obtained in a single reaction step that make this reaction very effective.
However, the hydroxyl of the phenol group from the starting reagent needed to be protected
with groups such as methoxymethyl (MOM), t-butyldimethylsilyl or benzyl (Bn) before
asymmetric dihydroxylation [151]. Then, the chiral diols by cyclization and deprotection
formed the respective flavanols [149].

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 18 of 32 
 

 

 
 

Figure 17. Dihydroxylation and epoxidation to construct chiral centers (Retrosynthesis). 

Asymmetric dihydroxylation of olefins with AD-mix-α or AD-mix-β catalyst create 
syn-diols with good yields and optical purity (Figure 18) [150]. In this way, two stereo-
genic centers were obtained in a single reaction step that make this reaction very effective. 
However, the hydroxyl of the phenol group from the starting reagent needed to be pro-
tected with groups such as methoxymethyl (MOM), t-butyldimethylsilyl or benzyl (Bn) 
before asymmetric dihydroxylation [151]. Then, the chiral diols by cyclization and depro-
tection formed the respective flavanols [149]. 

 
Figure 18. Sharpless asymmetric dihydroxylation to achieve chiral centers. 

Flavanols cyclization can occur by different approaches in order to obtain several 
compounds. The first reported method involved the removal of the protecting group at 
position 2′ followed by ring formation and thereafter acetylation in mildly acid conditions 
to generate 2,3-cis and 2,3-trans-flavanols derivatives with moderate yields and high en-
antiomeric excess, with the optical integrity not affected. However, this method lacks from 
low selectivity for cis/trans configurations [152]. 

In 2001, a research group managed to proceed with the synthesis of EGCG (10) 
through stereospecific cyclization of the Sharpless asymmetric dihydroxylation product. 
The first reaction steps were similar to those previously mentioned, but this time the diol 
reacted with triethyl orthoformate in the presence of pyridinium p-toluenesulfonate to 
give an ortho ester that would quickly form the ring, giving rise to the trans product. The 
desired cis product was obtained through trans-intermediate oxidation followed by ke-
tone reduction with L-selectride. Lastly, esterification with Pd(OH)2 catalyst allowed the 
enantioselective synthesis of EGCG (10) despite low overall yield [151]. 

In 2005, analogues of ECG (11) with B-ring modifications were obtained through an 
alternative route of C-ring cyclization. Instead, the cyclic orthoformate intermediate 

OH
OH

OH

R R1

83% yield, >99% ee 

85% yield, >99% ee 

Figure 18. Sharpless asymmetric dihydroxylation to achieve chiral centers.

Flavanols cyclization can occur by different approaches in order to obtain several
compounds. The first reported method involved the removal of the protecting group at
position 2′ followed by ring formation and thereafter acetylation in mildly acid conditions
to generate 2,3-cis and 2,3-trans-flavanols derivatives with moderate yields and high enan-
tiomeric excess, with the optical integrity not affected. However, this method lacks from
low selectivity for cis/trans configurations [152].

In 2001, a research group managed to proceed with the synthesis of EGCG (10) through
stereospecific cyclization of the Sharpless asymmetric dihydroxylation product. The first
reaction steps were similar to those previously mentioned, but this time the diol reacted
with triethyl orthoformate in the presence of pyridinium p-toluenesulfonate to give an ortho
ester that would quickly form the ring, giving rise to the trans product. The desired cis
product was obtained through trans-intermediate oxidation followed by ketone reduction
with L-selectride. Lastly, esterification with Pd(OH)2 catalyst allowed the enantioselective
synthesis of EGCG (10) despite low overall yield [151].

In 2005, analogues of ECG (11) with B-ring modifications were obtained through
an alternative route of C-ring cyclization. Instead, the cyclic orthoformate intermediate
treated with acetyl bromide led to a ring opening intermediate. The subsequent addition
of K2CO3 was responsible for cyclization and deformylation to give cis-2,3 product. The
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syntheses were concluded by DCC-induced coupling with 3,4,5-tri(benzyloxy)benzoic acid
and debenzylation with Pd(OH)2 addition to result in the enantiomeric pure flavanols [153].

A method developed in 2002 with catalyst AD-mix-α and methane sulfonamide used
on trans-methyl cinnamate derivative led to (2R,3S)-dihydroxyester diastereomer with high
enantiomeric excess (>99%) (Figure 19). To avoid epimerization, intramolecular Mitsunobu
reaction using triphenylphosphine (PPh3) and diethyl azodicarboxylate as catalyst ensured
the formation of flavanol with moderate yield. Later, from the respective diols, four
flavanols with different substitution patterns and electron densities were synthesized by
Mitsunobu reaction in only one step [149].
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In 2006, a new cyclization method via halogen-metal exchange was developed [154].
This method started with an asymmetric dihydroxylation by AD-mix-β to achieve a triol.
Then, sulfonylation followed by K2CO3 addition to form an epoxide that by Mitsunobu
reaction with substituted phenol formed an oxirane group. The oxirane group ended up
being cleaved resulting in an alcohol group that needed to be protected to obtain bromide.
This intermediate together with Ph3MgLi and HMPA provide the desired product. The last
step corresponds to protecting groups release.

Aryl epoxides cyclization of many catechins derivatives was achieved with good
yields by AuCl3/AgOTf/PPH3 mixture under mild conditions [155]. This cyclization
method allowed obtaining a large library of this family of compounds with good yields.

In 2010 a series of epi-catechins were synthesized under stereospecific controlled
conditions based on an intramolecular nucleophilic substitution followed by the sulfynil-
metal exchange and finally cyclization. The nucleophilic substitution reaction was slowly
carried out giving the respective product as a mixture of diastereomers. Then, Li2NiBr4
was added to remove the epoxide ring while triethylsilyl (TES) triflate gave diastereomeric
bromides that were obtained after cyclization [156].

Two years later, a new synthetic method was developed in order to achieve polyphe-
nols from the catechin class through the reaction of regioselective lithiation of fluorobenzene
and enantiomeric epoxy alcohol by BF3.OEt2. Before pyran cyclization under basic condi-
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tions, the hydroxyl group was protected at the same time that the silyl group was cleaved
in order to give the cis product with good yields [157].

Another method to construct stereogenic centers corresponds to Shi asymmetric
epoxidation (Figure 20) [158]. Taking advantage of the E-double bound with fructose
derivative addition, oxone and phosphorus buffer in a solvent mixture led to the enan-
tioselective formation of epoxide with good yields and high enantiomeric excess. Then,
tetra-n-butylammonium fluoride (TBAF) was added to remove the silyl ether protecting
group (TBS) thus allowing the endo-cyclization reaction with camphorsulfonic acid (CSA)
treatment [159].
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More recently, based on Sharpless asymmetric epoxidation, the synthesis of (−)-
epicatechin gallate (ECG) (11) analogues was improved (Figure 21) [160]. The formation
of enantiomeric pure epoxides with excellent enantiomeric excess was achieved from
cinnamoyl alcohol reaction with diethyl-L-tartrate, titanium isopropoxide and t-butyl hy-
droperoxide in dichloromethane. The epoxide was then treated with 3,5-dibenzoxyphenol
to give diols. Through reaction heating and the addition of hexafluoro-2-propanol (HFIP)
they obtained catechin in good quantities, despite the fact that they could be improved
by extending the reaction time. The desired epicatechin stereochemistry was achieved by
oxidation with Dess–Martin periodinane followed by reduction with L-selectride [149].
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Thioflavonoids are synthetic analogues of flavonoids with a sulfur-containing hete-
rocycle [161,162]. It is recognized that these compounds have several biological activities
such as antitumor, antidepressive, anti-inflammatory, antiarthritic and antimicrobial, some
of them being more potent than flavonoids [163]. Given their abilities, thioflavonoids drive
the interest of scientists in synthesis, bioactivity and optical materials fields [162].

Thioflavonoids can be synthesized from the alkynylation of thiochromones [164].
However, thiochromones are less reactive compounds due to the presence of a sulfur
electron lone pair which is responsible for a high degree of delocalization, consequently
increasing the electronic density in the system [162].

The first studies started with unsubstituted thiochromone and phenylacetylene as
substrates and CuI as the catalyst but whose product stereoselectivity was not prop-
erly controlled. Therefore, several chiral ligands have been studied in order to ob-
tain good enantiomeric excess and yields [162]. Phosphoramidite ligands, especially
with the a more hindered pentaflourophenyl group led to the better yields (95%) as
well as the highest enantioselectivity (92%) [162]. Then, the reaction was studied for
substituted thiochromones in position 2, in order to understand the extent of the sub-
strate. It was found that the electronic properties from the substituents did not signif-
icantly alter the reaction´s reactivity and stereoselectivity [162]. Basically, the reaction
started with the formation of copper acetylide with a base. In its turn, the addition of
trimethylsilyl trifluoromethanesulfonate (TMSOTf) activated the thiochromone to form
4-((trimethylsilyl)-oxy)thiochromenylium that can coordinate to copper acetylide by the
stabilization from the counteranion. Then, acetylide goes to migratory insertion, forming
another complex which, after that, can release the silyl enol ether getting the final product
(Figure 22) [162].
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Table 2. Chiral flavonoids with antitumor activity.

Flavonoid Subclass Name Cancer Cells/Effects Ref.

Flavanone

Naringenin (1)

hepatocellular carcinoma (IC50 = 100 µM)
gastric cancer (IC50 = 10 µM)
melanoma (IC50 = 3 µM)
non-small-cell lung carcinoma (IC50 = 100 µM)

[35,165]

Hesperetin (2)

gastric (IC50 = 40 µM)
breast (IC50 = 20 µM)
prostate (IC50 = 90 µM)
colon (IC50 = 100 µM)
lung (IC50 = 40 µM)
liver (IC50 = 87 µM)

[39]

Alpinetin (4)

lung (IC50 = 25 µM)
gastric (IC50 = 120 µM)
ovarian (IC50 = 50 µM)
pancreatic (IC50 = 60 µg/mL)

[40–42,166]

Persicogenin (5)
human cervical cancer (IC50 = 500 µg/mL)
breast carcinoma (IC50 = 500 µg/mL)
human colon cancer (IC50 = 500 µg/mL)

[44]

Homoeriodictyol (6)
human cervical cancer (IC50 = 500 µg/mL)
breast carcinoma (IC50 = 500 µg/mL)
human colon cancer (IC50 = 250 µg/mL)

[44]

Didymin (7) neuroblastoma (IC50 = 50 µM)
lung (IC50 = 11.06 µM) [50,52,167]

Flavone

Vitexin (8)

leukemia (IC50 = 200 µM)
glioblastoma (IC50 = 32 µM)
hepatocellular carcinoma (IC50 = 5 µM)
lung carcinoma (IC50 = 40 µM)

[53,168–170]

Baicalin (9)

breast (IC50 = 100 µM)
colon (IC50 = 20 µM)
prostate (IC50 = 150 µM)
lung (IC50 = 80 µg/mL)
gastric (IC50 = 80 µM)
osteosarcoma (IC50 = 25 µM)

[60,167,171–174]

Ficine (20) CDK1 and CDK5 inhibition (IC50 = 0.04 µM) [105]

(−)-O-demthylbuchenavianine (21) CDK1 inhibition (IC50 = 0.03 µM)
CDK5 inhibition (IC50 = 0.05 µM) [105]

R-Leucoflavonine (23) hepatocellular carcinoma (IC50 = 52.9 µM) [103]

Flavopiridol (29)

CDK1 inhibition (IC50 = 30 nM)
CDK7 inhibition (IC50 = 10 nM)
CDK9 inhibition (IC50 = 3 nM)
colon-carcinoma (IC50 = 20 nM)
breast cancer (IC50 = 75 nM)
gastric adenocarcinoma (111 nM)

[175–177]

Riviciclib (30) CDK1 inhibition (IC50 = 79 nM)
CDK9 inhibition (IC50 = 20 nM) [177]

32 gastric carcinoma (IC50 = 3.8 µM) [131]

33 breast (IC50 = 16.6 µM) [134]

Flavone−dipeptide hybrid L-Val-OH (41) leukemia (IC50 = 9.2 µM) [117]

Flavonol

Taxifolin (14)

colorectal (IC50 = 40 µM)
breast (IC50 = 10 µM)
lung (IC50 = 25 µM)
skin (IC50 = 80 µM)

[178]

Quercetin−glutamic acid conjugate
7-O-Glu-Q (35) MDR uterine sarcoma (IC50 = 0.14 µM) [141]

L-valinequercetin diorganotin(IV) (38)

cervix (GI50 < 10 µg/mL)
breast (GI50 < 10 µg/mL)
liver (GI50 < 10 µg/mL)
pancreatic (GI50 < 10 µg/mL)

[140]
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Table 2. Cont.

Flavonoid Subclass Name Cancer Cells/Effects Ref.

Flavanol

(−)-epigallocatechin-3-gallate (EGCG)
(10)

prostatic adenocarcinoma (IC50 = 39 µM)
colon (IC50 = 3 µM)
adrenal (IC50 = 20 µM)
breast (IC50 = 20 µM)
melanoma (IC50 = 7 µM)
pancreatic (IC50 < 50 µM)

[179–182]

Daphnegiralin A4 (24) hepatocellular carcinoma (IC50 = 5.1 µM) [107]

Daphnegiralins B1: (2-S,2′-R) (25)
Daphnegiralins B2: (2-R,2′-S) (26) hepatocellular carcinoma (IC50 = 6.1 µM) [107]

Daphnegiralins B3: (2-S,2′-S) (27)
Daphnegiralins B4: (2-R,2′-R) (28) hepatocellular carcinoma (IC50 = 5.4 µM) [107]

Isoflavone S-(−)-equol (18) breast cancer (IC50 = 10 µM)
prostate cancer (IC50 = 5 µM) [97,183]

3. Conclusions

Flavonoids are natural products with diversified structure widely produced by plants
and fruits that demonstrate several biological activities, the antitumor activity being one
of the most reported. Among natural flavonoids with antitumor effect, some classes such
as flavanones, flavanols, and isoflavanones are chiral, showing one or two stereogenic
centers in the flavonoid nucleus namely in positions 2 or 3 of the C-ring. In addition to
these classes of natural flavonoids, some chiral flavonoids with in vitro growth inhibitory
activity showed the presence of stereogenic centers at the side chains, namely flavonoid
glycosides and flavoalkaloids.

Considering synthetic chiral flavonoids, flavopiridol (29) is a CDK inhibitor that
inspired many researchers to search for new analogues with antitumor activity through
structural modifications. Among flavopiridol analogues, those with a benzimidazole group
showed greater cytotoxic activity than flavopiridol (29).

Most of the activities presented by flavonoids include the inhibition of some enzymes.
It is known that the active sites of enzymes are characterized by a highly stereoselectivity.
Therefore, the flavonoid interaction with the chiral macromolecule can be modulated
by the absolute configuration that leads to different pharmacodynamic effects since one
of the enantiomers can have a greater affinity and potency than the other. From these
characteristics it can be inferred that to better understand their pharmacological effects, it
is necessary to have both enantiomers in enantiomerically pure form.

The synthesis of chiral flavonoids through the incorporation with amino acids has been
reported as an effective strategy to improve the antitumor activity of natural flavonoids.
For example, to overcome the drawback of low bioavailability of chrysin, baicalin (9)
and quercetin (34), these natural flavonoids were used as substrates to obtain new chiral
derivatives with antitumor activity using this synthetic strategy. Despite the association of
these flavonoids with amino acids resulting in the improvement of the antitumor activity,
the evaluation of both separated enantiomers was not explored. Therefore, in the future it
will be important to obtain new libraries of chiral flavonoids with enantiomeric pairs in
order to conduct enantioselectivity studies.

Stereoselective synthesis allows the construction of molecules with complex structures
from achiral precursors through rational stereoselective synthetic transformations under
controlled conditions. In the last years, asymmetric synthesis has been widely used in
order to improve the synthesis of natural bioactive compounds available for drug discovery
and development. However, the search for better approaches for the synthesis of both
enantiomers of chiral flavonoids is still necessary in order to explore the enantioselectivity
in antitumor activity.
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