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Abstract

Introduction:MAPT H1 haplotype is implicated as a risk factor for neurodegenerative

diseases including Alzheimer’s disease (AD).

Methods:Using Alzheimer’s Disease Genetics Consortium (ADGC) genome-wide asso-

ciation study (GWAS) data (n = 18,841), we conducted a MAPT H1/H2 haplotype–

stratified association to discoverMAPT haplotype–specific AD risk loci.

Results: We identified 11 loci—5 in H2-non-carriers and 6 in H2-carriers—although

none of theMAPT haplotype–specific associations achieved genome-wide significance.

The most significant H2 non-carrier–specific association was with a NECTIN2 intronic

(P = 1.33E-07) variant, and that for H2 carriers was near NKX6-1 (P = 1.99E-06). The

GABRG2 locus had the strongest epistasis with MAPT H1/H2 variant rs8070723 (P =
3.91E-06). Eight of the 12 genes at these loci had transcriptome-wide significant dif-

ferential expression in AD versus control temporal cortex (q < 0.05). Six genes were

members of the brain transcriptional co-expression network implicated in “synaptic

transmission” (P = 9.85E-59), which is also enriched for neuronal genes (P = 1.0E-164),

includingMAPT.

Discussion: This stratified GWAS identified loci that may confer AD risk in a MAPT

haplotype–specificmanner. This approachmay preferentially enrich for neuronal genes

implicated in synaptic transmission.
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1 INTRODUCTION

Tauopathies, a class of neurodegenerative disorders, are characterized

by neurofibrillary tangles (NFTs) in the brain due to pathological aggre-

gation of hyperphosphorylated microtubule-associated protein tau

(MAPT), encoded by theMAPT gene on chromosome 17q21.3. Tau tan-

gles are present in the brains of patientswith progressive supranuclear

palsy (PSP), corticobasal degeneration (CBD), Pick disease, dementia

pugilistica, frontotemporal dementia, and parkinsonism linked to

chromosome-17 (FTDP-17 or frontotemporal lobar degeneration with

tau pathology (FTLD-tau)), and other neurodegenerative diseases,

including Alzheimer’s disease (AD), the most prevalent tauopathy and

cause of dementia.1 In addition to senile plaques composed primarily

of extracellular amyloid beta (A𝛽), the presence of NFTs is a hallmark

of AD pathology.

MAPT variants have been implicated in the etiology and pathogen-

esis of multiple neurodegenerative diseases. The discovery of multiple

MAPT mutations in FTDP-17 provided some of the first evidence

that changes in tau alone could cause neurodegenerative disease.

The FTDP-17 splice-site mutations within MAPT demonstrated that

an imbalance in the ratio of 3R and 4R tau isoforms is sufficient to

cause disease.2-4 Further association studies revealed that the locus

can be divided into two major haplotypes: H1 and H2. MAPT falls

within the largest known block of linkage disequilibrium (LD) in the

human genome, spanning ≈1.8 Mb. There is a 900 kb inversion of the

H2 haplotype with respect to the H1 haplotype, covering a region

encompassing several genes, including MAPT, IMP5, CRHR1, and NSF.

The inversion results in a reduced recombination between the inverted

H2 and non-inverted H1 haplotypes.

The common MAPT haplotype H1 shows robust association with

risk for the primary tauopathies PSP5 and CBD,6 as well as Parkin-

son disease (PD), which is not considered as a tauopathy.7MAPT

H1 haplotype–tagging single-nucleotide polymorphisms (SNPs) were

identified among the top PSP8 and PD genome-wide association study

(GWAS)9 signals. In addition,MAPT H1 haplotype shows considerable

variation10,11 and leads to H1- subhaplotypes, where H1c, has been

implicated in the risk of PSP, CBD, AD, and PD.12,13MAPTH2haplotype

has been associated with reduced risk for several neurodegenerative

disorders.14,15

Although MAPT is a compelling candidate for neurodegenerative

disease susceptibility, evidence of association of AD with the MAPT

H1 and H2 haplotypes have produced equivocal results.12,16,17 This

may in part be due to limited sample sizes, and therefore limited

power for most MAPT haplotype association studies in AD. In a

large study from Genetic and Environmental Risk for Alzheimer’s Dis-

ease (GERAD1) consortium,18 the MAPT H2 haplotype–tagging vari-

ant was found to have association with reduced AD risk. In a study

of >20,000 individuals from Mayo Clinic and the Alzheimer’s Dis-

ease Genetics Consortium (ADGC), we identified associations with

both reduced AD risk and reduced brain MAPT levels with the H2

haplotype.14 In addition, a recent meta-analysis pooling 39 studies in

AD again demonstrated association of reduced AD risk with theMAPT

H2 haplotype.15

HIGHLIGHTS

• Microtubule-associated protein tau gene (MAPT) H1 and

H2 carriers have discordant Alzheimer’s disease (AD) risk

loci, most of which are novel.

• Many of the genes at these loci are differentially

expressed in AD brains.

• TheMAPT haplotype–stratified approach identified genes

in synaptic transmission networks.

RESEARCH INCONTEXT

1. Systemic review: Comprehensive review of the literature

shows that the microtubule-associated protein tau gene

(MAPT) is a strong candidate for neurodegenerative dis-

ease susceptibility. TheMAPTH2 haplotype is associated

with lower Alzheimer’s disease (AD) risk in large cohorts

and lower brainMAPT levels.

2. Interpretation: We hypothesized that AD risk variants

exhibitMAPThaplotype–dependent association. Through

haplotype-stratified association analyses using data from

the Alzheimer’s Disease Genetics Consortium (ADGC) on

18,841 participants, we identified 11 loci withMAPTH1–

or H2–specific AD risk association. Eight genes at these

loci had significant differential expression in AD versus

control brains. Six genes were members of the neuronal-

enriched brain transcriptional co-expression network

implicated in synaptic transmission.

3. Future directions: Replication of MAPT haplotype–

stratified associations should be sought in larger cohorts.

Candidate genes from this study should be evaluated for

the presence of functional variants that may influence

tau-related outcomes. Emerging larger cohorts with

multiomics data and generation of more complex model

systemswill enable these studies.

In the current study,we sought to further elucidate the role ofMAPT

H1 and H2 haplotypes in AD susceptibility by leveraging the genome-

wide genotype data available from the sizable ADGC case-control

series. Using haplotype-stratified analyses, we tested the hypothesis

that AD risk variants exhibit MAPT haplotype–dependent association

and may therefore potentially identify novel AD risk variants with

implications for functional pathways. Analysis of a stratumwith amore

homogeneous AD risk profile with respect toMAPT H1/H2 haplotype

may help uncover loci that have differential influence on AD risk in a

MAPT context-specific manner. For example, given the association of

MAPT H2 with lower brain MAPT levels, it is plausible that those loci

with MAPT H2–specific associations harbor genes that influence neu-

rodegeneration via pathways that are not dependent on elevated tau.
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In contrast, AD risk associations in H2 non-carriers may enrich for loci

that confer risk in a tau level-dependent fashion.

Our approach herein is akin to pursuing GWAS in an apolipopro-

tein E gene (APOE)–stratified fashion.19 Although MAPT haplotypes

tested to date in the literature clearly have smaller effect sizes than

that of APOE genotypes for AD risk, it is nonetheless worthwhile to

pursue this MAPT haplotype–stratified analysis not only because of

its potential to identify novel loci but also because of the plethora

of data implicating tau in AD in functional studies.20 In this study,

we evaluated known International Genomics of Alzheimer’s Project

(IGAP) AD21 risk loci in a MAPT haplotype–stratified analysis, which

did not reveal evidence of MAPT haplotype–specific associations. We

also identified novel AD risk loci with association only in MAPT H2

carriers (six loci) or H2-non-carriers (five loci). We characterize genes

near both the known and the new loci for their expression levels and

co-expression networks in a brain transcriptome data set of AD and

control temporal cortex.22,23 Our findings, which require replication

in larger cohorts, suggest that MAPT haplotype–stratified GWAS may

identify novel loci, and that genes at these loci are expressed pre-

dominantly within neuron-enriched networks implicated in synaptic

transmission.

2 METHODS

2.1 Study populations

The ADGC data were used for this study. Subjects available through

the ADGC have been described previously and are available through

ftps from the UPENN server (alois.med.upenn.edu).24-27 The data set

included all the covariates required for the analysis and all actual and

imputed genotypes. Post–quality control (post-QC) data for both the

actual and imputed genotypes and designations for all the sub-cohorts

included in the ADGC data were obtained. The demographics detailing

each cohort and stratified group are described in Table S1. The cohort

for the expression analysis was the Mayo Clinic RNAseq data set.22

Detailedmethods are provided in SupplementaryMethods.

2.2 AD risk association analysis

Variants were evaluated for association with AD using multivariable

logistic regression implemented in PLINK.28 Both joint (full data set of

21 cohorts analyzed jointly, adjusting for cohort) and meta-(separate

cohorts) analyses were performed. For the meta-analysis, a random

effects method was adopted due to presence of heterogeneity, I2 >

25.29 Anadditivemodel for theminor alleles determined in theunstrat-

ified data set was appliedwith the covariates age, sex, and PC1-3 (prin-

cipal components 1-3) used throughout all models. A second model

using the additional APOE covariate in the joint and meta-analyses

was also evaluated. Two IGAP loci variants rs4147929 and rs9331896

were filtered out of the original data set due to the QC procedures

described previously.27 They were evaluated separately for the joint

analyses using the same method above. Meta analyses could not be

performed for rs4147929 and rs9331896 due to their absence from

the original data set. To generate forest plots for the variants of inter-

est, meta-analysis was performed in R30 with the Metafor package31

using the randomeffectsmethodwithDerSimonian Laird estimator for

the variance between studies/cohorts. To determine the joint effect of

the tested SNPs andMAPT haplotypes on AD risk, we also performed a

bivariate analysis, described in SupplementaryMethods.

2.3 Epistasis analysis

SNP–SNP interactions of epistasis between each of the 3,067,502

SNPs and the H2 tagging variant rs8070723-G were conducted. Two

models were evaluated for the H2 tagging variant, a carrier model

(H1H1 and H1H2+H2H2) and a dosage model (H1H1, H1H2, and

H2H2). The analysis was performed by creating a distance matrix in

PLINK between each SNP and rs8070723-G. Two general linear mod-

els (with SNPx rs8070723-G interaction andwithout interaction) were

executed using age, sex, ADGC cohort, and PC1-3 as covariates fol-

lowed by an analysis of variance (ANOVA) to assess the significance

between themodels using the chi-squaremethod as implemented in R.

2.4 Gene expression analyses

Differential gene expression and co-expression network analyseswere

conducted as previously published.23,32 For each gene, multiple lin-

ear regression was performed in which normalized gene expression

was the dependent variable, diagnosis (AD vs control) was the inde-

pendent variable of primary interest and sex, flowcell, age at death,

RNA integrity number (RIN), and center from which the samples were

obtainedwere the covariates.WeightedGeneCo-ExpressionNetwork

Analysis (WGCNA) was utilized to identify brain co-expression net-

works and test their associations with AD aswe reported previously.23

2.5 Visuals

The figureswere generated using the lattice33 andmetafor packages in

R and Inkscape (www.inkscape.org).

3 RESULTS

3.1 MAPT haplotype–specific association analysis
at knownAD risk loci

Using genome-wide genotype data from 21 cohorts within ADGC, we

tested the hypothesis that AD risk variants exhibit MAPT haplotype–

specific association. Following QC measures, approximately 3 million

variants with a minor allele frequency (MAF) ≥0.02, and all index

variants identified by the IGAP consortium21 were retained for

analysis and evaluated for MAPT haplotype–specific association.

http://www.inkscape.org
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MAPT H2 haplotype tagging allele rs8070723-G was used to stratify

study participants into H2 carriers (H1H2+H2H2: 3631 cases, 3729

controls) and H2 non-carriers (H1H1: 5958 cases, 5523 controls). The

demographics of the cohorts of the H2 carriers and non-carriers are

described in Table S1.

GWAS analyses with AD were performed using joint and meta-

analyses. There was no evidence of population stratification based

on the quantile-quantile plots (QQ plots) (Figure S1) and the genomic

inflation factors of 1.04, 1.04, and 1.01 for the unstratified, H2

non-carrier, and H2 carrier joint analyses, respectively. The joint and

meta-analyses yielded similar resultswith respect to genomic inflation.

Likewise, the addition of APOE as a covariate did not significantly alter

the results. We adopted the joint analysis approach without APOE

covariate as the primarymodel.

We first evaluated the previously reported IGAP21 AD risk vari-

ants to determine if they exhibitMAPT haplotype–specific association.

As expected, the unstratified analysis results were similar to those

reported in the IGAP study, albeit with reduced significance due to

the smaller cohort size (Figure S2, Table 1). IGAP index variants had

similar direction of AD risk in both the H2 non-carrier and H2 car-

rier analyses. To determine whether any of these variants had a signif-

icantly different effect on AD risk based on the MAPT haplotype, we

performed epistasis analysis with theMAPT H1/H2 haplotype tagging

variant. Only two IGAP variants, rs10948363 (CD2AP) and rs1476679

(ZCWPW1/PILRB), showed a trend of epistasis (uncorrected P < 0.05)

with the MAPT H1/H2 haplotype–tagging variant (Table 1); however,

the odds ratios (ORs) for both variants were in the same direction

with overlapping 95% confidence intervals (CIs). In summary, we found

no strong evidence of MAPT haplotype–specific association for the

reported IGAPAD risk SNPs.

3.2 Genome-wideMAPT haplotype–specific AD risk
association analysis

To identify any additional AD risk variants with MAPT haplotype–

specific association, we evaluated the genome-wide results for the

unstratified, H2 non-carrier and H2 carrier groups (Figure 1). We

tested for significance of MAPT haplotype–specific associations by

genome-wide epistasis analysis with rs8070723 (Table 2). We defined

loci with MAPT haplotype–specific AD risk associations as being dis-

cordant. To be classified as discordant, the following criteria had to be

met: Discordant locus (1) has AD risk association P value of < 1E-05 in

one of the stratified analysis, but statistically insignificant in the other

one (P > 5E-02); (2) has nominally significant epistasis interaction with

rs8070723 (P< 0.05).

We identified five loci in the H2 non-carriers and six in the

H2 carriers with discordant MAPT haplotype–specific AD risk

associations (Figure 1, Table 2). These loci (nearest genes at loci)

are as follows: In the H2 non-carriers: chr4 (TBC1D9), chr4 (GAL-

NTL6), chr8 (MMP16;LOC101929709), chr15 (ADAMTSL3), and

chr19 (NECTIN2;TOMM40;APOE); and in the H2 carriers: chr3

(CADM2;LINC02070), chr4 (STK32B), chr 4 (LOC101928978;NKX6-1),

chr5 (GABRG2), chr11 (C11orf21), chr11 (PICALM;EED). None of these

loci reached genome-wide significance, although they had a stronger

association in their relevant MAPT haplotype–stratified groups than

in the combined unstratified group, despite the smaller sample size of

the former. Forest plots of the discordant loci and their meta-analysis

results are shown in Figure S3.

We checked the regional association plots of the discordant loci

to determine whether any of them represented known IGAP AD risk

loci (Figure 2). All but two of the discordant loci are novel, which is

not surprising because the most significant associations detected by

IGAP are likely to be enriched for concordant loci. The two discordant

loci that are also known AD risk loci are NECTIN2;TOMM40;APOE and

PICALM;EED, which have differentially greater significance in theMAPT

H2 non-carriers and H2 carriers, respectively. We further evaluated

these two loci to determine the extent to which the discordant asso-

ciations are influenced by the known index variants.

For the NECTIN2;TOMM40;APOE locus, we determined that the

minor T allele of rs11665676 is more enriched in APOE 𝜀4–negative

than in APOE 𝜀4–positive participants, with allele frequencies of 0.06

versus 0.03, respectively. The frequency of rs11665676-T in partici-

pantswith theAPOE 𝜀2/𝜀2; 𝜀2/𝜀3; 𝜀2/𝜀4; 𝜀3/𝜀3; 𝜀3/𝜀4; and 𝜀4/𝜀4 back-

grounds is 0; 0.037; 0.006; 0.065; 0.035; and 0.006, respectively, which

demonstrates the enrichment of this allele, particularly in APOE 𝜀3.

When we repeated the analysis adjusting for APOE 𝜀4 dosage, the AD

risk association of rs11665676 inMAPTH2non-carrierswas abolished

(APOE-unadjusted OR = 0.7 and P = 1.33E-07; APOE-adjusted OR =
0.93 and P = 0.28), which is not surprising given the strong linkage dis-

equilibrium (LD) of this variant with those that define APOE 𝜀2/𝜀3/𝜀4

(rs429358 and rs7412). APOE 𝜀4 dosage association with AD risk did

not reveal differences between theMAPTH2 non-carriers (OR = 1.35,

P=3.28E-264) andH2 carriers (OR=1.42,P=2.80E-190). The 95%CI

for APOE 𝜀4 AD risk ORs were overlapping between these two strati-

fied groups, and therewasnoevidenceof epistasis interactionbetween

APOE 𝜀4 dose and MAPT H1/H2 haplotype. Collectively, our findings

suggest that although there are no discordant associations forAPOE 𝜀4

dose per se based onMAPT H1/H2 status, rs11665676-T may be tag-

ging a subtype of APOE, which confers greater protection inMAPT H2

non-carriers.

The PICALM locus index IGAP SNP rs10792832 did not have

any evidence of differential MAPT haplotype–stratified association

(Table 1, epistasis P value > 0.05). In contrast, the discordant vari-

ant rs140869727 that resides in an intron of PICALM has epistasis (P

= 4.51E-03) with AD risk association in the MAPT H2 carriers (OR

= 1.22, P = 3.0E-06, Table 2). The linkage disequilibrium r2 value for

these SNPs is 0.15 in the unstratified and both stratified cohorts, with

D’ = 0.99. These results support a model where the rarer and discor-

dant rs140869727-A may be tagging a PICALM variant, which confers

a greater risk of AD inMAPTH2 carriers.

Of the discordant loci with significance in the H2 non-carriers, the

four novel ones had essentially no overlap in their 95% CIs with the

H2-carrier results (Table 2). The level of significance for joint analyses

in the H2 non-carriers ranged between P = 2.04E-7 (ADAMTSL3) and

P = 9.49E-6 (MMP16;LOC101929709). For these discordant variants
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F IGURE 1 Miami plot ofMAPT haplotype–stratified association results: P values from the joint association analyses are shown. APOEwas not
included as a covariate in these analyses. Top: H2 non-carriers. Bottom: H2 carriers. The threshold for genome-wide significance (P< 5E10-8) is
indicated by the red line and the threshold for trending significance (p< 1E-5) is indicated by the blue line. Loci with P< 1E-05 are annotated as
follows: dark green, concordant (P< 1E-05 in both data sets with epistatic P> 0.05); dark purple, discordant (P< 1E-05 in one data set only, with
epistatic P< 0.05); black, intermediate (P< 1E-05 in one data set only with epistatic P> 0.05)

that are significant in the H2 non-carriers, there was no evidence of

association in the H2 carriers (ORs ≈1 and P = 0.5-1.0). Similarly, the

five discordant novel loci with significance in the H2 carriers had P =
1.99E-6 (LOC101928978;NKX6-1) to P = 9.78E-6 (C11orf21), whereas

in the H2 non-carriers, these variants had ORs at ≈1 with essentially

non-overlapping 95%CIs and P= 0.054 to 0.4.

By definition, all discordant loci had nominally significant epistasis

P values, although none reached genome-wide significance (Table 2).

Considering the 21 IGAP and 11 discordant loci evaluated, and apply-

ing a study-wide epistasis P -value of 1.52E-3 (Bonferroni P= 0.05/33),

there was one discordant SNP with MAPT H2 non-carrier–specific

association and two discordant SNPs in the MAPT H2-carrier group.

The SNPwith the smallest epistasis P value andMAPTH2 non-carrier–

specific association is rs4354897 on chromosome 15 (Table 2), an

intronic variant within ADAMTSL3 (Figure 2). Among the discordant

loci, this is the second most significant variant (P = 2.04E-07) after the

chromosome 19 APOE locus variant. The minor allele of ADAMTSL3

rs4354897 is associated with a lower risk of AD (OR = 0.84) inMAPT

H2 non-carriers.

The two MAPT H2 carrier–specific variants with study-wide sig-

nificant epistasis were rs55712126 on chromosome 5, an intronic

variant in GABRG2; and rs77007065 on chromosome 11, which is
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F IGURE 2 Regional association plots of discordantMAPT haplotype–stratified association results: The figures are shown for the 11 loci
depicted in Table 2 and reflect the results of haplotype-stratified joint association analyses without the APOE covariate. Discordant loci results
with significance in the (A) H2 non-carriers or (B) H2 carriers.

intronic for C11orf21 and also 2 kb upstream of TSPAN32 (Figure 2).

GABRG2 rs55712126-G and C11orf21 rs77007065-A are associated

with higher (OR = 1.62, P = 2.88E-06) and lower AD risk (OR = 0.68,

P= 9.78E-06), respectively, inMAPTH2 carriers (Table 2).

To determine the joint effect of the discordant SNPs and MAPT

haplotypes on AD risk, we performed a bivariate analysis (Table S2).

TheMAPTH2 non-carriers with the SNPmajor homozygote genotypes

were designated as the reference. We tested the AD risk association

of each SNP genotype in theMAPTH2-carrier or H2 non-carrier back-

ground against this reference. The bivariate analysis results are con-

sistentwith their correspondingMAPThaplotype–specific associations

and depict the joint effect of each SNP genotype and theMAPT haplo-

type on AD risk.

3.3 Brain expression analyses ofMAPT-stratified AD
risk association loci genes

We characterized the brain expression patterns of the genes at the

discordantMAPT-stratified association loci (Table 2) using the tempo-

ral cortex (TCX) RNAseq transcriptome data from Mayo Clinic.22,23,32

Of the 17 genes at the 11 discordant loci, 12 were present in this data

set (Table S3). We evaluated these genes for differential expression

(DE) between neuropathologic AD and control TCX RNAseq data. In

addition, we determined the brain gene co-expression networks,34

which harbor these genes and annotated these networks for their

enriched gene ontology (GO) biological processes35 and brain cell

types, as described previously.23,32 Eight of the 12 genes evaluated had
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significantly different expression in AD versus control TCX (Table S3).

The genes with transcriptome-wide significant differential expression

(q<0.05) wereGALNTL6, TBC1D9, TOMM40, APOE, PVRL2, ADAMTSL3,

GABRG2, and PICALM, with q values ranging between 1.99E-02 and

3.29E-06.

Of interest, six of these genes reside in a co-expression network

module (TCX1) that is enriched for bothneuronal cell types and “synap-

tic transmission” GO process (GO:0007268). The “synaptic transmis-

sion” module itself is also associated with AD (P = 4.70E-03). Four

of the (GALNTL6, TOMM40, TBC1D9, MMP16) “synaptic transmission”

module genes had MAPT H2 non-carrier, and the other two (CADM2,

GABRG2) had H2 carrier–specific AD risk association (Table 2). The

“synaptic transmission” module and all but one discordant gene in this

module were lower in AD TCX, as would be expected from neuronal

loss observed in AD brains in this region. The discordant loci genes

GALNTL6, TBC1D9, and GABRG2 had high module membership levels

>0.80, suggesting strong correlations with the rest of the network.

Notably, MAPT also resides in the ``synaptic transmission” module:

TCX1. Of the IGAP loci genes, PTK2B, EPDR1, and CELF1 also reside

within TCX1.

Of the other differentially expressed genes, twowere frommodules

that had cell type enrichment: NECTIN2 (PVRL2) belonged to the mod-

ule enriched for “defense response” (GO:0006952) andmicroglia. Both

theNECTIN2 (PVRL2) gene (differential expression =DE q = 9.93E-04)

and its module (DE P = 4.19E-06) had significant differential expres-

sion in the AD versus control brains (Table S3). The other was APOE

(DE q = 9.42E-04), which resided in the module (DE P = 1.12E-04)

enriched for “carboxylic acid catabolic process” (GO:0046395), and

both astrocytes and endothelia. These genes reside at the same chro-

mosome 19 locus. Both of these modules and genes were higher in the

AD TCX, which may again be expected based on microglial and astro-

cytic population increases observed in brain regions affected with AD

neuropathology. Finally, two genes, ADAMTSL3 (DE q = 1.53E-03) and

PICALM (DE q = 7.72E-03), which reside at MAPT H2 non-carrier and

H2 carrier–specific loci, respectively, are both significantly higher in

AD TCX and belong to modules enriched for “regulation of transcrip-

tion, DNA-templated” (GO:0006355) (DE P= 3.71E-02).

We performed the same analyses also for the known AD risk loci

genes (Table S3). Eight of the 17 IGAP loci genes with brain expres-

sion data had significant differential expression, both at the gene (q <

0.05) and module levels (P < 0.05). Twomodules enriched for “immune

response” (GO:0006955) and “synaptic transmission” (GO:0007268)

genes had the highest number of IGAP risk loci genes. Three genes

(HLA-DRB1, INPP5D, MS4A6A) were in the microglial gene–enriched

“immune response” module, as we have shown previously36; and

three others (CELF1, EPDR1, PTK2B) were in the neuronal gene

enriched “synaptic transmission” module. We noted that there were

IGAP risk loci genes within oligodendrocyte (BIN1, ZCWPW1), astro-

cyte/endothelia (CLU, FERMT2), and endothelia gene–enriched mod-

ules (CASS4). In summary, half of the discordant MAPT-stratified loci

genes were from neuronal modules, whereas the IGAP AD risk loci

genes had similar representation across network modules that were

enriched for any of the five brain cell types.

To determine whether any of the MAPT haplotype-specific AD risk

SNPs influencedbrain expression levels ofMAPTor the “synaptic trans-

mission” co-expression module TCX1, which also harbors MAPT, we

performed expression quantitative trait loci (eQTL) and module QTL

(modQTL) analyses, respectively, as described previously.14,32,37,38

None of the MAPT haplotype–specific AD risk SNPs had significant

associations with temporal cortex MAPT levels or the “synaptic trans-

mission” module eigengene (data not shown). We conclude that these

MAPT haplotype-specific loci are not likely to confer AD risk through

their influence on brain gene expression ofMAPT or synaptic transmis-

sion network genes.

4 DISCUSSION

Despite significant progress in identifying genetic risk factors and the

increased understanding in Alzheimer’s disease (AD) etiology, the abil-

ity to develop effective preventions or cures continues to remain elu-

sive. Novel approaches to analyzing available multiscale genomic and

phenotypic data will provide further insights into the complexity of

AD and provide mechanisms to foster the development of precision

medicine.

In this study we sought to evaluate available genome data by per-

forming a stratified analytic approach. Stratified methods based on

sex39-41 and APOE19 have been reported previously and have shown

background-dependent associationswithAD.Due to the implication of

MAPT in both AD neuropathology1,7,20 and risk,14,15,18 we performed

MAPT haplotype–stratified association analyses in the genotype data

from theADGC to test the hypothesis thatAD risk variantsmay exhibit

MAPT haplotype-dependent association. We tested previously identi-

fied AD risk loci21 to determine whether they have differential asso-

ciations in a MAPT haplotype context–dependent manner. We also

extended this analysis genome-wide to determine if this approachmay

identify novel AD risk variants.

We found that the index AD risk variants reported previously had

similar directions of associations in both theMAPTH2 non-carrier and

H2 carrier analyses. Epistasis analysis with these and theMAPTH1/H2

haplotype tagging variants revealed no evidence of differential asso-

ciation (P > 0.05) for all but two AD risk loci. Even though CD2AP-

rs10948363 and ZCWPW1/PILRB-rs1476679 had nominally signifi-

cant epistasis (P=0.035 and0.022, respectively), the estimated effects

of these variants were largely overlapping in theMAPTH2 carriers and

non-carriers. These findings are not surprising given that the loci that

rise to significance in the overall GWAS are likely to have a more con-

sistent effect across stratified groups.

In contrast, stratified analysis may uncover novel loci with group-

specific associations that may be missed in the combined cohort.

Although we did not identify any MAPT haplotype–specific associ-

ations at genome-wide significance in this study, we uncovered 11

discordant loci that had association at P < 1E–05 in one stratum (five

inMAPT H2 non-carriers and six inMAPT H2-carriers), no association

(P > 0.05) in the other stratum and evidence of epistasis (P < 0.05)

with theMAPTH1/H2 tagging variant rs8070723. Themost significant
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MAPT–haplotype–specific association was observed for chromosome

19 variant rs11665676 at the NECTIN2;TOMM40;APOE locus. The

minor T allele of this variant was associated with a lower AD risk (OR

= 0.7, P = 1.33E-07) only in the MAPT H2 non-carriers (ie, those with

MAPT H1/H1 haplotype). It is important to note that although there

was no evidence ofMAPT haplotype–specific associations for APOE 𝜀4

dose in our study per se, rs11665676-T is enriched inAPOE 𝜀3 carriers.

These findings suggest the following model: In the presence of the

strong effect conferred by APOE 𝜀4, the presence of MAPT H1 versus

H2haplotypedoes notmake a significant differencewith respect toAD

risk. Consequently, there is no MAPT haplotype–specific associations

for APOE 𝜀4 dose. However, rs11665676-T, which is enriched in APOE

𝜀3 carriers, may bemarking a variant ofAPOE that confers greater pro-

tection in those who areMAPT H2 non-carriers. We and others previ-

ously showed thatMAPT H2 haplotype is associated with a lower risk

of AD.14,15,18 The preferential protection of rs11665676-T inMAPTH2

non-carriers may be due to the fact that in the presence of the pro-

tective MAPT H2 haplotype, any further protection conferred by this

variant may be negligible. This may explain the lack of association of

rs11665676-Twith lower AD risk inMAPTH2-carriers.

The discordant rs11665676 variant resides within an intron of

NECTIN2 (aka PVRL2), which is within a LD region with BCAM and in

proximity to the TOMM40-APOE-APOC1 locus.42 It has been shown

previously that the LD structure of the polymorphisms across these

five genes displayed heterogeneity between AD and control individu-

als, suggesting that the genes within this region in addition to APOE

may play a role in AD risk.42,43 Indeed, a highly polymorphic variant

of TOMM40 (poly-T variant) was found to associate with AD risk and

its endophenotypes independent of APOE in some studies.44 Given the

complexity of this region on chromosome 19, including LD across mul-

tiple genes, plentiful polymorphisms, and the strong APOE 𝜀2/𝜀3/𝜀4

effect on AD risk, alternative approaches focused on haplotype analy-

sis of this region are proposed to uncover novel variants that influence

AD independent ofAPOE.45 Our analysis of stratifying samples accord-

ing to specific genotypic/haplotypic backgrounds provides another

approach in thediscovery of polymorphisms thatmay influenceADrisk

under a specific genomic context. Our approach identified a polymor-

phism in NECTIN2 (PVRL2), which is enriched in APOE 𝜀3 carriers and

which has differential protective association inMAPTH2 non-carriers.

This finding suggests a biological link between NECTIN2 and/or APOE

withMAPT.

In a previous APOE-stratified analysis,19 a variant in the MAPT

region, rs2732703-G, which is more common inH2 carriers, was found

to confer greater protection from AD in APOE 𝜀4 negative individuals.

This finding is different and independent of our report, and suggests

that variability at theMAPT locus influences APOE associationwith AD

risk, whereas our results indicate that variability at the APOE locus

has distinct AD risk association on different MAPT haplotype back-

grounds. Both findings support the notion of heterogeneity at both

APOE and MAPT haplotypic regions, which may modify AD risk asso-

ciations depending on the combinations of variants harbored. Under-

standing the full set of functional variants at these important loci, their

genetic/biological interactions, and their collective effects on AD risk

and its endophenotypes is necessary to successfully practice precision

medicine in the future.

Whether the NECTIN2 (aka PVRL2) rs11665676 variant signifies

associationwith this gene per se ormarks another variant withinAPOE

remains to be established. NECTIN2 (nectin, cell adhesion molecule

2), also known as poliovirus receptor-related 2 (and formerly as her-

pesvirus entry mediator B, HVEB), encodes a plasma membrane gly-

coprotein that has been implicated in a multitude of central nervous

system (CNS) functions.43 NECTIN2 is involved in adherens junction,

which is important to maintain blood-brain barrier and to prevent the

spread of viral infections. In our brain expression data22,23,32 analyzed

herein, we determined NECTIN2 to be significantly elevated in AD

TCX, and to reside in a co-expression module enriched for “defense

response” GO biological process and microglia-enriched genes. These

findings support a role for this gene in innate immune pathways.

Our findings along with prior association of another NECTIN2 variant

(rs6859) with AD risk in African Americans independent of APOE,46

merit further evaluation of this gene as a plausible AD gene.

In addition to the NECTIN2 variant at the APOE locus, MAPT-

stratified analysis revealed one other discordant association in a

known AD risk locus, which was PICALM intronic SNP rs140869727

that revealed increased risk in MAPT H2-carriers. The minor A allele

of rs140869727 has frequency (MAF) of 0.17 and is rarer than the

PICALM locus index IGAP SNP rs10792832, which has a MAF of

0.36. The latter did not have differential MAPT haplotype–stratified

association, whereas rs140869727 had epistasis (P = 4.51E-03). We

concluded that the discordant rarer SNP may be tagging a PICALM

variant, which confers greater risk of AD inMAPTH2 carriers. PICALM

was found to associate with both 3R and 4R tau inclusions in AD

and primary tauopathies, and soluble PICALM levels were inversely

correlated with phosphotau,47 suggesting a biological link between

this protein involved in clathrin-mediated endocytosis and tau.

We identified nine discordant loci that were not previously identi-

fied inADriskGWAS, including the largest recent studies.48,49 The four

novel H2 non-carrier–specific associations were near TBC1D9 (chr4),

GALNTL6 (chr 4), MMP16;LOC101929709 (chr8), and ADAMTSL3

(chr15). Of these, ADAMTSL3 locus had the strongest AD risk associa-

tion (P = 2.04E-7), where the minor allele of intronic SNP rs4354897

conferred protection (OR = 0.84, CI = 0.79 to 0.9), only in MAPT

H2 non-carriers, but not in H2 carriers (epistasis P = 1.22E–04).

ADAMTSL3 encodes a glycoprotein that localizes to the extracellu-

lar matrix, belongs to a family of metalloproteases, and is proposed

to be a candidate gene for schizophrenia, with proposed function in

synaptogenesis.50 Of interest, another H2 non-carrier–specific asso-

ciation locus resides near a different matrix metalloproteinase encod-

ing gene,MMP16. Matrixmetalloproteases have been implicated in AD

and other neurodegenerative diseases through their roles in Aß degra-

dation, inflammatory processes, and processing of neurodegenerative

proteins including tau.51 Given this, metalloproteases have been pro-

posed as potential therapeutic targets in AD and other neurodegener-

ative diseases. The other two genes at MAPT H2 non-carrier–specific

AD risk loci have been identified previously in vascular and/or neu-

ropsychiatric genetic studies. GALNTL6 has been associated with lipid
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metabolism,52 body mass index,53 and hypertension. In addition, a

separate SNP in GALNTL6 was associated with AD at age of onset,

although it lost its significance after correcting for theAPOE.54TBC1D9

is a brain-expressed gene encoding a protein with Rab3A-GAP activ-

ity. There are no reports linking this gene to AD to date. Recently,

a de novo and potentially pathogenic TBC1D9 missense variant

was identified in sporadic Attention-Deficit/ Hyperactivity Disorder

(ADHD).55

Five novel loci showed AD risk association only in the H2 carriers,

namely, CADM2;LINC02070 on chromosome 3, STK32B on chro-

mosome 4, LOC101928978;NKX6-1 on chromosome 4, GABRG2 on

chromosome 5, and C11orf21 on chromosome 11. Of these, GABRG2

locus has the strongestADrisk association (P=2.88E-06) andevidence

of epistasis with MAPT H1/H2 locus (3.91E-06). GABRG2 encodes the

𝛾2 subunit of the pentameric 𝛾-aminobutyric acid receptor A (GABAA)

ligand-gated ion channels that bind the major inhibitory neurotrans-

mitter in mammalian brains, GABA. Previously, missense, nonsense,

frameshift, splice-site, and deletion mutations within GABRG2 were

associated with simple febrile seizures and genetic epilepsy syn-

dromes through different mechanisms leading to reduced channel

levels and/or function.56GABRG2 levels were found to be reduced in

iPSC-derived neurons and brains fromMAPT p.R406Wcarriers, mouse

models of tauopathy,57 and in the Mayo Clinic brain RNAseq data22

frompatientswith the primary tauopathy PSP comparedwith controls,

in both TCX and cerebellum. In our study, we also evaluated the Mayo

Clinic brain RNAseq data and determined lower levels of GABRG2

in TCX (q = 1.99E-02), but not in the cerebellum (data not shown) in

AD compared with controls. Collectively, these findings suggest that

tauopathies could lead to lower expression of the inhibitory channel

proteins, including GABRG2, possibly through loss of these neurons

in affected brain areas. This could in turn lead to excitatory/inhibitory

imbalance, culminating in enhanced Aß production and ultimately

further neuronal loss.58 Our findings suggest that GABRG2 variants

increase AD risk preferentially inMAPTH2 carriers, who are expected

to have lower brain MAPT levels and greater protection against

AD.14 Hence, risk conferred by other pathways, such as disruption of

GABAergic signaling, may bemore important for and detectable in this

lower MAPT risk group.

The intronic variant rs7356060 that discordantly confers risk in

MAPT H2 carriers (OR = 1.29, CI = 1.16 to 1.43, P = 3.99E-06) marks

another interesting candidate CADM2, which was also identified as

a candidate gene in a GWAS of cognitive function, specifically exec-

utive function and processing speed.59CADM2 encodes cell adhesion

molecule 2 and is also known as synaptic cell adhesion molecule 2

(SYNCAM2) and nectin-like protein 3 (NECL3). That theMAPT-stratified

analysis led to the discovery of a nectin (NECTIN2 on chromosome 19)

and a nectin-like protein (CADM2 = NECL3 = SYNACM2) as candidates

is noteworthy. CADM2was also identified as a locus for habitual phys-

ical activity, along with APOE,60 and was also suggested as a gene that

may link obesity with psychiatric traits.61

The three other candidate genes at the AD risk loci identified

in MAPT H2-carriers—C11orf21, STK32B, and NKX6-1—were also

implicated in CNS diseases or function. C11orf21 has an intronic

variant rs77007065-A, which confers AD protection in MAPT H2

carriers (0.68, CI = 0.58 to 0.81, P = 9.78E-06) and is one of the

most discordant SNPs (epistasis P = 5.62E-06). This variant is also

upstream of TSPAN32, which together with C11orf21 resides in a

region of differential methylation in autistic brain samples.62STK32B

is a serine/threonine kinase and resides at a locus previously identified

in a GWAS for essential tremor.63 The promoter region of this gene

is differentially methylated in blood samples from adolescents with

generalized anxiety disorder.64 Finally, NKX6-1, which is a transcrip-

tion factor, was found to be involved in midbrain dopaminergic neuron

differentiation,65 in addition to its role in the differentiation of pancre-

atic ß islet cells.66 Whether these are the genes that harbor functional

variants that influence AD risk in a MAPT haplotype–dependent

manner and their biological interaction with tau-related pathways

remains to be established.

In our study, we also performed a systematic evaluation of all of

the candidate genes at the discordant AD risk loci for their expression

in AD versus control temporal cortex (TCX),22,23,32 their membership

in brain gene co-expression networks identified in these samples,

and annotation of these networks for their enriched biological pro-

cesses and CNS cell types. For these analyses, we utilized the Mayo

Clinic Brain RNAseq data generated by our group, and implemented

approaches as previously described.22,23,32 We also analyzed the

candidate genes at the known IGAP AD risk loci21 in the same fashion.

Eight of 12 discordant loci genes and eight of 17 IGAP loci genes were

differentially expressed in AD versus control TCX with transcriptome-

wide significance (q<0.05).Half of the discordant loci genes (GALNTL6,

TOMM40, TBC1D9, GABRG2, MMP16, CADM2) were members of the

co-expression network that was enriched in “synaptic transmission”

GObiological process. This network had also a significantly higher rep-

resentation of neuron-enriched genes. In comparison to the discordant

loci genes, the known IGAP AD risk loci genes had a lower represen-

tation of “synaptic transmission” membership, with 3 (PTK2B, EPDR1,

CELF1) of 17 genes that were assessed in the transcriptome data. The

published IGAP loci genes had membership within a variety of net-

works with broader enrichment of GO processes and cell types. These

included “axon ensheathment”/oligodendrocyte (BIN1, ZCWPW1);

“immune response”/microglia (HLA-DRB1, INPP5D, MS4A6A); “car-

boxylic acid catabolic process”/astrocyte and endothelia (CLU;

FERMT2); and “vasculature development”/endothelia (CASS4). Neither

GWAS associations nor co-expression network and differential gene

expression analyses per se definitively identifies the disease risk genes.

Nevertheless, the concurrent presence of GWAS candidate genes

within networks that are enriched in processes known to be perturbed

in the disease process (such as “immune response,” “synaptic transmis-

sion,” “axon ensheathment”) provides further strength for the candi-

dacy of these genes and information about the pathways with which

they are likely to be involved. The presence of half of the discordant

loci in “synaptic transmission” networks suggests that the MAPT hap-

lotype stratified approach may be preferentially identifying neuronal

genes that are involved in this crucial process in a MAPT haplotype–

dependentmanner. This finding is congruentwith knownandproposed

roles of tau in synaptic transmission or its disruption in AD.67 In
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comparison, the un-stratified GWAS appears to uncover genes that

pertain to a wider spectrum of pathways and cellular processes that

may be due to the lack of the dependency onMAPT haplotype context.

Because the transcriptome data was obtained in bulk brain tissue

in a region affected with AD neuropathology, the observed transcrip-

tional differences betweenAD and controlsmay reflect cell population

changes.22 Despite this caveat, we and others have successfully

utilized bulk brain transcriptome data to identify transcriptional

networks that associate with neurodegenerative diseases and their

endophenotypes.23,32,42,43,45 Many of these networks are enriched in

pathways and genes that have been implicated previously in these dis-

eases through independent data including genetic associations.32,36,42

This suggests that integrative analysis of transcriptional networks and

disease association data can provide cross-validation for the genes.

This approach also provides transcriptional context for the candidate

genes discovered from disease GWAS as demonstrated here.

In summary, we performed a MAPT H1/H2 haplotype–stratified

association in the ADGC GWAS data and identified 11 loci with evi-

dence of association in one stratum (P < 1.0E-05), no association in

the other stratum (P > 0.05), and epistasis (P < 0.05) with the MAPT

H1/H2 haplotype–tagging variant rs8070723. With the exception of

a NECTIN2 variant at the NECTIN2;TOMM40;APOE locus and a rare

variant in PICALM, these are novel loci that have not been reported

previously. Half of the candidate genes at these loci reside within a

co-expression network enriched in neuronal genes and implicated in

“synaptic transmission.” These findings contrast with those from the

known IGAP loci, where we did not find evidence of MAPT H1/H2

haplotype–stratified association and where the candidate genes are

members of co-expression networks that represent a broader range of

cellular and biological process enrichment.

There are several limitations to our study. Notwithstanding their

novelty, the MAPT H1/H2 haplotype–stratified association results

should be interpreted with caution due to falling short of genome-

wide significance (P < 5.0E-08), as they may represent false-positive

findings. It will be important to apply this approach in larger available

GWAS data and seek confirmation. Given that MAPT H2 haplotype is

rarer, ourMAPTH2 carriers were smaller in size (n = 7360) thanMAPT

H2 non-carriers (n = 11,481). This may explain the presence of two

loci that approached genome-wide significance in the MAPT H2 non-

carriers, whereas the strongest association remained at P = 1.99E-06

in theMAPT H2 carriers. We also acknowledge that ourMAPT H1/H2

haplotype definition was based on the tagging variant rs8070723 and

that the H1 haplotype, which has considerable variation,10,11 can be

divided into additional sub-haplotypes. Future studies utilizing whole

genome sequencing (WGS) can enable more accurate assignment of

haplotypes, although sub-haplotypic stratification would require even

greater sample sizes. We discovered that many of the candidate genes

at the discordant AD risk loci are differentially expressed in AD TCX

and reside in the “synaptic transmission” co-expression network, which

also harbors MAPT. Despite their intriguing biological implications, it

is possible that these congruent genomic and transcriptomic findings

are coincidental. Definitive determination of biological interactions

between the discordant loci geneswithMAPT requires detailed studies

in model systems, which is beyond the scope of this work. Our findings

provide testable hypotheses for such functional studies. Finally, our

brain transcriptome data are driven from bulk tissue, where the gene

expression findings may simply reflect cell population changes and

wherebiologically important differential expression results in rarer cell

types may be obscured. It will be important to evaluate brain cell–type

specific expression patterns of the genes nominated in this study in the

single-nucleus and single-cell transcriptome data from AD and control

brains, once sizable data sets become available.

Our study represents an alternative approach in leveraging avail-

ableGWASdata for discovery of loci and genes thatmay conferAD risk

in a MAPT context–dependent manner. Integrative utilization of inde-

pendent genomic and transcriptomic data provide cross-validation for

our findings. The candidate genes that emerge from this study should

be evaluated for the presence of functional variants thatmay influence

tau-related outcomes in model systems or human cohorts. Emerging

larger cohorts with multi-omics data and generation of more complex

model systems should enable these future studies.
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