
TECHNICAL NOTE Open Access

Accelerating large-scale protein structure
alignments with graphics processing units
Bin Pang1, Nan Zhao1, Michela Becchi2, Dmitry Korkin1,3 and Chi-Ren Shyu1,3*

Abstract

Background: Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a
tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts
have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are
costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of
structure fragments for structure comparisons.

Findings: We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to
exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take
many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated
ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an
AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-
fold speedup over MAMMOTH.

Conclusions: ppsAlign is a high-performance protein structure alignment tool designed to tackle the
computational complexity issues from protein structural data. The solution presented in this paper allows large-
scale structure comparisons to be performed using massive parallel computing power of GPU.

Background
Large-scale protein structure comparison is becoming a
more and more important approach to providing a bet-
ter picture for understanding biological systems [1,2].
Given a database of protein structures, the main goal is
either to find proteins that are structurally similar to a
given protein (i.e., one-against-all comparison) or to
build various connectivity among proteins by performing
exhaustive comparisons on the whole database (i.e., all-
against-all comparison). The results of structural com-
parison are useful in discovering potential structural,
evolutionary, and functional relationships among these
proteins and have significant impact on structure-based
drug design [3], protein-protein docking [4], and other
biological findings [5]. Recently, the dramatic increase in
protein structural data [6] has led to an ever increasing
demand for structure alignment tools that can not only
find accurate alignments at residue level but also

complete large-scale structure comparisons in a reason-
able time.
Several approaches have been developed to address

the limitations of traditional alignment methods and
tackle the computational issues. The traditional align-
ment methods [1,2,7], such as DALI [8], CE [9], TM-
align [10], Fr-TM-align [11], and MAMMOTH [12], are
based on the comparison of residues or fragments to
build initial alignments which are optimized by various
procedures, such as Monte-Carlo, combinational search,
and dynamic programming. These methods can provide
accurate alignments at the residue level but are usually
computationally expensive, which makes them infeasible
in coping with very large datasets. To accelerate this
process, one approach is to map the protein structures
into 1D sequences and then use various sequence align-
ment methods to align two structures [13,14]. Another
approach [15] utilizes a “bag of words” method, which
depends on frequency of specific structural patterns, to
provide speedy structure match and filtering. These
approaches significantly improve efficiency for large
datasets; however, this is often achieved at the cost of

* Correspondence: shyuc@missouri.edu
1Informatics Institute, University of Missouri, Columbia, MO, USA
Full list of author information is available at the end of the article

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

© 2012 Pang et al; BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:shyuc@missouri.edu
http://creativecommons.org/licenses/by/2.0

loss of topological details, which could lead to lower
accuracy than the traditional structural comparison
methods or could be unsuitable to perform residue-level
alignment. Another approach is to parallelize traditional
algorithms using a cluster or grid environment consist-
ing of thousands of computing nodes [16,17]. These
approaches can fulfill the desires of efficiency and accu-
racy but require high-performance computing environ-
ments which are energy-consuming and may not be
accessible to the biologists.
With the increase in performance and programmabi-

lity of many-core Graphic Processing Units (GPUs),
more and more bioinformatics applications have been
deployed on GPUs and have shown promising results in
terms of speedup over their conventional CPU imple-
mentations. Liu et al. [18] implemented a GPU-based
Smith-Waterman algorithm [19] for pair-wise DNA
sequence alignment. Later, the efficiency of sequence
alignments has been continuously improved in [20-23].
Vouzis and Sahinidis developed GPU-BLAST (Basic
Local Alignment Search Tool) [24] to accelerate NCBI-
BLAST [25]. Hung et al. developed a method for calcu-
lating RMSD (Root Mean Square Deviation) after super-
position for ATI GPU card [26]. Stivala et al. utilized
simulated annealing (SA) to develop a protein substruc-
ture searching algorithm, SA Tableau Search, to find
structural motif at level of secondary structure element
(SSE) [27]. It is worth mentioning that from the litera-
ture the SA Tableau Search is the first attempt to apply
GPU in protein structure comparison at the SSE level.
Other applications include protein-protein docking [28]
and statistical phylogenetics [29].
In this paper, we present ppsAlign, a parallel protein

structure Alignment framework which is designed and
optimized to exhaustively exploit the parallelism of the
GPU architecture for residue-level structure compari-
sons. Our experimental results (reported on a NVIDIA
Tesla C2050 GPU card) show that ppsAlign significantly
outperforms existing structural alignment tools in com-
putational efficiency.
We believe that GPU’s massive parallel computing

power can unlock the door to a cost-effective and high-
performance computing environment that can be bene-
ficial to the structural biology community.

Findings
Overview
The framework of ppsAlign is shown in Figure 1. The
inputs include a target protein and a protein database Λ
= {P1, P2,, Pn}. The outputs are structure alignments
between the target protein and each database protein.
The online alignment starts with a generation of some
initial sets of matched fragments and corresponding
alignments. Then, the initial alignments are extended

and refined using Dynamic Programming to obtain the
final results. Specifically, the ppsAlign algorithm consists
of 5 steps: 1) Index-based matched fragment set (MFS)
search is utilized to find the maximal Nseed seed MFS’
between the target protein and each database protein; 2)
Fragment-level alignment is used to assemble the MFS’
and generate initial alignments; 3) Residue-level align-
ment is used to refine the initial alignments to residue
alignments; 4) Maximal alignment search is used to find
a transformation that can best superimpose the entire
target protein over each database protein based on the
obtained residue alignments; 5) Final assessment is per-
formed to calculate z-Score and evaluate statistical sig-
nificance of alignments. Steps 1) and 5) are executed on
the CPU core, while steps 2) ~ 4), the most time-con-
suming parts of ppsAlign, are implemented as GPU ker-
nels and iteratively executed on GPU for Niter times.
The GPU kernels are developed using CUDA (Compute
Unified Device Architecture) programming model [30].
During the alignment, the protein structures and inter-
mediate results from each GPU kernel are stored in
GPU’s on-board memory, such as read-only constant
memory, read-only texture memory, and read-write glo-
bal memory. Generally, the constant and texture mem-
ory have limited capacity but high access rate compared
to the global memory. For an overview of GPU architec-
ture and CUDA model, readers are referred to [30,31].
To facilitate the search of structurally similar fragments
from the protein database, ppsAlign has an off-line com-
ponent that pre-processes substructures from the entire
protein database and builds an indexing tree to allow
fast retrievals.

Index-based matched fragment set search
The purpose of this CPU-based step is to quickly find
all possible matched fragment sets (MFS’) between the
target protein and each database protein for further
refinement based on an information retrieval (IR)
approach which goes beyond the capability of the tradi-
tional “bag of words” concept by introducing spatial
relationships among these fragments. Let
Q =

{
q1,q2, . . . , qLQ

}
and P =

{
p1,p2, ..., pLp

}
be a target

protein with LQ residues and a database protein with LP
residues, respectively. Here, q and p represent 3D coor-
dinates of the Ca atoms. A fragment f is a set of Lf (=
8) continuous residues with the direction from N term-
inal to C terminal along the protein backbone. A MFS
includes two non-empty subsets, FQ and FP, which con-
tain an order of fragments that conforms to some cri-
teria of structural similarity between Q and P,
respectively. The fragments in a MFS will then be used
to generate a rough alignment between Q and P in the
fragment-level alignment.

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 2 of 11

The MFS search utilizes the substructure mapping
method of the Index-based Substructure Alignment
algorithm [32], developed by the authors, to retrieve
similar fragments from the database proteins. In this
method, substructures of the database proteins,
extracted by a large set of pairs of windows along the
backbones, are indexed off-line by an indexing tree in
which similar substructures are clustered into same leaf

node, denoted by tΛi , and one substructure is selected

as representative for each leaf node. Such representative
structures preserve certain topological information, both
locally and globally, from two disjoint substructures
with various ranges of distances. Similarly, substructures
in the target protein Q are indexed by an indexing tree

in which each leaf node is denoted by tQ
i . The represen-

tative substructure of each tQ
i is used to search the

indexing tree of database and a list of best matched tΛ is

returned. For simplicity, we use t to denote tQ
i and tΛ.

The database proteins that have substructures in tΛ can
be found by an inverted index. Such a database protein,
P, can be represented by an order of substructures,
denoted by Ωt, occurring in t. Likewise, the protein Q
can be represented by an order of substructures,

denoted by Ω
Q
t , occurring in t. As substructures identi-

fied by the same t are similar, they can be used as
“anchors” for rough alignments. For detailed explanation
of the substructure mapping method, readers are
referred to [32].
In ppsAlign, substructures are further projected into

fragments as follows: if any residue of a substructure

from ΩP
t (or Ω

Q
t) is located in a fragment, the frag-

ment is selected and added to FP (or FQ). The fragment

Figure 1 Framework of ppsAlign. The framework consists of both GPU- and CPU- based processes. The input includes a target protein and
database proteins. The output contains all the structural alignment results between the target protein and each database protein.

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 3 of 11

subsets FP and FQ are used to construct a MFS between
the protein Q and P. After searching all tQ, we can
obtain all possible MFS’ between Q and database pro-
teins, if any. In this step, if the algorithm cannot find
any MFS for a database protein, all the fragments from
Q and the database protein are selected to form a MFS.
An example of MFS searching and construction is illu-
strated in Additional file 1: Figure S1.
After searching MFS, a filtering process is called to

remove redundant MFS’. Then, the non-redundant MFS’
between Q and each database protein are ranked
according to scoring function SMFS and the top Nseed

sets are selected. The scoring function is defined as fol-
lows:

SMFS = w1 · NQ

NQ
f

+ w2 · NP

NP
f

+ w3 · min
(
NQ,NP

)
max

(
NQ,NP

)

where NQ and NP denote the cardinality of FQ and FP
in a MFS, respectively.

Nf Q =
⌈
LQ/Lf

⌉
and Nf P =

⌈
LP/Lf

⌉
are the numbers of

fragments in the target protein and a database protein,
respectively. The third term of the above scoring func-
tion is used to favor MFS’ which have comparable NQ

and NP. The values w1, w2, and w3 are used to weight
the contributions from the three terms.
The data needed by ppsAlign in order to compute the

alignments on GPU are: structures of the protein Q and
of the database proteins, and MFS’. To allow efficient
processing, those data must be judiciously laid out on
the GPU memories. Specifically, the database structures
are transferred to the texture memory before execution.
The MFS’ are transferred from CPU memory to GPU
global memory as inputs to the fragment-level alignment
(see Figure 1). Finally, the structure of protein Q is
stored in the constant memory, which has smaller capa-
city but lower access latency compared to the texture
memory.

Fragment-level alignment
In this step, the fragments in each MFS are assembled
to obtain initial alignments using Dynamic Program-
ming (DP). For a given MFS, the DP algorithm first
sorts the fragments from FQ and FP according to their
locations in Q and P. Then, it computes the similarity
score Sf(i, j) of each fragment pair for 1 ≤ i ≤ NQ and 1
≤ j ≤ NP using the following recurrence:

sf
(
i, j

)
= max

⎧⎨
⎩

Sf
(
i − 1, j − 1

)
+ Sf

(
i, j

)
Sf

(
i, j − 1

)
+ Gf

Sf
(
i − 1, j

)
+ Gf

,

where Gf is gap penalty and Sf is based on the inverse
cosine distance of fragment’s feature vector. Given a

fragment pair, A and B, and their corresponding feature
vectors DA and DB, Sf is calculated as follows:

sf = 1 − cos−1
(〈DA, DB〉

‖DA‖ • ‖DB‖
)

where <DA, DB > is the inner product of DA and DB, ||
DA|| and ||DB|| are the norm of DA and DB, respec-
tively. In the current implementation, features only use
Euclidean distance of each residue pair for fast calcula-
tion. The main reason for using feature distance as an
approximate measure of fragment similarity is the need
for simple control paths due to the SIMT (Single
Instruction, Multiple Thread) computing mode of the
GPU [30]. Traditional methods usually calculate RMSD
and find an optimal transformation using the Kabsh
algorithm [33], which contains complex control flows
and is therefore not suitable for the SIMT mode. This
step provides a rough alignment result which will be
refined by the residue-level alignment.
GPU computation for fragment-level alignment
The pseudo-code in Figure 2 describes the fragment-
level alignment. The algorithm splits the computation
into three GPU kernels. The first kernel performs the
computation of the fragment scores Sf by assigning a
database protein to each thread. This kernel performs

Figure 2 Algorithm of fragment-level alignment. Fragment-level
alignment consists of three GPU kernels. The first kernel performs
the computation of the fragment scores. The second kernel
implements the Dynamic Programming algorithm, and the third
one performs the back tracing.

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 4 of 11

all-against-all fragment comparisons and writes similar-
ity scores into the GPU global memory.
The second GPU kernel implements the DP algo-

rithm, whereas the third one performs back tracing. The
total number of threads NT that can run concurrently
on the GPU is mainly limited by the global memory
capacity of the GPU (in this phase each thread requires
approximately 10 kB of memory). Suppose that the total
number of MFS between Q and all database proteins is
NF. If NF >NT, the overall MFS’ will be divided into
Nbatch = ⌈NF/NT⌉ batches. ppsAlign sequentially sche-
dules each batch to run on GPU. In each batch, the DP
is first executed as a GPU kernel and each thread corre-
sponds to a MFS. Then, the GPU kernel for the back
tracing is called to obtain alignment paths for each
MFS. When a batch terminates, ppsAlign transfers the
output (i.e., alignment path for each MFS) from the
GPU memory to CPU memory. After aggregating the
outputs from all batches, ppsAlign first performs filter-
ing to remove redundant alignments, and then assem-
bles all the fragments along the alignment paths to form
residue alignments which will be further refined by the
residue-level alignment.
It is critically important to effectively utilize the lim-

ited memory resources of the GPU. Our GPU memory
allocation scheme is exemplified in Figure 3. The MFS’
are stored in a 2D block of size (NT × NS) where NS is
the maximal size of all MFS’. Each thread of the DP ker-
nel fetches a MFS to initialize its setting. The score and
direction matrices are stored in a separate 3D memory
block of size (NQ × NP × NT), where NQ and NP repre-
sent the maximal number of fragments from the target
protein and all the database proteins, respectively. The
alignment paths are then stored in a 2D block of size
(NP × NT). In ppsAlign, multiple GPU memory accesses
are coalesced into a single transaction whenever possi-
ble. This fragment-level alignment process provides a
selection of seed fragments which are likely to be suc-
cessful in accurate alignment. Only approximately 1.6%
of the total execution time is spent in this phase.

Residue-level alignment
The results of fragment-level alignment are then refined
by a residue-level alignment process. Such a refined
alignment result is an ordered set R = {(qi, pi) | qi∊Q’,
pi∊P’}, where Q’ ⊆ Q (target protein) and P’ ⊆ P (data-
base protein).
In this step, a rigid-body transformation (rotation and

translation) T that minimizes the RMSD of R is first cal-
culated. Then, the transformation T is used to superim-
pose all the residues from Q over P. Finally, the DP
algorithm is used to find an alignment path between Q
and P similar to the fragment-level alignment. In the
DP, the gap penalty Gr is set to 0 and the residue simi-
larity score Sr uses the scoring function from TM-align
[10]. However, our framework can be configured to use
any suitable residue-level scoring function [1].
As we mentioned previously, the complex control

flows present in the traditional method for computing T
(e.g., Kabsch algorithm [33]) make it unsuitable for the
SIMT computing model of GPU. To address this issue,
we implement and optimize a fast algorithm using qua-
ternion-based characteristic polynomial (QCP) [34],
gRMSD-QCP, to determine the transformation T on
GPU. In the gRMSD-QCP kernel, coordinates of resi-
dues from two protein structures are first written into
the GPU global memory and origin of coordinate is
moved to the center of coordinates for each protein.
Then, the inner-product of two coordinate matrices is
calculated, which is used by QCP for RMSD calculation.
The work flow of gRMSD-QCP is relatively simple, and
therefore amenable of efficient GPU implementation.
GPU computation for residue-level alignment
The GPU implementation of residue-level alignment
starts with loading coordinates of residues from R to the
GPU global memory. Next, the gRMSD-QCP kernel is
invoked to calculate the transformation T which is also
written into the GPU global memory. Finally, a DP ker-
nel is called to find residue alignments which are trans-
ferred into the CPU memory after the kernel terminates.
As in the fragment-level alignment phase, the residue-

level alignments are divided into batches according to
the memory requirement of the threads. After all the
batches are executed, ppsAlign aggregates the outputs of
residue alignment R, which are used in the next step for
searching the maximal alignment.

Maximal alignment search
The maximal alignment search is used to find the lar-
gest subset M ⊆ R such that the score of the residue
alignment R, denoted by Sa, is maximized. Because find-
ing the largest subset M is extremely time-consuming, a
heuristic and approximate algorithm, MaxSub [35], has
been developed to solve this problem. In ppsAlign, a
variant of MaxSub, gMaxSub, is designed to parallelize

Figure 3 GPU global memory layout of fragment-level
alignment. The Matched Fragment Sets (MFS’) are stored in a 2D
block. The score and direction matrices are stored in a separate 3D
memory block. The alignment paths are stored in a 2D block.

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 5 of 11

the search process on the GPU. In the current imple-
mentation of ppsAlign, Sa is defined using the TM-score
[10].
GPU computation for maximal alignment search
The input of this step is the alignment R from the resi-
due-level alignment which has LR aligned residue pairs.
The original MaxSub algorithm on CPU searches the
largest subset M by shifting a window W of size LW
along R (see Figure 4a). This results into (LR-LW + 1)
shift operations which are candidates for parallelization.
Then, gMaxSub searches the maximal alignment by
concurrently dispatching each calculation of W to differ-
ent GPU threads (see Figure 4b).
Figure 5 describes a pseudo-code of gMaxSub. First,

for each residue alignment R between Q and P, (LR-LW
+ 1) windows are generated. Second, the gRMSD-QCP
kernel is invoked to calculate the transformation T for
the residue pairs within each W and then T is used to
superimpose residues from Q over P in R. Third, residue
pair (qi, pi)∊R is added into W if its distance is below a
cutoff (4.0 Å) after the superimposition. The above two
steps (i.e., gRMSD-QCP and window extension) are
iteratively executed for NMS times. Forth, the last W is
assigned to M and Sa is calculated.
As in previous phases, the maximal alignment

searches are divided into batches. After all the batches
are executed, ppsAlign aggregates the outputs of subset
and selects the one with the largest Sa as the largest
subset M. The transformation T associated with the lar-
gest subset M is used to superimpose all the residues
from Q over P and the residue pair whose distance is
below a cutoff (4.0Ǻ) is selected to form a new residue
alignment R.
After gMaxSub terminates, if the current iteration

number <Niter, the residue alignment R will be first fil-
tered to remove redundant alignments from the same
database protein and then sent to the residue-level
alignment for further refinement; otherwise, R will be
used as input for the next step of final assessment.

Final assessment of alignment quality
After structure alignments are computed on GPU, the
residue alignments R are transferred from the GPU
memory to CPU memory. We use PSI (percentage of
structural similarity), defined as the percentage of resi-
due pairs from R with distance below 4.0 Å, to score the
alignment quality. We also assess the statistical signifi-
cance of the alignments through z-Score of the PSI,
which is given as follows:

z - Score =
PSI - µPSI

σPSI

where μPSI and sPSI denote mean and standard devia-
tion of PSI for a given protein chain length, respectively.
The parameters μPSI and sPSI are obtained using a
method similar to [12], leading to the following settings:
μPSI = 375.64·k-0.5295 and sPSI = 99.67·k-0.5885. Here, k is
the minimum chain length between target and database
proteins.

Results
In this section, we compare ppsAlign’s performance to
concurrent methods in terms of alignment quality and
computational efficiency. We evaluate ppsAlign using an
NVIDIA Tesla C2050 GPU card equipped with 448
cores at 1.15 GHz and 3 GB global memory. The con-
current methods include TM-align [10], Fr-TM-align
[11], and MAMMOTH [12], which share similar com-
putational framework as ppsAlign. As DALI [8] and CE
[9] have been exhaustively evaluated elsewhere [10], we

Figure 4 Comparison of MaxSub and gMaxSub. The original
MaxSub algorithm on CPU searches the largest subset by shifting a
window W along the residue alignment R. The gMaxSub searches
the maximal alignment by concurrently dispatching each calculation
of W to different GPU threads.

Figure 5 Algorithm of maximal alignment search. For each
search, the gRMSD-QCP kernel is invoked to calculate the
transformation superimpose residues with each window. The
residue pair is added into the window if its distance is below a
cutoff.

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 6 of 11

do not include these approaches in our experiments. We
download software packages of these methods from
their official websites and evaluate the performance on a
Linux personal computer with AMD Opetron dual-core
1000 series processor at 1.8 GHz and 8 GB RAM.
The main purpose of structure alignment is to maxi-

mize the number of aligned residues (Ne) while mini-
mizing the RMSD of the aligned residues, denoted by
cRMSD. To eliminate the size dependence of cRMSD
on Ne, in this paper we use a normalized measure of
cRMSD, RMSD100, to evaluate the alignment quality.
RMSD100 is calculated as follows [36]:

RSMD100 =
cRMSD

1 + ln

√
Ne

100

,

which corresponds to the cRMSD value expected if
the two protein structures were 100 residues long.
To evaluate efficiency, we measure the execution

time on a dataset in which the protein’s chain length is
in a range from 80 to 500 residues extracted from
ASTRAL 1.75 database [37] with sequence identity <
40% (ASREAL40). The database protein chain length is
determined by the global memory capacity on the
GPU card. However, this limitation is not severe as
98.5% ASTRAL40 protein chains have less than 500
residues. We expect that the advancement of GPU
technology will solve this memory limitation issue in
the near future so that the ppsAlign algorithm can
handle protein chains longer than 500 residues. Cur-
rently we can handle structures larger than 500 resi-
dues in one of the following two ways: 1) by sending
the alignment tasks to our CPU-based algorithm and
2) if resource allows, by using another GPU card to
align the remaining 1.5% of large structures. Although
the algorithm can also handle small protein chains
below 80 residues (~16% of ASTRAL40), we do not
use them for our testing because they have relatively
simple topologies [38].
To efficiently utilize global memory of GPU card, the

entire database proteins are sorted according to the
chain length and then divided into two small datasets:
1) D1, which includes 6, 569 proteins in the range [80,
250) residues selected from ASTRAL40 according to
the length distribution of proteins, and 2) D2, which
includes 1, 912 proteins in the range [251, 500) resi-
dues. The target dataset includes 100 proteins which
are randomly selected in the range [80, 250) from
ASTRAL40. For each target protein, a one-against-all
alignment is performed with all database proteins and
totally 100 × (6, 569 + 1, 912) = 848, 100 non-homolo-
gous protein pairs are compared during the
experiment.

Scalability of ppsAlign
There are two critical parameters for ppsAlign, namely
the maximal number of iteration (Niter) and the maximal
number of MFS (Nseed). Intuitively, when increasing Niter

or Nseed, ppsAlign will often obtain better alignment
quality but the execution time will be significantly
lengthened. To verify this, we preliminarily investigate
the performance of different settings using a small target
dataset of 17 proteins and the dataset D1 in terms of
RMSD100. The experimental results of RMSD100 with
Niter = {3, 5, 7} and Nseed = {10, 30, 50, 70} are shown in
Figure 6, which illustrates that ppsAlign has decreased
RMSD100 when Niter and/or Nseed is increasing. This fig-
ure can be used as a guideline for parameter selection
of ppsAlign. For a fair comparison of efficiency improve-
ment from ppsAlign to a concurrent method, we select
a combination of Niter and Nseed that achieves compar-
able alignment quality.

Speedup over TM-align and CPU-based ppsAlign
In this experiment, ppsAlign is executed with a para-
meter setting of Niter = 3 and Nseed = 20 which results
in a comparable RMSD100 to TM-align and the CPU
version of ppsAlign. Table 1 summarizes the alignment
quality, average execution time, and corresponding
speedup. ppsAlign achieves speedups of 23.8 and 35.9
compared to CPU-based ppsAlign and TM-align, respec-
tively. The detailed comparison of alignment quality of
ppsAlign and TM-align can be found in Additional file
1: Table S1.

Speedup over Fr-TM-align
Since Fr-TM-align performs more iterations to improve
its alignment quality over TM-align, we increase both
iteration and seed numbers of ppsAlign algorithm to
achieve a comparable alignment quality with Fr-TM-
align. The experimental results of RMSD100, average
execution time, and corresponding speedup with Niter =
6 and Nseed = 30 are shown in Table 2. ppsAlign
achieves speedup 64.7 compared to Fr-TM-align with
the same alignment quality. The detailed comparison of
alignment quality of ppsAlign and Fr-TM-align can be
found in Additional file 1: Table S2.

Speedup over MAMMOTH
In the last experiment, we use the same dataset to com-
pare the performance of ppsAlign and MAMMOTH.
Different from TM-align and Fr-TM-align, MAM-
MOTH is originally developed for the purpose of large-
scale comparisons with high efficiency at the cost of the
reduction of alignment quality. Because of its high
speed, MAMMOTH is used as a benchmark for maxi-
mal speed on the CPU platform in [39]. The experimen-
tal results of RMSD100, average execution time, and

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 7 of 11

corresponding speedup with Niter = 1 and Nseed = 8 are
shown in Table 3. ppsAlign achieves speedup 40.3 com-
pared to MAMMOTH and higher alignment quality.
The detailed comparison of alignment quality of ppsA-
lign and MAMMOTH can be found in Additional file 1:
Table S3.

Discussion
The framework of ppsAlign is a general-purpose GPU
platform for protein structure alignment which could
take many concurrent methods, such as TM-align [10]
and Fr-TM-align [11], into the parallelized algorithm
design. An important novelty in our approach is to

Figure 6 Performance comparison of ppsAlign with different settings of Nseed and Niter. ppsAlign is running on NVIDIA Tesla C2050 GPU
card with a small target dataset of 17 proteins. The parameter settings of ppsAlign are Niter = {3, 5, 7} and Nseed = {10, 30, 50, 70}. (A) Niter = 3. (B)
Niter = 5. (C) Niter = 7.

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 8 of 11

create a unique design to manage resources of the GPU
architecture. First, an intelligent decomposition of the
application in kernels characterized by different paralle-
lization strategies is provided. In the existing methods
for GPU-based sequence alignment mentioned pre-
viously, a pair-wise comparison is either assigned to a
thread (i.e., inter-task parallelization) or corporately per-
formed by a block of threads (i.e., intra-task paralleliza-
tion) [18,20]. However, as the workflow of structure
alignment is more complicated than that of sequence
alignment, neither the inter- nor the intra- task paralleli-
zation can efficiently exploit the GPU computing power.
Therefore, ppsAlign utilizes a hybrid inter- and intra-
task parallel model. In particular, each task (i.e., pair-
wise structural comparison) is divided into several inde-
pendent seed alignments. Each seed alignment is
assigned to a different thread (inter-task parallelization),
whereas each block executes one or more pair-wise

comparisons (intra-task parallelization). Second, a smart
design of memory layout and memory access patterns
are developed, the former allowing an effective use of
the memory capacity at the different levels of the GPU
memory hierarchy, and the latter minimizing the mem-
ory bandwidth requirement of the application. Third,
several efficient algorithms for avoiding complex control
flow on GPU are proposed to take advantage of the
SIMT nature of the GPU. For instance, a feature-based
measure is used to compute similarity of fragment at
the fragment-level alignment which can avoid time-con-
suming RMSD calculation at the initial stage of struc-
ture alignment.
One of the major ways in which ppsAlign differs to

other methods is implementing protein structure align-
ment at the residue level on GPU. Recently, the GPU-
enhanced algorithms are gaining an increasing attention
in bioinformatics. One of the major steps was a GPU
implementation of a one-against-all sequence compari-
son using Smith-Waterman algorithm [20,21]. With
these methods, a sequence database search can be per-
formed resulting in a list of similarity scores, while these

Table 1 Average execution time of TM-align, CPU-based ppsAlign, and ppsAlign with parameter settings (Niter = 3 and
Nseed = 20).

Dataset Methods RMSD100 Execution time (s) Speedup of ppsAlign

D1 ppsAlign 5.7 64 -

CPU-based ppsAlign 5.7 1596 24.9

TM-Align 5.7 2170 33.9

D2 ppsAlign 5.3 41 -

CPU-based ppsAlign 5.3 899 21.9

TM-Align 5.3 1597 39.0

Total ppsAlign 105 -

CPU-based ppsAlign 2495 23.8

TM-Align 3767 35.9

RMSD100 is the expected value of cRMSD if the two protein structures were 100 residues long. ppsAlign is running on NVIDIA Tesla C2050 GPU card and other
methods (CPU-based ppsAlign and TM-align) are running on a computer with AMD Opetron dual-core 1000 series processor at 1.8 GHz and 8 GB RAM. The
parameter settings of ppsAlign are Niter = 3 and Nseed = 20

Table 2 Average execution time of Fr-TM-align and
ppsAlign with parameter settings (Niter = 6 and Nseed =
30).

Dataset Methods RMSD100 Execution time
(s)

Speedup of
ppsAlign

D1 ppsAlign 5.4 326 -

Fr-TM-
align

5.4 19849 60.9

D2 ppsAlign 5.1 224 -

Fr-TM-
align

5.1 15729 70.2

Total ppsAlign 550 -

Fr-TM-
align

35578 64.7

RMSD100 is the expected value of cRMSD if the two protein structures were
100 residues long. ppsAlign is running on NVIDIA Tesla C2050 GPU card and
Fr-TM-align is running on a computer with AMD Opetron dual-core 1000
series processor at 1.8 GHz and 8 GB RAM. The parameter settings of ppsAlign
are Niter = 6 and Nseed = 30

Table 3 Average execution time of MAMMOTH and
ppsAlign with parameter settings (Niter = 1 and Nseed = 8).

Dataset Methods RMSD100 Execution time
(s)

Speedup of
ppsAlign

D1 ppsAlign 6.3 10 -

MAMMOTH 10.3 470 47.0

D2 ppsAlign 5.9 8 -

MAMMOTH 9.2 255 31.9

Total ppsAlign 18 -

MAMMOTH 725 40.3

RMSD100 is the expected value of cRMSD if the two protein structures were
100 residues long. ppsAlign is running on NVIDIA Tesla C2050 GPU card and
MAMMOTH is running on a computer with AMD Opetron dual-core 1000
series processor at 1.8 GHz and 8 GB RAM. The parameter settings of ppsAlign
are Niter = 1 and Nseed = 8

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 9 of 11

methods do not provide the detailed alignment informa-
tion of the best hits [23]. To provide detailed residue-
residue correspondence, GPU-BLAST [24] was devel-
oped, that allowed to accelerate the NCBI-BLAST
search, achieving the speedup between 3 and 4 on an
NVIDIA Tesla C2050 GPU card. In addition, another
approach to protein sequence that uses backtracking on
GPU to construct alignment of residues has been pro-
posed [23]. Compared to the sequence alignments, the
implementation of structure alignment on GPU is a
more challenging task, because some routines (e.g.,
RMSD calculation) can cause severe divergence among
GPU threads and decrease performance of GPU. One of
the first structure comparison methods implemented on
GPU, SA Tableau Search [27], aligns protein substruc-
ture at the secondary structure level, that is by aligning
secondary structure elements, while not aligning struc-
tures at the residue level. To the best of our knowledge,
ppsAlign is the first protein structure comparison plat-
form for GPU that provides the residue level structural
alignment.
The substantial contribution of ppsAlign is to pro-

vide a high-performance computing platform for the
research community. An alternative solution to accel-
erate the protein structure alignment is to install more
CPU computing cores in a single machine. However,
using more CPU cores in a single machine need to
upgrade main board and memory accordingly, which
could decrease price/performance ratio. In contrast,
installing a GPU card into a PCIe (Peripheral Compo-
nent Interconnect Express) slot does not require extra
cost and more GPU cards can be installed into one
PCIe slot by a switch. In this paper, an NVIDIA Tesla
C050 GPU card is utilized to evaluate performance,
which has also been used in GPU-BLAST [24]. Though
it is a high end product of NVIDIA, we expect its price
will drop in the near future due to market demand in
gaming industry.

Conclusions
This paper presents ppsAlign for large-scale protein
structure alignment using GPUs. ppsAlign employs an
index-based search procedure to find seeds of matched
fragment sets, and then iteratively refines the seeds with
fragment- and residue- level alignments. We provide an
in-depth comparison of ppsAlign against several concur-
rent CPU-based methods. Our experimental results
show that ppsAlign can achieve significant speedup over
its CPU implementation, TM-align, Fr-TM-align, and
MAMMOTH on a single NVIDIA Tesla C2050 GPU.
We emphasize that the framework of ppsAlign is not

designed as a replacement for the existing structural
alignment tools, but as a general-purpose platform for
protein structure alignments on GPU. With this

platform, we can parallelize the existing algorithms (e.g.,
TM-align and Fr-TM-align) on GPU and utilize the
massive parallel computing power of GPU to achieve
high-throughput structural comparisons without sacrifi-
cing alignment quality.

Availability and requirements
• Project name: ppsAlign
• Project home page: http://proteindbs.rnet.missouri.

edu/ppsalign/ppsalign.html
• Operating system(s): Linux
• Programming language: CUDA, JAVA, and PHP
• License: none

Availability of supporting data
The data sets supporting the results of this article are
available in the Worldwide Protein Data Bank reposi-
tory, http://www.wwpdb.org/.

Additional material

Additional file 1: Figure S1. In this example, one leaf node tQ
j from

the indexing tree of the target protein Q is used to search the indexing
tree of entire protein database Λ and m best matched nodes are

returned. In this example, tQ
j node is represented by a representative

cQ
j which is a “structure medium” from three similar substructures {uj, 1,

uj, 2, uj, 3} from Q. A search of cQ
j on the indexing tree of Λ returns two

database leaf nodes, tΛi and tΛk · tΛi node, represented by cΛ
i , has

two groups of similar substructures {di, 1, 1, di, 1, 2} and {di, 2, 1, di, 2, 2, di, 2,

3} which are from database proteins P1 and P2, respectively. tΛk node,

represented by cΛ
k , has two groups of similar substructures {dk, 1, 1, dk, 1,

2} and {dk, 3, 1, dk, 3, 2, dk, 3, 3} from database proteins P1 and P3,

respectively. The RMSD of
{
cQ
j , cΛ

i

}
and

{
cQ
j , cΛ

k

}
is below a cutoff

(4.5Ǻ). After substructure searching, the target protein Q can be

represented by Ω
Q
t

= {uj, 1, uj, 2, uj, 3}. The database proteins P1, P2, and

P3 can be represented by �
P1
t = {di, 1, 1, di, 1, 2, dk, 1, 1, dk1, 2}, �

P2
t = {di,

2, 1, di, 2, 2, di, 2, 3}, and �
P3
t

= {dk, 3, 1, dk, 3, 2, dk, 3, 3}, respectively. After

projecting the substructures to fragments, we have three MFS’ for node i
of the indexing tree of Q for P1, P2, and P3. Table S1. Comparison of
alignment quality (RMSD100) of ppsAlign and TM-align. The table
compares the alignment quality measured in RMSD100 of the 100 target
proteins using ppsAlign and TM-align. Table S2. Comparison of alignment
quality (RMSD100) of ppsAlign and Fr-TM-align. The table compares the
alignment quality measured in RMSD100 of the 100 target proteins using
ppsAlign and Fr-TM-align. Table S3. Comparison of alignment quality
(RMSD100) of ppsAlign and MAMMOTH.The table compares the alignment
quality measured in RMSD100 of the 100 target proteins using ppsAlign
and MAMMOTH.

Abbreviations
BLAST: Basic Local Alignment Search Tool; CPU: Central Processing Unit;
CUDA: Compute Unified Device Architecture; DP: Dynamic Programming;
GPU: Graphics Processing Units; IR: information retrieval; MFS: matched

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 10 of 11

http://proteindbs.rnet.missouri.edu/ppsalign/ppsalign.html
http://proteindbs.rnet.missouri.edu/ppsalign/ppsalign.html
http://www.wwpdb.org/
http://www.biomedcentral.com/content/supplementary/1756-0500-5-116-S1.DOCX

fragment set; PCIe: Peripheral Component Interconnect Express; RMSD: Root
mean square deviation; SA. simulated annealing; SIMT: Single Instruction:
Multiple Thread; SSE: secondary structure element.

Acknowledgements
The authors would like to thank the NVIDIA CUDA Professor Partner
Program for the donation of the Tesla C2050 GPU card used in our
experiments and the Tesla S1070 server used in the initial phase of the
algorithm design. This work was supported by the Shumaker Endowment in
Bioinformatics.

Author details
1Informatics Institute, University of Missouri, Columbia, MO, USA.
2Department of Electrical and Computer Engineering, University of,
Columbia, MO, USA. 3Department of Computer Science, University of
Missouri, Columbia, 65211, MO, USA.

Authors’ contributions
BP developed the software and wrote the manuscript. NZ analyzed results
and contributed to the discussion. MB and DK contributed to discussion,
analyzed the results, and revised the manuscript. CRS coordinated the study
and contributed to writing the manuscript. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 September 2011 Accepted: 22 February 2012
Published: 22 February 2012

References
1. Hasegawa H, Holm L: Advances and pitfalls of protein structural

alignment. Curr Opin Struct Biol 2009, 19(3):341-348.
2. Mayr G, Domingues FS, Lackner P: Comparative analysis of protein

structure alignments. BMC Struct Biol 2007, 7:50.
3. Zhang C, Lai L: Towards structure-based protein drug design. Biochem

Soc Trans 2011, 39(5):1382-1386, suppl 1381 p following 1386.
4. Halperin I, Ma B, Wolfson H, Nussinov R: Principles of docking: An

overview of search algorithms and a guide to scoring functions. Proteins
2002, 47(4):409-443.

5. Shin D, Hou J, Chandonia J-M, Das D, Choi I-G, Kim R, Kim S-H: Structure-
based inference of molecular functions of proteins of unknown function
from Berkeley Structural Genomics Center. J Struct Funct Genomics 2007,
8(2):99-105.

6. Henrick K, Feng Z, Bluhm WF, Dimitropoulos D, Doreleijers JF, Dutta S,
Flippen-Anderson JL, Ionides J, Kamada C, Krissinel E, et al: Remediation of
the protein data bank archive. Nucleic Acids Res 2008, 36:D426-433,
Database issue.

7. Kolodny R, Koehl P, Levitt M: Comprehensive evaluation of protein
structure alignment methods: scoring by geometric measures. J Mol Biol
2005, 346(4):1173-1188.

8. Holm L, Sander C: Protein structure comparison by alignment of distance
matrices. J Mol Biol 1993, 233(1):123-138.

9. Shindyalov IN, Bourne PE: Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Eng 1998,
11(9):739-747.

10. Zhang Y, Skolnick J: TM-align: a protein structure alignment algorithm
based on the TM-score. Nucleic Acids Res 2005, 33(7):2302-2309.

11. Pandit SB, Skolnick J: Fr-TM-align: a new protein structural alignment
method based on fragment alignments and the TM-score. BMC
Bioinforma 2008, 9:531.

12. Ortiz AR, Strauss CE, Olmea O: MAMMOTH (matching molecular models
obtained from theory): an automated method for model comparison.
Protein Sci 2002, 11(11):2606-2621.

13. Carpentier M, Brouillet S, Pothier J: YAKUSA: a fast structural database
scanning method. Proteins 2005, 61(1):137-151.

14. Yang JM, Tung CH: Protein structure database search and evolutionary
classification. Nucleic Acids Res 2006, 34(13):3646-3659.

15. Budowski-Tal I, Nov Y, Kolodny R: FragBag, an accurate representation of
protein structure, retrieves structural neighbors from the entire PDB
quickly and accurately. Proc Natl Acad Sci USA 2010, 107(8):3481-3486.

16. Pekurovsky D, Shindyalov IN, Bourne PE: A case study of high-throughput
biological data processing on parallel platforms. Bioinformatics 2004,
20(12):1940-1947.

17. Shah AA, Folino G, Krasnogor N: Toward High-Throughput, Multicriteria
Protein-Structure Comparison and Analysis. NanoBioscience, IEEE
Transactions on 2010, 9(2):144-155.

18. Liu W, Schmidt B, Voss G, Muller-Wittig W: Streaming Algorithms for
Biological Sequence Alignment on GPUs. Parallel and Distributed Systems,
IEEE Transactions on 2007, 18(9):1270-1281.

19. Smith TF, Waterman MS: Identification of common molecular
subsequences. J Mol Biol 1981, 147(1):195-197.

20. Liu Y, Maskell DL, Schmidt B: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing
units. BMC Res Notes 2009, 2:73.

21. Manavski SA, Valle G: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinforma
2008, 9(Suppl 2):S10.

22. Schatz MC, Trapnell C, Delcher AL, Varshney A: High-throughput sequence
alignment using Graphics Processing Units. BMC Bioinforma 2007, 8:474.

23. Blazewicz J, Frohmberg W, Kierzynka M, Pesch E, Wojciechowski P: Protein
alignment algorithms with an efficient backtracking routine on multiple
GPUs. BMC Bioinforma 2011, 12(1):181.

24. Vouzis PD, Sahinidis NV: GPU-BLAST: using graphics processors to
accelerate protein sequence alignment. Bioinformatics 2011, 27(2):182-188.

25. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

26. Hung LH, Guerquin M, Samudrala R: GPU-Q-J, a fast method for
calculating root mean square deviation (RMSD) after optimal
superposition. BMC Res Notes 2011, 4:97.

27. Stivala AD, Stuckey PJ, Wirth AI: Fast and accurate protein substructure
searching with simulated annealing and GPUs. BMC Bioinforma 2010,
11:446.

28. Ritchie DW, Venkatraman V: Ultra-fast FFT protein docking on graphics
processors. Bioinformatics 2010, 26(19):2398-2405.

29. Suchard MA, Rambaut A: Many-core algorithms for statistical
phylogenetics. Bioinformatics 2009, 25(11):1370-1376.

30. Nickolls J, Buck I, Garland M, Skadron K: Scalable Parallel Programming
with CUDA. Queue 2008, 6(2):40-53.

31. Lindholm E, Nickolls J, Oberman S, Montrym J: NVIDIA Tesla: A Unified
Graphics and Computing Architecture. Micro, IEEE 2008, 28(2):39-55.

32. Chi PH, Pang B, Korkin D, Shyu CR: Efficient SCOP-fold classification and
retrieval using index-based protein substructure alignments.
Bioinformatics 2009, 25(19):2559-2565.

33. Kabsch W: A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica Section A 1976, 32(5):922-923.

34. Theobald DL: Rapid calculation of RMSDs using a quaternion-based
characteristic polynomial. Acta Crystallogr A 2005, 61(Pt 4):478-480.

35. Siew N, Elofsson A, Rychlewski L, Fischer D: MaxSub: an automated
measure for the assessment of protein structure prediction quality.
Bioinformatics 2000, 16(9):776-785.

36. Carugo O, Pongor S: A normalized root-mean-square distance for
comparing protein three-dimensional structures. Protein Sci 2001,
10(7):1470-1473.

37. Chandonia JM, Walker NS, Lo Conte L, Koehl P, Levitt M, Brenner SE:
ASTRAL compendium enhancements. Nucleic Acids Res 2002,
30(1):260-263.

38. Xu J-R, Zhang Y: How significant is a protein structure similarity with TM-
score = 0.5? Bioinformatics 2010, 26(7):889-895.

39. Teichert F, Bastolla U, Porto M: SABERTOOTH: protein structural alignment
based on a vectorial structure representation. BMC Bioinforma 2007,
8:425.

doi:10.1186/1756-0500-5-116
Cite this article as: Pang et al.: Accelerating large-scale protein structure
alignments with graphics processing units. BMC Research Notes 2012
5:116.

Pang et al. BMC Research Notes 2012, 5:116
http://www.biomedcentral.com/1756-0500/5/116

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/19481444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19481444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17672887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17672887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21936819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12001221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12001221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17764033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17764033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17764033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18073189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18073189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15701525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15701525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8377180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8377180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9796821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9796821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15849316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15849316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12381844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12381844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16049912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16049912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16885238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16885238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20133727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20133727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20133727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15044237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15044237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21088027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21088027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21453553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20685958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20685958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19667079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19667079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15973002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15973002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11420449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11420449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20164152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20164152?dopt=Abstract

	Abstract
	Background
	Findings
	Conclusions

	Background
	Findings
	Overview
	Index-based matched fragment set search
	Fragment-level alignment
	GPU computation for fragment-level alignment

	Residue-level alignment
	GPU computation for residue-level alignment

	Maximal alignment search
	GPU computation for maximal alignment search

	Final assessment of alignment quality

	Results
	Scalability of ppsAlign
	Speedup over TM-align and CPU-based ppsAlign
	Speedup over Fr-TM-align
	Speedup over MAMMOTH

	Discussion
	Conclusions
	Availability and requirements
	Availability of supporting data
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

