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Abstract
Phototropin (phot) is a blue light (BL) receptor in plants and is involved in phototropism,

chloroplast movement, stomata opening, etc. A phot molecule has two photo-receptive do-

mains named LOV (Light-Oxygen-Voltage) 1 and 2 in its N-terminal region and a serine/

threonine kinase (STK) in its C-terminal region. STK activity is regulated mainly by LOV2,

which has a cyclic photoreaction, including the transient formation of a flavin mononucleo-

tide (FMN)-cysteinyl adduct (S390). One of the key events for the propagation of the BL sig-

nal from LOV2 to STK is conformational changes in a Jα-helix residing downstream of the

LOV2 C-terminus. In contrast, we focused on the role of the A’α-helix, which is located up-

stream of the LOV2 N-terminus and interacts with the Jα-helix. Using LOV2-STK polypep-

tides from Arabidopsis thaliana phot1, we found that truncation of the A’α-helix and amino

acid substitutions at Glu474 and Lys475 in the gap between the A’α and the Aβ strand of

LOV2 (A’α/Aβ gap) to Ala impaired the BL-induced activation of the STK, although they did

not affect S390 formation. Trypsin digested the LOV2-STK at Lys603 and Lys475 in a light-

dependent manner indicating BL-induced structural changes in both the Jα-helix and the

gap. The digestion at Lys603 is faster than at Lys475. These BL-induced structural changes

were observed with the Glu474Ala and the Lys475Ala substitutes, indicating that the BL sig-

nal reached the Jα-helix as well as the A’α/Aβ gap but could not activate STK. The amino

acid residues, Glu474 and Lys475, in the gap are conserved among the phots of higher

plants and may act as a joint to connect the structural changes in the Jα-helix with the acti-

vation of STK.
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Introduction
Plants use light as a signal to conduct many physiological responses as well as a source of ener-
gy. Phototropin (phot) [1] is one of the major blue light receptors in plants [2] and regulates
phototropism [3], chloroplast movement [4–6], stomata opening [7] and so on to optimize the
photosynthetic efficiency of plants. Most plants have two isoforms of phot named phot1 and
phot2 [8]. In Arabidopsis thaliana (At), phot1 mediates physiological responses, such as pho-
totropism, over a broad range of light intensity, whereas phot2 acts as a high light sensor [4].
Phot consists of approximately 1000 amino acid residues, has two LOV (LOV1 and LOV2) do-
mains in its N-terminal region, a serine/threonine kinase (STK) in its C-terminal region [3]
and works as a BL-regulated protein kinase. LOV forms a subfamily of the Per-Arnt-Sim
(PAS) super family [9]. The LOV of phots binds an oxidized flavin mononucleotide (FMN)
non-covalently in a pocket formed by α-helices and a 5-stranded β-sheet scaffold characteristic
with the PAS fold [10] and works as a light perceptive domain through a cyclic photoreaction
of the FMN with a conserved neighbor cysteine residue [11]. The C-terminal STK is classified
as subfamily VIII of the protein kinase AGC group, and the amino acid residues required for
the kinase activities are highly conserved [12]. Phot undergoes autophosphorylation in a light
dependent manner in which LOV2 is a main regulator of the STK activity [3,13,14]. Recently,
ABCB19 [15], PKS4 [16] and BLUS1 [17] have been found as the substrates of the phot kinase
involved in the BL signaling in Arabidopsis.

Molecular events initiated by BL in the LOV2 of phot have been well studied by many bio-
physical techniques using LOV2-containing small polypeptides. Upon BL irradiation, a tran-
sient covalent bond is formed between the FMN and the Cys residue conserved near the
FMN (S390 intermediate) after intersystem crossing to the triplet-excited state [18]. S390 re-
verts to the ground state (D450) thermally with time constants from seconds to minutes [19].
The decay time of S390 is correlated with the duration of the BL-induced activation of STK
[20] and may reflect the diverse photosensitivity of phots working under different light con-
ditions [20,21]. The adduct formation, however, induces only small conformational changes
in the LOV, which was observed by X-ray crystallography, [22,23], small angle X-ray scatter-
ing (SAXS) [24] and transient grating (TG) [25]. The X-ray crystallography studies on the
LOV2 of Adiantum neochrome1 revealed BL-induced flipping of the Gln1029 residue inter-
acting with N5 of the FMN isoalloxazine ring [22,23]. Substitution of this Gln to Leu resulted
in the loss of conformational changes as detected by Fourier transform infrared (FTIR) spec-
troscopy [26]. Thus, the Gln corresponding to Gln575 in At phot1 and Gln 513 in Avena
sativa (As) phot1 [27] is one of the key residues responsible for the structural changes in
LOV2.

In contrast, a large conformational change has been reported to occur in an α-helix named J
that resides downstream of the C-terminus of the LOV2 and runs on the surface of the β-sheet
[28]. NMR studies on the As phot1 LOV2-Jα polypeptide of revealed that BL induced a slight
structural change and successive dissociation from the LOV2 and unfolding of the Jα-helix
[29–31]. In As phot1, Ile532, Ala536, Ile539 and Asp540 in the Jα-helix contribute to keeping
the conformation of Jα-helix intact. Comparison of the crystal structures of As phot1 LOV2-Jα
prepared under dark and light conditions suggested that the BL signal perceived by FMN prop-
agates to the middle part of the Jα-helix through rearrangement of the hydrogen bond network
between the β-sheet and the Jα-helix [28]. In vitro autophosphorylation assay of At phot1 pre-
pared from insect cells showed that the substitution at Ile608 in the Jα-helix, corresponding to
Ile539 in As phot1, to Glu impaired the light regulation of STK activity [30]. Structural change
in the Jα-helix is, therefore, thought to be a key process for the intramolecular signal transduc-
tion from LOV2 to STK.
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In addition to the Jα-helix, recent studies have identified the involvement of another α-helix
named A’ in intramolecular signaling. A’α-helix is located upstream of the N-terminus of LOV2.
In green algae Chlamydomonas reinhardtii (Cr) phot, amino acid mutations in this helix affected
the regulation of STK activity [32]. The amino acid sequences for the A’α-helix are conserved
among higher plant phots (Fig 1) suggesting that the helix may function in the intramolecular
signal transduction from LOV2 to STK. In fact, an amino acid mutation in the A’α-helix region
impaired in vivo phot1 signaling in the tomato [33]. The As phot1 LOV2-Jα polypeptide used in
the previous crystal structure determination contained 7 amino acid residues in the A’α-helix re-
gion that forms a short 4 amino acid helix [28]. Based on this structure, molecular dynamics
(MD) calculations proposed that the A’α-helix plays a role in intramolecular light signaling with
the Jα-helix [34,35]. Recently, a crystal structure was determined with At phot1 LOV2-Jα with a
larger number, 21, of amino acid residues in the A’α-helix region [36]. In contrast to the previous
monomeric As phot1 LOV2-Jα with the short A’α-helix, At phot1 LOV2-Jα forms a dimer and
each subunit has a longer A’α-helix. The N-terminal extension serves as the dimer interface by
configuring a short α-helical coiled coil with a scissor-like shape. The Jα-helix attaches on the
surface of the β-sheet of the LOV2 in a similar fashion as the previous As phot1 LOV2-Jα. Both
helices in a subunit orient in a similar direction and interact with each other at their edges. All of
the LOV2-containing polypeptides of At phot1 used so far include the longer A’α-helix. A TG
study on the At phot1 LOV2-Jα polypeptide showed that the conformational change in the Jα-
helix has a faster reaction rate than that of the A’α-helix [37]. The signaling process from FMN
to A’α-helix and its communication with the signaling to the Jα-helix is obscure. Furthermore,
the involvement of these processes in the signaling from LOV2 to STK is unknown. Thus, the
function of the A’α-helix in these intramolecular BL signaling processes is to be examined
in detail.

To uncover the molecular processes involved in the BL signal transduction from the chromo-
phore to not only the Jα-helix but also to the STK, an appropriate assay system is requisite. Re-
cently, we have developed a useful assay system for that purpose. The system is composed of a set
of a BL-regulated kinases and an artificial substrate derived from parts of At phots. The LOV2-
kinase of phot1 covers the amino acids from the A’α-helix to the C-terminal end, including

Fig 1. Schematic drawing of At phot1 (upper panel) and the secondary structure around A’α-helix
region. Alignment of the amino acid sequences of phot in the A’α-helix regions using ClustalX. Arabidopsis
thaliana, At; Avena sativa, As;Oryza sativa,Os; Adiantum capillus-veneris, Ac;Marchantia, polymorpha,Mp;
Chlamydomonas reinhardtii, Cr. Filled and open arrow heads indicate the N-ends of LOV2-STK and ΔA’α
constructs, respectively. Amino acid residues substituted in this study are highlighted.

doi:10.1371/journal.pone.0124284.g001
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LOV2, linker and kinase domain. They showed a typical photocycle of LOV2 upon BL excitation
and a kinase activity on the substrate consisting of an N-terminal region of At phot1 in a light de-
pendent manner [20,38]. To elucidate the role of the A’α-helix in the BL signaling described
above, we studied effects of the deletion of the A’α-helix and the amino acid substitutions in this
region on the photochemistry and the kinase regulation by BL using the LOV2-STK preparation
of At phot1. Interestingly, we found that the gap between the A’α-helix and the Aβ-strand of
LOV2 (A’α/Aβ gap) play a critical role as well as the A’α-helix.

Materials and Methods

Construction of expression vectors
WT, C512A and D788A were prepared as described previously [38]. For A’α truncated
LOV2-STK (ΔA’α, 475–996), the truncation in the preparation included Glu474 at the A’α/Aβ
gap, NdeI site was inserted into the pET28a_WT vector by PCR-based site-directed mutagene-
sis using primer sets (S1 Table). After NdeI treatment, vector was self-ligated. For the D465A,
E471A, R472A, E474A, E474W, E474K, K475A and N476A amino acid substitutes, PCR-based
site-directed mutagenesis was performed with the primer sets in S1 Table. The vectors for the
LOV2 with Jα-helix (LOV2-Jα, 449–614) and the LOV2 with a full-length linker between
LOV2 and STK domain (LOV2-linker, 449–661) were prepared as described previously [38].

Expression and Purification of recombinant proteins
Vectors were transformed into E. coli strain BL21 (DE3). Cells were cultured in LB medium
containing 30 μg mL-1 kanamycin for 6 h at 37°C. Overexpression was induced with 0.04 mM
isopropyl β-D-thiogalactopyranoside for 24 h at 18°C. Cells were harvested by centrifugation
and stored at -80°C until use. The cells were thawed and re-suspended into the extraction buff-
er (20 mMHEPES pH 7.5, 0.5 M NaCl 10% (w/v) glycerol) containing 2 mM phenylmethylsul-
phonyl fluoride and final 1 mg mL-1 Lysozyme, and then incubated for 30 min on ice. Cells
were lysed by sonication and centrifuged (100,000 x g for 30 min at 4°C). The supernatant was
loaded on to a nickel affinity column (Ni-Sepharose High Performance, GE), and protein was
eluted with buffer contacting 500 mM imidazole after the resin was washed with buffer con-
taining 30 mM imidazole. The partially purified protein was further purified with size-exclu-
sion column chromatography (Superdex 200 pg, GE). ΔA’α and the other polypeptides were
diluted into a buffer containing 500 and 100 mMNaCl, respectively [38]. The apparent molec-
ular weights of WT and mutants estimated from elution profiles of the size-exclusion column
chromatography were almost the same, 95 kDa, suggesting that they are in the same oligomeric
form (S1 Fig). Their purities were estimated by the Coomassie Brilliant Blue (CBB)-staining of
the SDS-PAGE gels. The purities were approximately 90% and more than 95% for ΔA’α and
the other polypeptides, respectively.

Phosphorylation Assay
Phosphorylation assay was performed in the reaction buffer (Tris-HCl pH 7.5, 1 mM EGTA,
10% (w/v) glycerol-containing 100 mMNaCl) containing 10 mMMgCl2, 10 μMATP and 3.7
kBq of [γ-32P] ATP. In the case of ΔA’α, the concentration of NaCl was 500 mM. Sample was
incubated with an artificial substrate, P1Nt (N-terminal 1–463 fragment of At phot1) [38] at
20°C for 30 min under BL or in the dark. The irradiation was performed with a blue LED illu-
minator (ISL-150X150-88, CCS Inc., Japan, λmax at 475 nm, 34 μmol m-2 s-1). The reaction was
stopped by adding a SDS-PAGE sample buffer and then boiling for 3 min. Samples were sepa-
rated by SDS-PAGE and phosphorylated bands were visualized with imaging plates (Fujifilm,
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Japan) and STORM scanner (GE Healthcare, Japan) [38]. Phosphorylation assays were per-
formed tree times and the reproducibility was confirmed.

Spectroscopy
UV-Vis absorption spectra were recorded with a spectrophotometer (3310, Hitachi-hitec,
Japan) equipped with a thermoelectric cell holder. The sample in a cell was irradiated with a
handmade blue LED illuminator (LUXEON star, λmax = 465 nm). BL-excited spectra were re-
corded immediately after the flash BL irradiation (~250 μmol m-2 s-1, for 2 s). Dark reversion
kinetics was monitored at 447 nm at 20°C [38]. Half-decay times were averaged for three data.

Proteolysis assay and amino acid sequencing
Trypsin (GE Healthcare, Japan) solution was added to a polypeptide solution of 0.4 mg mL-1 to
give the final trypsin concentration of 10 μg mL-1. Digestion was performed at 20°C under BL
irradiation or in the dark and was stopped by boiling the solutions for 3 min after adding a con-
centrated SDS-PAGE sample buffer. Digested polypeptides were separated by SDS-PAGE and
stained with CBB. Proteolysis assays were performed two times and the reproducibility
was confirmed.

The amino acid sequences of the polypeptides separated in SDS-PAGE gels were deter-
mined by mass spectrometry (MS). Polypeptides were excised and digested in-gel with trypsin
(Promega, USA) after reductive alkylation in 100 mM ammonium bicarbonate solution con-
taining 10 mM dithiothreitol and 55 mM iodoacetamide. After incubation at 37°C for 12 h in
50 mM ammonium bicarbonate and 1 mM calcium chloride, tryptic polypeptides were de-
salted with a ZipTip μC18 (Millipore, USA). The peptides were applied on the matrix-assisted
laser desorption/ionization (MALDI) analysis using recrystallized 2,5-dihydroxybenzoic acid
(Shimadzu GLC, Japan) in 50% acetonitrile at a concentration of 10 mg mL-1 as a matrix.

Polypeptide masses were analyzed using an AXIMA Resonance MALDI-quadrupole ion
trap TOFMS (Shimadzu, Japan). The acquisition mass range was 0.75–3.5 kDa in a mid mass
positive ion mode. The raw spectrum data were analyzed by a Mascot Distiller peak processing
software (Version 2.4.3.3, Matrix Science, UK). Amino acid sequences of the fragmented poly-
peptides were determined using mostly a peptide mass fingerprinting method (PMF) and if
necessary a MS/MS analysis. The sequences were alined against the sequence data in the
NCBInr (September 7, 2013; 65,225 non-redundant At sequence entries) database on Mascot
Server version 2.4.

Results

Effect of truncation of A’α-helix
To elucidate the function of A’α-helix, the effect of A’α-helix truncation on the kinase activity
was studied (Fig 2A). ΔA’α prepared using the E. coli expression system was not stable and eas-
ily formed aggregates in a 100 mMNaCl buffer solution; therefore, the NaCl concentration was
increased to 500 mM to protect against aggregation. The kinase activities of WT, its kinase-
dead D788A substitute and ΔA’α were measured using P1Nt as an artificial substrate. In the
dark, WT exhibited a faint phosphorylation band compared to D788A whose kinase activity
was undetectable. ΔA’α had a similar phosphorylation level to WT in the dark. BL strongly ac-
tivated the kinase of WT that was impaired by the amino acid substitution at Asp788 to Ala in
accordance with previous results [20,38]. In contrast, activation did not occur in ΔA’α indicat-
ing that A’α including Glu474 is an essential element for activation. We have previously re-
ported that the kinase activity of At phot1 LOV2-STK correlates with the lifetime of S390 in
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LOV2 and that shortening of the S390 lifetime reduced the kinase activity [20]. Therefore, the
kinetics of the photoreaction in ΔA’α was studied (Fig 2B). The ground state absorption spectra
of WT and ΔA’α had a similar ratio of the height at 450 nm to 280 nm indicating that they
bound a similar amount of FMN. ΔA’α exhibited a characteristic absorption spectral change
with a reversible formation of S390 (Fig 2B inset). Its half decay time was calculated as 89 s at
20°C (Table 1). The decay time was almost the same as that of WT in the buffer containing 500
mMNaCl (91 s at 20°C), and the absorption peaks did not shift, indicating that the presence of
the A’α-helix does not affect LOV photochemistry. Taken together, these results indicate that
the A’α-helix is essential for the intramolecular signaling from LOV2 to the kinase, while it is
not involved in the photochemical properties of LOV2 in the LOV2-STK of At phot1.

Effect of amino acid substitutions in A’α-helix and A’α/Aβ gap
To find key amino acid residues for the signal transduction from LOV2 to STK in the A’α-
helix as well as the A’α/Aβ gap, charged amino acids (highlighted in Fig 1) were substituted
with alanine and their kinase activities (Fig 3) and photochemistry (Fig 4) were studied.

Fig 2. (A) Kinase activity of WT, D788A, and ΔA’α of At phot1 LOV2-STK on P1Nt in the dark (D) or under BL
irradiation (L). The upper and lower panels indicate autoradiogram and CBB staining of SDS-PAGE gels,
respectively. The arrow and the arrowhead indicate the position of LOV2-STK and P1Nt, respectively. (B)
Absorption spectra and light minus dark absorption difference spectrum (inset) of ΔA’α in a solution
containing 20 mM Tris-HCl, pH 7.8, 500 mMNaCl, 10% (w/v) glycerol, and 1 mMNa2EGTA at 20°C. The
black and the gray line were measured after dark adaptation and BL irradiation, respectively.

doi:10.1371/journal.pone.0124284.g002

Table 1. Half decay times of the dark recovery from S390 to D450 at 20°C.

Sample T1/2 of S390 (s)

WT 59

WT* 91

ΔA’α* 89

D465A 46

E471 36

R472 47

E474A 44

K475A 69

N476A 458

*The sample was dissolved in the buffer containing 0.5 M NaCl.

doi:10.1371/journal.pone.0124284.t001
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Among the substitutes, D465A in the A’α-helix and N476A in the A’α/Aβ gap preserved simi-
lar levels of phosphorylation as WT in a light dependent manner indicating that these amino
acid residues do not contribute significantly to the photoactivation of STK. E471A and R472A
also exhibited BL-induced phosphorylation; however, their activation levels were lower than of
the activation levels of D465A and N476A. A comparison of R472A and E471A demonstrated
that R472A has a slightly higher kinase activity than E471A under BL. In contrast, E474A and
K475A impaired the BL-induced phosphorylation.

None of the amino acid substitutions prohibited binding FMN to their apoprotein. The ab-
sorption spectra of the substitutes in the dark were similar to that of WT indicating that the
amounts of bound FMN were comparable among WT and their substitutes (Fig 4). All of the
preparations demonstrated a reversible formation of S390 upon BL irradiation that is clearly
observed in their light minus dark absorption difference spectra (Fig 4 insets). The half decay
times of the substitutes were not so different from that of WT, except for the N476A substitute
with a half decay time of 458 s (Table 1).

Fig 3. Kinase activity of At phot1 LOV2-STKWT and its amino acid substitutes on P1Nt in the dark (D)
or under BL irradiation (L). The upper and lower panels indicate autoradiogram and CBB staining of
SDS-PAGE gels, respectively. The arrows and the arrow-heads indicate the position of LOV2-STK and
P1Nt, respectively.

doi:10.1371/journal.pone.0124284.g003

Fig 4. Absorption spectra and of the amino acid substitutes of At phot1 LOV2-STK in a solution
containing 20mM Tris-HCl, pH 7.8, 100 mMNaCl, 10% (w/v) glycerol, and 1 mMNa2EGTA at 20°C. The
black and the gray line were measured after dark adaptation and BL irradiation, respectively. The insets show
the light minus dark absorption difference spectra.

doi:10.1371/journal.pone.0124284.g004
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Substitutions at Glu474 and Lys475 in the A’α/Aβ gap to Ala abolished the BL-induced ki-
nase activation without altering the photochemical properties similarly with the deletion of
A’α-helix. This indicates that the pair of amino acid residues are critical for the activation of
STK by BL. E471A and R472A substitutions in the A’α-helix resulted in a slight reduction of
the BL-induced kinase activation, suggesting minor contributions to STK activation.

Structural change detected by limited proteolysis
To see the BL-induced structural changes in the At phot1 LOV2-STK, peptide mapping was
performed by limited proteolysis with trypsin. Trypsin digested the WT into two major poly-
peptides band-1 and band-2 in the dark (Fig 5A). Considering Mass spectrometry and the
amino acid sequence of LOV2-STK, we assigned the band-1 and 2 as 463–631 and 835–996, re-
spectively. Band-1 consists of half of the A’α, A’α/Aβ gap, LOV2 and half of the linker between
LOV2 and STK including an entire Jα-helix. Band-2 includes the C-terminal half of STK and
the C-terminal end part (Fig 5A and 5D, S2 Fig and S2 Table). The two digestion sites, Lys631
in the linker region and Lys835 in the activation loop of STK, do not form a tight structure to
protect against trypsin attack in the dark. Under BL, band-1 was degraded further into band-3,
463–603 and band-4, 475–603 (Fig 5A, 5B and 5D). Trypsin digested the substrate in propor-
tion to the BL fluence and the digestion time. To assure the involvement of the photoreaction
of LOV2 in these degradations, peptide mapping was performed with a C512A substitute lack-
ing the S390 formation. C512A exhibited a similar SDS-PAGE band pattern to that of WT in
the dark, indicating that the Cys512 to Ala substitution does not alter the surface structure of
WT in terms of trypsin accessibility (Fig 5). In contrast to WT, C512A did not show marked
degradations of band-1 into band-3 and band-4 under BL. Thus, it can be concluded that the

Fig 5. Peptide mapping of At phot1 LOV2-STKWT (A) and (B), and C512A (C), by SDS-PAGE after
Trypsin digestion in the dark (D) or under BL irradiation (BL). nt indicates the sample without the trypsin-
treatment. The gels were stained with CBB. (A) The mapping after BL irradiation with the different fluence
rates for 15 min. (B) and (C) show the time courses of the digestion. The four arrowheads indicate the bands
of major proteolytic products. (D) Schematic diagram for the positions of the cleavage sites for the four major
bands. The black and white bars indicate the proteolytic products obtained in the dark or under BL
irradiation, respectively.

doi:10.1371/journal.pone.0124284.g005
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formation of S390 causes the conformational changes detectable by trypsin digestion. Because
Lys603 is located in the middle of the Jα-helix and Lys475 in the A’α/Aβ gap, these results
clearly revealed BL-induced structural changes in the gap as well as in the Jα-helix.

Structural changes in LOV2-Jα and LOV2-linker
For reference, structural changes in the linker region between the Jα-helix and the STK domain
were studied by the peptide mapping of LOV2 with the Jα-helix and LOV2-Jα plus the remain-
ing part of the linker region named LOV2-Jα and LOV2-linker, respectively. Trypsin digested
the LOV2-Jα into band-A and B, which were degraded further into band-C and D. BL en-
hanced the degradation (S3 Fig). Interestingly, the LOV2-linker in the dark showed only the di-
gested band-A, however, further degradation of band-A was not observed. BL induced the
degradation of band-A into band-B and C (S3 Fig). This observation suggests a protective role
of the remaining linker region against trypsin digestions.

Effect of amino acid substitution at Glu474 and Lys475 on the structural
change
To understand the involvement of these structural changes in the kinase activation by BL, peptide
mapping was performed with E474A and K475A that impaired light activation of kinase activity.
Both substitutes produced bands 1 and 2, which is similar to WT in the dark. This indicates that
these amino acid substitutions did not alter the surface structure ofWT. BL induced the degrada-
tion of band-1 into band-3 and 4 in the E474A, which is similar toWT (Fig 6A). In contrast,
K475A exhibited the production of band-3 but not band-4 (Fig 6B). Because K475A lost the tryp-
sin digestion site at Lys475, it is reasonable that band-4 could not be observed. These results dem-
onstrated that BL induces similar structural changes in these substitutes to those of theWT in
the A’α/Aβ gap as well as in the Jα-helix; however, it cannot transfer the signal to the later pro-
cesses responsible for kinase activation by BL.

The impairment of kinase activation without affecting conformational changes detected by
peptide mapping and the photochemical properties implies that Glu474 and Lys475 play spe-
cial roles in kinase activation. According to the crystal structure of As phot1 LOV2-Jα, Lys413
corresponding to the Lys475 in At phot1 is supposed to interact with Thr535, which corre-
sponds to Thr604 in At phot1, through hydrogen-bonding [28]. In contrast, Glu412

Fig 6. Peptide mapping of At phot1 LOV2-STK E474A, (A), and K475A, (B) by SDS-PAGE after trypsin
digestion in the dark (D) or under BL irradiation (L). Time courses of the digestion are indicated. nt
indicates the sample without the trypsin-treatment. The four arrowheads indicate the bands of major
proteolytic products.

doi:10.1371/journal.pone.0124284.g006
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corresponding to Glu474 in At phot1 is not involved in hydrogen bonding [28], and Glu474
faces the aqueous phase [36]. This suggests a possible interaction(s) with an unidentified part-
ner(s) in the LOV2-STK that might be involved in signaling kinase activation. To obtain the in-
formation regarding this possible interaction, Glu474 was substituted by Trp and Lys. The
E474W substitution abolished the BL-induced STK activity but E474K substitution did not
(Fig 7). This suggests a neutral hydrophilic amino acid residue is an interacting partner of
Glu474 because of the effect of the hydrophobicity and the lack of charge specificity in the
amino acid substitution experiments.

Discussion

Effect of amino acid substitutions in A’α helix and A’α/Aβ gap on the
photochemistry of LOV2
None of the amino acid substitutions nor deletion of the entire A’α helix affected binding of
FMN and formation of S390 upon BL excitation (Fig 2B and Fig 4). The decay times of S390
were almost unchanged by the substitutions and the deletion except for the N476A that exhibited
approximately an 8 times longer lifetime (Table 1). A similar prolongation was reported with
Asn414 to Ala substitute of As phot1 LOV2 that corresponds to the At phot1 Asn476. The half
decay time was prolonged from 80 to 1427 s by the substitution [34,39]. Asn interacts with
Gln513 in the Iβ-strand of the As phot1 crystal structure [28], which corresponds to the Gln575
in At phot1. The Gln is one of the key amino acid residues involved in the photoreaction of
LOV2 through the interaction with the C5 oxygen of FMN [22,23,28,39]. Substitution of Gln513
to Leu in As phot1 slowed the dark decay by approximately 16 times, although the substitution
to Asn did not alter it as much [27]. In contrast, a 16 times acceleration was observed in the
Q513D substitute [39]. It has been proposed that the stability of the adduct state is one of the key
factors for the decay rate [31,40,41] in which the Gln plays an important role [27,40]. Amino
acid residues near the isoalloxazine ring of FMNmay be involved in the regulation of the lifetime
of S390 through the interaction with key amino acids such as Gln575 in At phot. The present re-
sults revealed that the amino acids in the A’α-helix and the A’α/Aβ gap do not participate in the
regulation of dark decay, except for the Asn476 that potentially interacts with Gln575.

Fig 7. Kinase activity of At phot1 LOV2-STK E474W, (A), and K475K, (B) on P1Nt. 0, D and L indicates
before incubation, in the dark and under BL irradiation, respectively. The upper and lower panels
indicate autoradiogram and CBB staining of SDS-PAGE gels, respectively. The arrow and the arrowhead
indicate the position of LOV2-STK and P1Nt, respectively.

doi:10.1371/journal.pone.0124284.g007
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BL-induced conformational change in Jα-helix
Peptide mapping by limited trypsin digestion clearly showed that BL induced conformational
changes in both the Jα-helix and the A’α/Aβ gap in the At phot1 LOV2-STK (Fig 5). Trypsin
cleaved off the two polypeptides (band-1, 463–631, and band-2, 835–996) of WT (449–996) in
the dark. The former revealed that Lys462 in the middle of the A’α-helix and Lys631 in the
linker region between the Jα-helix and STK are exposed to aqueous environments in the dark
although the Lys462 is located at the middle of the A’α-helix. The dimeric crystal structure of
At phot1 LOV2-Jα demonstrated that the entire A’α-helix region folds into an α-helix to form
the dimeric interface. However, our LOV2-STK preparation exists in a monomeric form in so-
lution [38]. It has been shown that LOV1 of At phot1 is in a dimer both in a crystal [42] and in
a solution [43]. In contrast, LOV2 of At phot1 is in an equilibrium between monomer and
dimer in solutions depending on the concentration [24,43]. Digestion at Lys462 suggests that
the A’α-helix in our monomeric LOV2-STK in solution may be partially disordered at around
the Lys462 in the dark.

Under BL, trypsin digested band-1 firstly at Lys603. Crystal structures of the LOV2-Jα of At
phot1 [36] indicate that the Lys603 is located at the middle of the Jα-helix. In the As phot1
LOV2-Jα with the short A’α-helix, chymotrypsin and trypsin digested at Met530 and Arg521,
respectively, in the dark, which was enhanced by BL [25]. Similar enhancement by BL was ob-
served with At phot1 LOV2-Jα (S3 Fig). Met530 is located in the middle of the hydrophilic side
of the amphiphilic Jα-helix [28]. Digestion at Met530 is in agreement with the present cleavage
at Lys603 in the LOV2-STK because both digestions suggest structural changes in the middle
of the Jα-helix. However, trypsin did not digest the Lys534 of As phot1 that corresponds to
Lys603 of At phot1, instead, trypsin digested at Arg521 residing next to the N-terminus of the
Jα-helix. This may occur because of the different amino acid sequences and constructs of the
polypeptides between the As LOV2-Jα and the At LOV2-STK. A time-resolved NMR study
with the As phot1 LOV2-Jα polypeptide showed conformational changes and an unfolding of
the Jα-helix by BL [31]. The observed BL-induced digestion at Lys603 in At phot1 may be de-
rived from these changes in the Jα-helix.

BL-induced conformational change in A’α/Aβ gap
After digestion in the Jα-helix under BL irradiation, trypsin digested at Lys475 in the A’α/Aβ
gap that connects the A’α-helix and LOV2 and is located 9 Å apart from Lys603 [38] (Fig 8A).
In the As phot1 LOV2-Jα, chymotrypsin and trypsin digested at Leu408 and Arg410 corre-
sponding to Leu470 and Arg472 in At phot1 in the dark were also enhanced under light irradi-
ation suggesting conformational changes in the C-terminal region of the A’α-helix (Fig 1). The
lengths of the A’α-helix differ between the At and the As polypeptides; however, these results
suggest that the protein structure is changed by BL in the region from the C-terminal region of
the A’α-helix to the A’α/Aβ gap.

A comparison of the order of the digestions in the Jα-helix and the A’α/Aβ gap suggests that
the conformational changes in the Jα-helix precedes those in the A’α/Aβ gap. A TG study on
the At LOV2-Jα, including the full-length A’α-helix, showed that the changes in the Jα-helix
occurs faster than those in the A’α-helix based on the comparison between the deleted poly-
peptides in each helix [37]. This observation is consistent with the present order of the diges-
tion although the Lys475 itself is not included in the A’α-helix. In contrast, MD calculation
with the helix-deleted polypeptides based on the crystal structure of As phot1 LOV2-Jα with
the short A’α-helix suggests that the changes in the A’α-helix precedes those in the Jα-helix
[27]. The deletion may result in a different mode of conformational change in the remaining
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helix because the interactions between the two helices were missing in the calculations. This
could explain the discrepancy in the order of the structural changes in the two helices.

BL-induced digestion increased the quantity of band-3 in a fluence-dependent manner
(Fig 5) that is similar to the BL fluence-dependent activation of the kinase in the LOV2-STK
[20]. This supports the hypothesis that the BL-induced conformational change in Jα-helix is
one of the key events for the activation of STK. Based on SAXS analyses, we have demonstrated
that At phot2 LOV2-STK with lacked kinase activity has a cylindrical shape with a radius of gy-
ration (Rg) of 32.4 Å in the dark, whereas the cylinder elongates to show the Rg of 34.8 Å under
BL [44]. This change might reflect the observed conformational changes in the Jα- and the
A’α-helices and the A’α/Aβ gap.

Essential roles of Glu474 and Lys475 in BL signaling to STK domain
The disappearance of the kinase activation in E474A and K475A (Fig 3) indicates their critical
role in the light regulation of kinase activity. However with substitutions, the photoreaction
(Fig 4) and BL-induced conformational changes (Fig 6) remained intact indicating that they
prohibited the transduction of the observed BL-induced structural changes to the downstream
processes that are critical for kinase activation. The process may be mediated firstly by the con-
formational change at Lys603 in the Jα-helix followed by the change Lys475 in the A’α/Aβ gap
(Fig 5). These involvements of Glu474 and Lys475 suggest that the A’α/Aβ gap serves as a joint
to connect the intramolecular BL signal from the Jα-helix to the STK domain. The amino acid
sequence for the present A’α-helix truncation included the Glu474. The observed impairment
of the kinase activation (Fig 2) may be explained by this as well as the destruction of the intact
conformation required for the signaling via the gap by truncation.

In the dimeric At phot1 LOV2-Jα crystal structure [36], Thr604 in the Jα-helix locates near
the side chain of Lys475 in the A’α/Aβ gap in the dark (Fig 8A). The interaction between Thr
and Lys is observable in the monomeric LOV2-Jα of As phot1 in the dark [28]. BL displaced
the N- and C-terminal flanking regions of LOV2 through rearrangement of the hydrogen-
bonding network [28]. This rearrangement may be related to the observed structural change

Fig 8. (A) 3D structure of At phot1 LOV2-Jα (pdb ID: 4HHD). Key side chains of amino acid residues for
intramolecular signaling are indicated with a stick model. FMN is indicated with a space-filling model. A’α-
helix and Jα-helix are colored pink and cyan, respectively. The trypsin-digested site at Lys603 is colored
orange. (B) Schematic illustration for the hypothetic intramolecular interactions involved in the BL signaling
from FMN to STK of At phot1. Blue arrows indicate the intramolecular signaling. For details, see the
“Discussion”.

doi:10.1371/journal.pone.0124284.g008
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(Fig 5) in the Jα-helix and the A’α/Aβ gap. In contrast, Glu474 turns its side chain toward the
external aqueous phase [28] (Fig 8A) suggesting a possible interaction between Glu474 and a
hypothetical partner amino acid residue in the other part, but not in the A’α, LOV2 and Jα-
helix. The protection effect of the linker against trypsin attack (S3 Fig) suggests that the hypo-
thetical partner, possibly a neutral hydrophilic amino acid residue, might exist in the linker re-
gion that may interact with the Glu474 through a hydrogen bond-like interaction (Fig 7). The
SAXS model for the At phot2 LOV2-STK proposes the location of the linker between LOV2
and STK domain [44] that may explain this protection effect (Fig 8B). Glu471 and Arg472 in
the C-terminal part of the A’α-helix slightly reduced kinase activation (Fig 3). Glu471 interacts
with the side chains of Asp494 in the Cα-helix and Arg504 in the Dα-helix, while Arg472
forms the dimer interface [36] that is not the case with the monomeric LOV2-STK [36].
Arg472 may face to the solution phase (Fig 8A). The reduction of kinase activation suggests
that the C-terminal region of the A’α-helix also has a minor contribution in connecting the BL
signal from the Jα-helix to the STK domain.

Conclusion
A hypothetical intramolecular signaling pathway from the FMN to the STK in At phot1 is pro-
posed based on the present study, and the known information is illustrated schematically in
Fig 8B. The isoalloxazine ring of the FMN bound in the α/β pocket of the LOV2 forms hydro-
gen bond networks among the near amino acid residues in the dark [22,23,28,36]. BL induces a
flipping of Gln575 residue on the Iβ strand of the β-sheet that initiates a structural change cas-
cade in LOV2 through rearrangement of the hydrogen bond network [26]. The structural
change in the β-sheet [28] brings the dissociation and the unfolding of the Jα-helix that is an-
chored mainly by the hydrophobic interactions between the Jα-helix and the β-sheet in which
Ile608 play an important role in the dark [29–31]. This structural change propagates to Glu474
and Lys475 in the A’α/Aβ gap that interacts with the Jα-helix and possibly with the amino acid
(s) in the linker region in the dark. The BL signal alters the interactions of the A’α/Aβ gap with
the linker that is essential for the activation of the kinase, in which the C-terminal part of the
A’α-helix including Glu471 and Arg472 exhibits a minor contribution. So far, many studies
have proposed the important roles of the Jα and A’α helices during the BL-signaling processes.
In addition, the present study clearly demonstrated the essential role of the A’α/Aβ gap includ-
ing Glu474 and Lys475 as a joint in the BL signaling from the Jα-helix and the A’α-helix to
STK in signal transduction. The BL signal may propagate downstream from the Jα-helix with
the aid of the A’α/Aβ gap that activates STK.

Two amino acid residues, Glu474 and Lys475, in the gap are conserved among higher plants;
however, they are not conserved in the bacterial LOV proteins that do not have an STK signal-
ing module. Crystal structures of bacterial LOV proteins, such as the LOV-STAS protein of E.
coli YtvA [45], the EL222LOV-HTH protein of a marine bacterium Erythrobacter litoralis
HTCC2594 [46], the PpSB1-LOV protein of a gram-negative bacterium Pseudomonas putida
KT2440 [47] and the LOV-HK protein of a pathogenic bacteria Brucella abortus [48], do not
demonstrate the same interactions between the Jα-helix and A’α-helix that is observed in the
crystal structures of the higher plant phots [28,36] although some of them have both the A’α
and the Jα-helices [46,47]. Accordingly, the function of the joint seems to be a characteristic of
higher plant phots that have an STK signal-transmitting module. Our kinase assay system using
the LOV2-STK enables us to obtain further insight into the molecular processes underlying sig-
nal transduction to the STK domain. The information concerning these signaling processes will
provide useful information for designing a new light-regulatable molecular switch [49].

A'α/AβGap Is Essential for Kinase Activation of Phototropin1

PLOS ONE | DOI:10.1371/journal.pone.0124284 April 17, 2015 13 / 16



Supporting Information
S1 Fig. Estimation of molecular weight of mutants by size exclusion column chromatogra-
phy. Ovalbumin (44 kDa), Conalbumin (75 kDa), Aldolase (158 kDa) and Ferritin (440 kDa)
were used for the molecular weight standards (open black circle). The other symbols, see the
Figure.
(TIF)

S2 Fig. Mass spectra of trypsin-digested polypeptides from band-1 (A) and band-2 (B) in
Fig 5 (A).
(TIF)

S3 Fig. Time course of the peptide mapping of At phot1 LOV2-Jα, (A), and LOV2-linker,
(B). Samples were digested by trypsin in the dark (D) or under BL irradiation (L). The four ar-
rowheads indicate the bands of major proteolytic products.
(TIF)
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S2 Table. Assignment of polypeptides of band-1 and band-2 in S1 Fig.
(DOCX)

Acknowledgments
We thank Mihoko Nakajima of Osaka Prefecture University for technical assistance.

Author Contributions
Conceived and designed the experiments: KO SK. Performed the experiments: SK KO TS. Ana-
lyzed the data: SK KO TS. Wrote the paper: SK KO TS ST.

References
1. Christie JM. Phototropin blue-light receptors. Annu Rev Plant Biol 2007; 58: 21–45. PMID: 17067285

2. Quail PH. Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol
2002; 14: 180–188. PMID: 11891117

3. Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E., et al. Arabidopsis NPH1:
a flavoprotein with the properties of a photoreceptor for phototropism. Science 1998; 282: 1698–1701.
PMID: 9831559

4. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, et al. Arabidopsis NPL1: a phototropin
homolog controlling the chloroplast high-light avoidance response. Science 2001; 291: 2138–2141.
PMID: 11251116

5. Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, BriggsWR, et al. Arabidopsis nph1 and npl1:
blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A
2001; 98: 6969–6974. PMID: 11371609

6. Jarillo JA, Gabrys H, Capel J, Alonso JM, Ecker JR., Cashmore AR. Phototropin-related NPL1 controls
chloroplast relocation induced by blue light. Nature 2001; 410: 952–954. PMID: 11309623

7. Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. Phot1 and phot2 mediate blue light
regulation of stomatal opening. Nature 2001; 414: 656–660. PMID: 11740564

8. Briggs WR, Christie JM. Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci
2002; 7: 204–210. PMID: 11992825

9. Moglich A, Ayers RA, Moffat K. Structure and signaling mechanism of Per-ARNT-Sim domains. Struc-
ture 2009; 17: 1282–1294. doi: 10.1016/j.str.2009.08.011 PMID: 19836329

10. Moglich A, Yang X, Ayers RA, Moffat K. Structure and function of plant photoreceptors. Annu Rev Plant
Biol 2010; 61: 21–47. doi: 10.1146/annurev-arplant-042809-112259 PMID: 20192744

A'α/AβGap Is Essential for Kinase Activation of Phototropin1

PLOS ONE | DOI:10.1371/journal.pone.0124284 April 17, 2015 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124284.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124284.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124284.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124284.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0124284.s005
http://www.ncbi.nlm.nih.gov/pubmed/17067285
http://www.ncbi.nlm.nih.gov/pubmed/11891117
http://www.ncbi.nlm.nih.gov/pubmed/9831559
http://www.ncbi.nlm.nih.gov/pubmed/11251116
http://www.ncbi.nlm.nih.gov/pubmed/11371609
http://www.ncbi.nlm.nih.gov/pubmed/11309623
http://www.ncbi.nlm.nih.gov/pubmed/11740564
http://www.ncbi.nlm.nih.gov/pubmed/11992825
http://dx.doi.org/10.1016/j.str.2009.08.011
http://www.ncbi.nlm.nih.gov/pubmed/19836329
http://dx.doi.org/10.1146/annurev-arplant-042809-112259
http://www.ncbi.nlm.nih.gov/pubmed/20192744


11. Salomon M, Christie JM, Knieb E, Lempert U, BriggsWR. Photochemical and mutational analysis of
the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 2000; 39:
9401–9410. PMID: 10924135

12. Bogre L, Okresz L, Henriques R, Anthony RG. Growth signalling pathways in Arabidopsis and the AGC
protein kinases. Trends Plant Sci 2003; 8: 424–431. PMID: 13678909

13. Inoue S, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K. Blue light-induced autopho-
sphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci U S A 2008; 105:
5626–5631. doi: 10.1073/pnas.0709189105 PMID: 18378899

14. Sullivan S, Thomson CE, Lamont DJ, Jones MA, Christie JM. In vivo phosphorylation site mapping and
functional characterization of Arabidopsis phototropin 1. Mol Plant 2008; 1: 178–194. doi: 10.1093/mp/
ssm017 PMID: 20031924

15. Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, et al. phot1 inhibition of ABCB19
primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 2011; 9: e1001076.
doi: 10.1371/journal.pbio.1001076 PMID: 21666806

16. Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, et al. Phytochrome Kinase
Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 2012; 31: 3457–3467. doi:
10.1038/emboj.2012.186 PMID: 22781128

17. Takemiya A, Sugiyama N, Fujimoto H, Tsutsumi T, Yamauchi S, Hiyama A, et al. Phosphorylation of
BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat Commun 2013; 4: 2094. doi:
10.1038/ncomms3094 PMID: 23811955

18. Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR.,et al. The photocycle of a flavin-
binding domain of the blue light photoreceptor phototropin. J Biol Chem 2001; 276: 36493–36500.
PMID: 11443119

19. Kasahara M, Swartz TE, Olney MA, Onodera A, Mochizuki N, Fukuzawa H, et al. Photochemical prop-
erties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and
Chlamydomonas reinhardtii. Plant Physiol 2002; 129: 762–773. PMID: 12068117

20. Okajima K, Kashojiya S, Tokutomi S. Photosensitivity of kinase activation by blue light involves the life-
time of a cysteinyl-flavin adduct intermediate, S390, in the photoreaction cycle of the LOV2 domain in
phototropin, a plant blue light receptor. J Biol Chem 2012; 287: 40972–40981. doi: 10.1074/jbc.M112.
406512 PMID: 23066024

21. Christie JM, Swartz TE, Bogomolni RA, Briggs WR. Phototropin LOV domains exhibit distinct roles in
regulating photoreceptor function. Plant J 2002; 32: 205–219. PMID: 12383086

22. Crosson S, Moffat K. Structure of a flavin-binding plant photoreceptor domain: insights into light-mediat-
ed signal transduction. Proc Natl Acad Sci U S A 2001; 98: 2995–3000. PMID: 11248020

23. Crosson S, Moffat K. Photoexcited structure of a plant photoreceptor domain reveals a light-driven mo-
lecular switch. Plant Cell 2002; 14: 1067–1075. PMID: 12034897

24. Nakasako M, Iwata T, Matsuoka D, Tokutomi S. Light-induced structural changes of LOV domain-
containing polypeptides from Arabidopsis phototropin 1 and 2 studied by small-angle X-ray scattering.
Biochemistry 2004; 43: 14881–14890. PMID: 15554695

25. Eitoku T, Nakasone Y, Zikihara K, Matsuoka D, Tokutomi S, TerazimaM. Photochemical intermediates
of Arabidopsis phototropin 2 LOV domains associated with conformational changes. J Mol Biol 2007;
371: 1290–1303. PMID: 17618649

26. Nozaki D, Iwata T, Ishikawa T, Todo T, Tokutomi S, Kandori H. Role of Gln1029 in the photoactivation
processes of the LOV2 domain in adiantum phytochrome3. Biochemistry 2004; 43: 8373–8379. PMID:
15222749

27. Nash AI, KoWH, Harper SM, Gardner KH. A conserved glutamine plays a central role in LOV domain
signal transmission and its duration. Biochemistry 2008; 47: 13842–13849. doi: 10.1021/bi801430e
PMID: 19063612

28. Halavaty AS, Moffat K. N- and C-terminal flanking regions modulate light-induced signal transduction in
the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry 2007; 46:
14001–14009. PMID: 18001137

29. Harper SM, Neil LC, Gardner KH. Structural basis of a phototropin light switch. Science 2003; 301:
1541–1544. PMID: 12970567

30. Harper SM, Christie JM, Gardner KH. Disruption of the LOV-Jalpha helix interaction activates phototro-
pin kinase activity. Biochemistry 2004; 43: 16184–16192. PMID: 15610012

31. Harper SM, Neil LC, Day IJ, Hore PJ, Gardner KH. Conformational changes in a photosensory LOV do-
main monitored by time-resolved NMR spectroscopy. J Am Chem Soc 2004; 126: 3390–3391. PMID:
15025443

A'α/AβGap Is Essential for Kinase Activation of Phototropin1

PLOS ONE | DOI:10.1371/journal.pone.0124284 April 17, 2015 15 / 16

http://www.ncbi.nlm.nih.gov/pubmed/10924135
http://www.ncbi.nlm.nih.gov/pubmed/13678909
http://dx.doi.org/10.1073/pnas.0709189105
http://www.ncbi.nlm.nih.gov/pubmed/18378899
http://dx.doi.org/10.1093/mp/ssm017
http://dx.doi.org/10.1093/mp/ssm017
http://www.ncbi.nlm.nih.gov/pubmed/20031924
http://dx.doi.org/10.1371/journal.pbio.1001076
http://www.ncbi.nlm.nih.gov/pubmed/21666806
http://dx.doi.org/10.1038/emboj.2012.186
http://www.ncbi.nlm.nih.gov/pubmed/22781128
http://dx.doi.org/10.1038/ncomms3094
http://www.ncbi.nlm.nih.gov/pubmed/23811955
http://www.ncbi.nlm.nih.gov/pubmed/11443119
http://www.ncbi.nlm.nih.gov/pubmed/12068117
http://dx.doi.org/10.1074/jbc.M112.406512
http://dx.doi.org/10.1074/jbc.M112.406512
http://www.ncbi.nlm.nih.gov/pubmed/23066024
http://www.ncbi.nlm.nih.gov/pubmed/12383086
http://www.ncbi.nlm.nih.gov/pubmed/11248020
http://www.ncbi.nlm.nih.gov/pubmed/12034897
http://www.ncbi.nlm.nih.gov/pubmed/15554695
http://www.ncbi.nlm.nih.gov/pubmed/17618649
http://www.ncbi.nlm.nih.gov/pubmed/15222749
http://dx.doi.org/10.1021/bi801430e
http://www.ncbi.nlm.nih.gov/pubmed/19063612
http://www.ncbi.nlm.nih.gov/pubmed/18001137
http://www.ncbi.nlm.nih.gov/pubmed/12970567
http://www.ncbi.nlm.nih.gov/pubmed/15610012
http://www.ncbi.nlm.nih.gov/pubmed/15025443


32. Aihara Y, Yamamoto T, Okajima K, Yamamoto K, Suzuki T, Tokutomi S, et al. Mutations in N-terminal
Flanking Region of Blue Light-sensing Light-Oxygen and Voltage 2 (LOV2) Domain Disrupt Its Repres-
sive Activity on Kinase Domain in the Chlamydomonas Phototropin. J Biol Chem 2012; 287: 9901–9909.
doi: 10.1074/jbc.M111.324723 PMID: 22291022

33. Sharma S, Kharshiing E, Srinivas A, Zikihara K, Tokutomi S, Nagatani A, et al. Dominant mutation in
the light-oxygen and voltage2 domain vicinity impairs phototropin1 signaling in tomato. Plant Physiol
2014; 164: 2030–2044. doi: 10.1104/pp.113.232306 PMID: 24515830

34. Zayner JP, Antoniou C, Sosnick TR. The amino-terminal helix modulates light-activated conformational
changes in AsLOV2. J Mol Biol 2012; 419: 61–74. doi: 10.1016/j.jmb.2012.02.037 PMID: 22406525

35. Freddolino PL, Gardner KH, Schulten K. Signaling mechanisms of LOV domains: new insights from
molecular dynamics studies. Photochem Photobiol Sci 2013; 12: 1158–1170. doi: 10.1039/
c3pp25400c PMID: 23407663

36. Halavaty AS, Moffat K. Coiled-coil dimerization of the LOV2 domain of the blue-light photoreceptor
phototropin 1 from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:
1316–1321. doi: 10.1107/S1744309113029199 PMID: 24316821

37. Takeda K, Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Dynamics of the amino-terminal and car-
boxyl-terminal helices of Arabidopsis phototropin 1 LOV2 studied by the transient grating. J Phys Chem
B 2013; 117: 15606–15613. doi: 10.1021/jp406109j PMID: 23931584

38. Okajima K, Matsuoka D, Tokutomi S. LOV2-linker-kinase phosphorylates LOV1-containing N-terminal
polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett 2011; 585:
3391–3395 doi: 10.1016/j.febslet.2011.10.003 PMID: 22001205

39. Zayner JP, Sosnick TR. Factors that control the chemistry of the LOV domain photocycle. PLoS One
2014; 9: e87074. doi: 10.1371/journal.pone.0087074 PMID: 24475227

40. Jones MA, Feeney KA, Kelly SM, Christie JM. Mutational analysis of phototropin 1 provides insights
into the mechanism underlying LOV2 signal transmission. J Biol Chem 2007; 282: 6405–6414. PMID:
17164248

41. Song SH, Freddolino PL, Nash AI, Carroll EC, Schulten K, Gardner KH., et al. Modulating LOV domain
photodynamics with a residue alteration outside the chromophore binding site. Biochemistry 2011; 50:
2411–2423. doi: 10.1021/bi200198x PMID: 21323358

42. NakasakoM, Zikihara K, Matsuoka D, Katsura H, Tokutomi S. Structural basis of the LOV1 dimerization
of Arabidopsis phototropins 1 and 2. J Mol Biol 2008; 381: 718–733. doi: 10.1016/j.jmb.2008.06.033
PMID: 18585389

43. Katsura H, Zikihara K, Okajima K, Yoshihara S, Tokutomi S. Oligomeric structure of LOV domains in
Arabidopsis phototropin. FEBS Lett 2009; 583: 526–530. doi: 10.1016/j.febslet.2009.01.019 PMID:
19166850

44. Takayama Y, Nakasako M, Okajima K, Iwata A, Kashojiya S, Matsui Y, et al. Light-induced movement
of the LOV2 domain in an Asp720Asn mutant LOV2-kinase fragment of Arabidopsis phototropin 2. Bio-
chemistry 2011; 50: 1174–1183. doi: 10.1021/bi101689b PMID: 21222437

45. Moglich A, Moffat K. Structural basis for light-dependent signaling in the dimeric LOV domain of the
photosensor YtvA. J Mol Biol 2007; 373: 112–126. PMID: 17764689

46. Nash AI, McNulty R, Shillito ME, Swartz TE, Bogomolni RA, Luecke H, et al. Structural basis of photo-
sensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc
Natl Acad Sci U S A 2011; 108: 9449–9454. doi: 10.1073/pnas.1100262108 PMID: 21606338

47. Circolone F, Granzin J, Jentzsch K, Drepper T, Jaeger KE, Willbold D, et al. Structural basis for the
slow dark recovery of a full-length LOV protein from Pseudomonas putida. J Mol Biol 2012; 417:
362–374. doi: 10.1016/j.jmb.2012.01.056 PMID: 22326872

48. Rinaldi J, Gallo M, Klinke S, Paris G, Bonomi HR, Bogomolni RA, et al. The beta-scaffold of the LOV do-
main of the Brucella light-activated histidine kinase is a key element for signal transduction. J Mol Biol
2012; 420: 112–127. doi: 10.1016/j.jmb.2012.04.006 PMID: 22504229

49. Mitra D, Yang X, Moffat K. Crystal structures of Aureochrome1 LOV suggest new design strategies for
optogenetics. Structure 2012; 20: 698–706. doi: 10.1016/j.str.2012.02.016 PMID: 22483116

A'α/AβGap Is Essential for Kinase Activation of Phototropin1

PLOS ONE | DOI:10.1371/journal.pone.0124284 April 17, 2015 16 / 16

http://dx.doi.org/10.1074/jbc.M111.324723
http://www.ncbi.nlm.nih.gov/pubmed/22291022
http://dx.doi.org/10.1104/pp.113.232306
http://www.ncbi.nlm.nih.gov/pubmed/24515830
http://dx.doi.org/10.1016/j.jmb.2012.02.037
http://www.ncbi.nlm.nih.gov/pubmed/22406525
http://dx.doi.org/10.1039/c3pp25400c
http://dx.doi.org/10.1039/c3pp25400c
http://www.ncbi.nlm.nih.gov/pubmed/23407663
http://dx.doi.org/10.1107/S1744309113029199
http://www.ncbi.nlm.nih.gov/pubmed/24316821
http://dx.doi.org/10.1021/jp406109j
http://www.ncbi.nlm.nih.gov/pubmed/23931584
http://dx.doi.org/10.1016/j.febslet.2011.10.003
http://www.ncbi.nlm.nih.gov/pubmed/22001205
http://dx.doi.org/10.1371/journal.pone.0087074
http://www.ncbi.nlm.nih.gov/pubmed/24475227
http://www.ncbi.nlm.nih.gov/pubmed/17164248
http://dx.doi.org/10.1021/bi200198x
http://www.ncbi.nlm.nih.gov/pubmed/21323358
http://dx.doi.org/10.1016/j.jmb.2008.06.033
http://www.ncbi.nlm.nih.gov/pubmed/18585389
http://dx.doi.org/10.1016/j.febslet.2009.01.019
http://www.ncbi.nlm.nih.gov/pubmed/19166850
http://dx.doi.org/10.1021/bi101689b
http://www.ncbi.nlm.nih.gov/pubmed/21222437
http://www.ncbi.nlm.nih.gov/pubmed/17764689
http://dx.doi.org/10.1073/pnas.1100262108
http://www.ncbi.nlm.nih.gov/pubmed/21606338
http://dx.doi.org/10.1016/j.jmb.2012.01.056
http://www.ncbi.nlm.nih.gov/pubmed/22326872
http://dx.doi.org/10.1016/j.jmb.2012.04.006
http://www.ncbi.nlm.nih.gov/pubmed/22504229
http://dx.doi.org/10.1016/j.str.2012.02.016
http://www.ncbi.nlm.nih.gov/pubmed/22483116

