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Recent findings revealed consistent individual
differences in fixation tendencies among observers
free-viewing complex scenes. The present study aimed
at (1) replicating these differences, and (2) testing
whether they can be estimated using a shorter test. In
total, 103 participants completed two eye-tracking
sessions. The first session was a direct replication of the
original study, but the second session used a smaller
subset of images, optimized to capture individual
differences efficiently. The first session replicated the
large and consistent individual differences along five
semantic dimensions observed in the original study. The
second session showed that these differences can be
estimated using about 40 to 100 images (depending on
the tested dimension). Additional analyses revealed that
only the first 2 seconds of viewing duration seem to be
informative regarding these differences. Taken together,
our findings suggest that reliable individual differences
in semantic salience can be estimated with a test
totaling less than 2 minutes of viewing
duration.

Introduction

In order to make sense of our visual environment,
we constantly move our eyes. This allows us to observe
fixed and moving objects with high foveal resolution
and to inspect regions of interest while ignoring many
others (Gegenfurtner, 2016). To explain this selection
process, models of attentional guidance have tried
to predict gaze behavior based on, for example, task
relevance (Fecteau & Munoz, 2006); low-level image
features, such as local contrast for color, intensity, and
orientation (Harel, Koch, & Perona, 2006; Itti & Koch,
2000); and high-level, semantic features, such as faces
or text (Xu, Jiang, Wang, Kankanhalli, & Zhao, 2014).
What these models all have in common is that they
try to predict a typical observer and treat individual
differences as noise.

More recent findings, however, show stable, trait-like
differences in eye movements; for example, oculomotor
measures such as mean saccade amplitude, smooth
pursuit duration, or mean fixation duration vary
reliably among people (Bargary, Bosten, Goodbourn,
Lawrance-Owen, Hogg, & Mollon, 2017; Castelhano &
Henderson, 2008; Henderson & Luke, 2014). Moreover,
recent twin studies have provided evidence for a strong
genetic component in individual gaze (Constantino
et al., 2017; Kennedy, D’Onofrio, Quinn, Bölte,
Lichtenstein, & Falck-Ytter, 2017).

Most relevant to the current study, observers freely
viewing hundreds of complex scenes showed large
individual differences in the number of fixated objects
and in fixation tendencies toward objects from six
semantic categories (de Haas, Iakovidis, Schwarzkopf, &
Gegenfurtner, 2019). These differences were consistent
across images and time and extended to first fixations
after image onset, suggesting a bottom–up component.

Such semantic salience biases may be useful in the
study of neurobiological mechanisms of attentional
gaze control (de Haas et al., 2019) and form a crucial
baseline for evaluating the diagnostic potential of gaze
behavior for neurodevelomental and clinical conditions.
In fact, research investigating eye movements in autism
spectrum disorder (ASD) has demonstrated reduced
social visual engagement in infants and adults with
ASD compared to healthy controls (Constantino
et al., 2017; Jones & Klin, 2013; Wang, Jiang,
Duchesne, Laugeson, Kennedy, Adolphs, & Zhao,
2015). Others have found evidence for abnormal
eye movements in patients with major depression
(Armstrong & Olatunji, 2012). Further, patients
with schizophrenia show a reduced number and
spatial dispersion of fixations (Benson, Beedie,
Shephard, Giegling, Rujescu, & St. Clair, 2012).
However, the free viewing paradigm in de Haas
et al. (2019) used the full stimulus set of the Object and
Semantic Images and Eye-tracking (OSIE) dataset,
comprised of 700 images (Xu et al., 2014). For practical
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purposes, it would be desirable to estimate individual
gaze biases with a more economical test.

The present study had two main objectives. The
first was to replicate the findings of stable individual
gaze differences along semantic dimensions found in
de Haas et al. (2019). Therefore, we tested whether the
proportion of cumulative fixation times for objects of
the categories Text and Faces, objects with implied
Motion, objects with a characteristic Taste, or Touched
objects vary reliably between observers. Further, we
tested whether the proportion of first fixations varies
reliably for objects of the categories Text, Faces, and
Touched. We chose and preregistered these object
dimensions, because they yielded large and consistent
individual gaze differences (r > 0.6) in the original
study by de Haas et al. (2019). Note, we combined
neutral and emotional Faces, given the high covariance
in fixation tendencies toward both. Moreover, we tried
to replicate the findings of stable individual differences
in visual exploration, as indicated by the number
of objects an observer fixated. Second, we tested
whether a smaller stimulus set can reliably estimate
these differences. For this purpose, we selected subsets
of OSIE images (OSIE40, OSIE100, and OSIE200),
which a search algorithm predicted would yield high
congruence with individual differences observed for the
full set.

Two eye-tracking sessions were completed by 103
participants on separate days; one day they free-viewed
the full OSIE set (700 images), and another day they
free-viewed the smaller subsets. We then computed
the correlation among individual fixation tendencies
between the full and smaller sets to determine the
minimum set size required for reliable estimates.
Additionally, we repeated these analyses for gaze data
truncated to the first 1 and 2 seconds of each trial (from
a total of 3 seconds). Results showed that the most
prominent individual fixation biases could be estimated
reliably from just 40 images shown for 2 seconds
each.

Methods

Subjects

A total of 103 healthy participants with normal or
corrected-to-normal vision were recruited at Leibniz
Institute of Psychology Information (ZPID) using their
PsychLab offline service (Mage = 25.17; SD = 5.50;
seven left-handed; 72 females). The sample size was
based on an a priori power analysis (de Haas, 2019).
All participants took part in two sessions, with the
second appointment following the first after an average
of 16 days. The study was approved by the local ethics

committee, and all participants gave written informed
consent before participating.

Apparatus

Stimuli were displayed on a BenQ XL2430T
monitor (BenQ Corporation, Taipei, Taiwan) using
Psychtoolbox 3.0.12 (Kleiner, Brainard, Pelli, Ingling,
Murray, & Broussard, 2007; Pelli, 1997) in MATLAB
R2019a (MathWorks, Natick, MA). Participants
viewed the stimuli at a resolution of 1920 × 1080 pixels
and at 29.0 × 22.2 degrees visual angle. Eye gaze from
the left eye was measured using a desktop-mounted
EyeLink 1000 Plus eye tracker (SR Research, Ottawa,
Canada) at a frequency of 1 kHz.

Stimuli and procedure

Participants completed free-viewing tasks that
included a set of 700 images (day 1) and 200 images
(day 2) with natural everyday scenes, each of which
contained multiple objects. Semantic metadata for the
full stimulus set consisted of binary pixel masks for
5551 objects and corresponding labels for 12 semantic
dimensions as provided in the OSIE dataset (Xu et al.,
2014). The provided labels were modified in order to
minimize overlap between them, as in de Haas et al.
(2019). Specifically, the Smell label was removed from
all objects with the Text label, the Operable and Gazed
labels were removed from all objects with the Touched
label, and the Watchable label was removed from all
objects with the Text label.

The design and procedure for both testing days
were adopted from de Haas et al. (2019). After
calibration, participants freely viewed seven blocks of
100 images each while sitting at a distance of ∼64 cm
from the computer screen. Each trial started with the
presentation of a central fixation disk followed by a
3-second presentation of the image that was initiated by
a button press by the participant. All images appeared
in the same order across participants. During the
second appointment, this procedure was repeated with
only two blocks (200 images).

The order of images presented during the first two
blocks of the first day was determined a priori, based on
the dataset by de Haas et al. (2019). An iterative search
algorithm aimed at selecting images in an order that
maximized the predictive validity for the full set at each
step (i.e., for each number of images between 10 and
200, incrementing by one image). The order of images
on the second day was pseudo-randomized relative to
the first two blocks of the first day to minimize possible
effects of order expectation. The order of images
was randomized separately for images 1 to 40, 41 to
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100, and 101 to 200 of the first day, but this division had
no further relevance for the analyses performed here.

Analysis

All statistical analyses were performed in
MATLAB R2019a (MathWorks). Data processing
closely followed the procedures in de Haas et al. (2019)
and was preregistered (de Haas, 2019). To limit our
dataset to object-directed fixations after stimulus
onset, we excluded central onset fixations (onset time
< 100 ms), fixations with duration below 100 ms
(following standard settings from the eye tracker
manufacturer), and fixations that could not be assigned
a label. Fixations that fell on or within a distance of
∼0.5 degrees visual angle from a labeled object were
assigned the corresponding label. To assess individual
fixation tendencies, for each observer we computed the
proportion of first fixations (after image onset) and of
cumulative dwell time falling onto objects of a given
label.

Consistency and retest correlations

We used the data from the first testing day to
replicate the study by de Haas et al. (2019), testing the
split-half consistency of individual fixation proportions
for each semantic dimension. This was repeated across
1000 random splits of images. We calculated two-sided
p values for the median correlations across these splits,
which were Bonferroni adjusted for the number of
tested dimensions: Faces, Text, Touched, Taste, and
Motion for cumulative dwell times and Faces, Text,
and Touched for the proportion of first fixations,
as preregistered (de Haas et al., 2019). Finally, we
calculated the minimum/maximum ratios of individual
fixations between observers and for each dimension.
This was done by dividing the minimum percent
cumulative dwell time and percent first fixation for a
given dimension by the corresponding maximum across
all observers.

To test the validity of estimates from smaller stimulus
sets, we calculated fixation proportions as above, but
for 190 subsets (from 10 to 200 images in steps of
one). Next, we determined the correlation of individual
differences for a given dimension and subset from day
2 with those observed for the full set on day 1. Note
that only the preregistered set sizes of 40, 100, and
200 images contained identical images, because of the
pseudo-randomized order between days (see above). We
also probed the consistency of individual differences
in the number of objects fixated, an indicator of the
individual tendency for visual exploration. This part
of the analyses was not preregistered but replicated
de Haas et al. (2019).

Further, we explored the effects of shorter trial
durations (also not preregistered). First, we probed the
consistency of individual differences when truncating
viewing data from day 1 to the first n milliseconds
of each trial. For this analysis, we computed the
proportion of cumulative dwell times for each semantic
dimension considered and individual dwell times for
different steps of truncation, from 100 ms to 3 seconds
in steps of 100 ms. We then correlated these proportions
with those observed for the full trial duration. Second,
we computed split-half correlations between cumulative
dwell time proportions across odd- and even-numbered
images for each step of truncation. Third, we repeated
all consistency analyses for smaller stimulus sets with
gaze data trimmed to the first 1 and 2 seconds of each
trial (data truncated for both day 1 and day 2).

To determine whether a subset of images (presented
on day 2) yielded a valid estimate of individual
differences along a given dimension, we tested its
correlation with individual differences along the
same dimension observed for the full set (on day
1). For this analysis, we applied a preregistered
correlation threshold of r = 0.7. This criterion was very
conservative, given the noise ceiling of full sets shown
on separate days. Test–retest correlations for the full
set ranged from r = 0.68 (Motion) to r = 0.84 (Text) in
de Haas et al. (2019). We therefore additionally report
the proportion of explainable variance explained by a
given subset, relative to this estimate of the noise ceiling.

Prevalence of image features across subsets

Moreover, to explore possible differences in the
prevalence of image features that may lead to different
consistency estimates across subsets, we additionally
determined the relative and absolute number of
occurrences for each semantic image feature for each
subset.

Data availability and preregistration

All anonymized data and code to reproduce
the presented results, as well as the stimulus
sets, are available at https://osf.io/ekvj4/. A
preregistered study protocol is available at
http://dx.doi.org/10.23668/psycharchives.2454.

Results

First, we replicated the large and consistent
individual differences found by de Haas et al. (2019).
Proportions of cumulative fixation time varied strongly
among observers, with maximum/minimum ratios

https://osf.io/ekvj4/
http://dx.doi.org/10.23668/psycharchives.2454
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Figure 1. Consistency of fixation ratios. (A–E) Scatterplots show the split-half correlation between odd- versus even-numbered images
for percent cumulative fixation time (gray) for the dimensions Text, Faces,Motion, Taste, and Touched and percent first fixations
(green) for the dimensions Text, Faces, and Touched. These dimensions were preregistered and included based on the large and
reliable individual differences along them (r > 0.6) reported by de Haas et al. (2019). Black inset numbers give the respective
Pearson’s correlation coefficient. For each dimension, one example is given showing the fixations from a participant with a strong
tendency to fixate objects of the given dimension (orange frames) and one participant with a weaker tendency (blue frame). The
green circles represent the first fixation after image onset, and purple circles represent any subsequent fixations. The orange and blue
data points in the scatterplots correspond to the respective example participants and image frame color. Black bars in the images
were added for display purposes only and were not seen during the free-viewing task. (F) Distribution of bootstrapped split-half
correlations for each of the five included the semantic dimensions Faces, Text, Touched, Taste, andMotion (x-axis). The gray left-hand
leaves show the distribution of split-half correlations for cumulative fixation time between image sets for 1000 random half-splits of
images. The green right-hand leaves show the corresponding distributions for first fixations. Dots inside the distributions refer to the
median correlation for each histogram and semantic dimension. Desaturated green scatterplots (A–D) and right-hand leaves (F) for
the dimensionsMotion and Taste are shown for completeness and were not preregistered (de Haas et al., 2019).

ranging from 1.37 (Motion) to 2.47 (Text). These
differences were highly reliable across image splits for
each semantic dimension (from r = 0.74, p < 0.001 for
Touched to r = 0.96, p < 0.001 for Faces). Similar results
were observed for the proportion of first fixations,
with maximum/minimum ratios ranging from 2.40 for
Faces to 3.47 for Touched and consistency ranging from

r = 0.74, p < 0.001 for Touched to r = 0.93, p < 0.001
for Faces (Figure 1). Similarly, the number of distinct
objects fixated consistently varied across observers,
with a maximum/minimum ratio of 1.95 (r = 0.97,
p < 0.001). Table 1 provides an overview of the results
and gives the ranges of fixation proportions across
observers.
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Cumulative fixation time First fixations

r P Range (%) Max/min r P Range (%) Max/min

Faces 0.96 <0.001 28–53 1.90 0.93 <0.001 26–63 2.40
Text 0.90 <0.001 8–21 2.50 0.79 <0.001 4–16 3.54
Touched 0.74 <0.001 9–16 1.73 0.76 <0.001 5–17 3.47
Taste 0.75 <0.001 10–17 1.71 0.61 <0.001 8–17 2.09
Motion 0.78 <0.001 26–36 1.37 0.62 <0.001 28–40 1.42

Table 1. Median consistency and corresponding range of individual differences in fixation toward objects of five semantic dimensions.
The left-hand side of the table shows results referring to individual differences in the proportion of cumulative dwell time toward
objects of the five semantic attributes included in the study; the right-hand side displays results based on the proportion of first
fixations landing on an object with a given attribute after image onset. Pearson correlations (r) indicate the median split-half
correlation of individual differences measured over 1000 random image splits, and the corresponding p values are Bonferroni
adjusted for the five semantic attributes. The range across observers is presented in percent cumulative fixation time and percent first
fixation and the maximum/minimum ratio (max/min) indicates the maximum relative difference in individual gaze difference between
observers.

Figure 2. Consistency of fixation ratios based on smaller stimulus sets. Line plots depicting Pearson consistency correlations of
individual differences in percent cumulative fixation time (A), percent first fixations (B), and visual exploration (number of distinct
objects fixated) (C) between the full image set (day 1) and a given subset (10 to 200 images from day 2; x-axis). Dashed gray lines
mark stimulus sets of 40 and 100 images. Dashed red lines indicate the consistency threshold of r = 0.7. Colors in (A) and (B) indicate
semantic dimensions as shown in the inset.

Estimating individual differences with a smaller
stimulus set

Next, we probed whether these differences can be
tested with a smaller set of images. Figure 2 shows
the consistency (Pearson’s r) of estimates for smaller
stimulus sets from day 2 compared with those for
the full dataset from day 1 as a function of set size,
both for cumulative dwell time (Figure 2A) and first
fixations (Figure 2B). Figure 2C shows the same
analysis for visual exploration. For cumulative dwell
times, a stimulus set of just 40 images yielded reliable
estimates (r > 0.7, p < 0.001 with the full set) for

individual differences along the dimensions Text and
Faces. We found that 100 and 200 images reliably
captured Text, Faces, and Motion, with the dimensions
Taste and Touched being just below this threshold
for the set of 200 images (r = 0.67, p < 0.001 for
Taste and r = 0.69, p < 0.001 for Touched). For
first fixations, a set of 100 images captured reliable
inter-individual differences (r > 0.7, p < 0.001 with
the full set) for Text and Faces. Touched came close
to this threshold (r = 0.65, p < 0.001). Individual
differences in visual exploration could reliably be
estimated with a set size of 40 images (r = 0.78,
p < 0.001).
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Figure 3. Consistency of estimates for truncated trial durations. (A) Line plots show the correlation of percent cumulative fixation time
observed for the full trial duration with the corresponding values for different steps of truncation (starting from 1000 ms to 3000 ms
in steps of 100 ms as shown on the x-axis; all data from day 1). (B) Line plot on the right-hand side presents split-half correlations
across odd and even images for different steps of truncation. Dashed gray lines mark free viewing durations of 1000 ms and 2000 ms.
Semantic dimensions are indicated by color as shown in the insets.

Estimating individual differences with shorter
trial durations

We further explored the effects of (virtually)
shortened trial durations by trimming the data from
each trial. Figure 3A considers estimated individual
differences in cumulative dwell time from day 1 and
shows the consistency correlation between these
estimates based on the whole trial duration of
3 seconds versus the same estimates for trimmed
durations. Figure 3B shows split-half reliabilities of
estimates between odd and even images as a function
of trimmed trial times. Across all tested dimensions,
estimates based on the first 2 seconds of trials are
highly consistent with those for the full trial duration
(all r > 0.91, p < 0.001) and yield split-half reliabilities
approaching or exceeding those seen for 3 seconds
(ranging from r = 0.66, p < 0.001 for Motion to
r = 0.95, p < 0.001 for Faces).

Combining small stimulus sets with shorter trial
durations

Next, we considered the effects of trimmed
trial durations on smaller stimulus sets. Figure 3C
and Figures 4A and 4B show the number of images
necessary to estimate reliable individual differences
(r ≥ 0.7) in cumulative dwell time as a function of
(trimmed) trial duration. Faces and Text reached
this criterion with fewer than 40 images for all trial
durations. Motion could reliably be estimated with
fewer than 100 images when using at least the first

second of trial data. Interestingly, Touched and Taste
crossed the threshold with fewer than 100 images
for the first second of trial duration (Figure 4A)
but required more than 100 (Touched) or even
200 (Taste) images for trial durations of 2 seconds and
3 seconds. Figure 4C shows the consistency of individual
visual exploration (numbers of objects fixated) with
day 1 as a function of trial duration and considered set
size from day 2. At 40 images, the data are above the
consistency threshold for both 1-second and 2-second
trial durations. Supplementary Table S1 provides
an overview of results and compares consistency
correlations to the proportion of explainable variance
(as indicated by test–retest reliabilities for the full set
reported by de Haas et al., 2019).

Prevalence of image features

In a final step we determined the prevalence of
image features for the image sets OSIE40, OSIE100,
OSIE200, and OSIE700. Figure 5 shows the (log10)
absolute frequency (Figure 5A) and the relative
frequency (Figure 5B) of these features across stimulus
sets. Results show that the relative distribution of
features was stable across image sets (Figure 5B). The
proportion of Faces was most similarly distributed
across image sets and ranged from 47.31 (OSIE40)
to 48.74 (OSIE700). The proportion of Text was
least stable and ranged from 18.88 (OSIE700) to 22.1
(OSIE40). However, the absolute number of all feature
occurrences (unsurprisingly) was heavily reduced for
the shorter sets (Figure 5A).
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Figure 4. Consistency of estimates based on smaller stimulus sets for shorter trial durations. Line plots show the Pearson consistency
of estimates for the full stimulus set (day 1) with smaller subsets from day 2. (A, B) Consistency correlations for estimated proportions
of cumulative viewing times for trial durations trimmed to 1 second (A) and 2 seconds (B); semantic dimensions are indicated by color
as shown in the inset. (C) Consistency correlations for the individual tendency for visual exploration (number of distinct objects
fixated) for 1 second and 2 seconds as indicated by the inset. Dashed gray lines mark stimulus sets of 40 and 100 images. Dashed red
lines indicate the desired consistency threshold of r = 0.70.

Figure 5. Prevalence of image features along all semantic dimensions and across image sets. (A) Bar plot describing the absolute
frequency (log10 scale) of image features for a given semantic dimension and across image sets. (B) Bar plot displaying the relative
frequency in percent for image features of a given dimension and image set. Semantic dimensions are indicated by color as shown in
the inset.

Discussion

The results of the present study allow two
conclusions. First, they corroborate the finding of
reliable individual differences in gaze behavior reported
by de Haas et al. (2019). Individual differences in visual
exploration and systematic fixation biases toward a set
of semantic features were replicated for both dwell time
and first fixations. Second, the present results show how
to test these differences efficiently.

Based on our results, we propose the OSIE40 subset
with a presentation time of 2 seconds per image as

an attractive option for estimating individual gaze
behavior efficiently. When using the re–test reliabilities
for the full image set reported by de Haas et al.
(2019) as an estimate of the noise ceiling, this test
captures more than 80% of the explainable variance
in visual exploration and dwell time for three out
of five dimensions (Face, Text, and Motion) and
69% of explainable dwell-time variance for Touched.
The remaining fifth dimension of Taste was not well
captured by any of the short tests, which perhaps is
unsurprising given its relatively low internal consistency,
as reported by de Haas et al. (2019) and replicated
here.
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Researchers interested in individual differences in
first fixations can achieve acceptable results using
the OSIE100 but can expect considerable gains from
using the full stimulus set. All subsets of stimuli
can be retrieved from Supplementary Table S2
and downloaded with the online data and code at
https://osf.io/ekvj4/.

Exploratory analyses showed that the relative
prevalence of image features was similarly distributed
across dimensions for the different image subsets
(Figure 5B). Nevertheless, it is possible that the lower
absolute number of features in the image subsets
caused floor effects for consistency estimates of less
salient dimensions (i.e., Touched and Taste) (de Haas
et al., 2019; Xu et al., 2014), which also appear less
frequently in the images. The ability to estimate
individual differences in fixation tendencies along a
given dimension depends on sufficient data. If the
number of relevant fixations in the dataset is too low,
it will lack the necessary granularity to capture smaller
but relevant inter-individual differences. It seems likely
that the relatively low saliency for Taste and Touched
(de Haas et al., 2019; Xu et al., 2014) in the smaller
image sets is compounded by a low absolute number of
occurrences of these features, yielding such floor effects.

Individual differences in gaze behavior are gaining
interest in vision and computer science (Li &
Chen, 2018; Yu & Clark, 2017), as well as clinical
psychology (Armstrong & Olatunji, 2012). Especially in
developmental studies and clinical settings, free-viewing
experiments using natural images are ideal because
of their minimum task requirements. Fixation
measurements also come with minimal technical
requirements and could soon be bedside compatible.
At the same time, applied settings and clinical research
often come with severe time limits and prohibit
the use of extensive testing batteries. We hope our
current results contribute to closing this gap and will
provide a useful standard for researchers aiming to
explore individual fixation tendencies in a time-efficient
manner.

The explorative analyses of truncating trial durations
suggested that individual differences can reliably be
estimated based on trials of just 1 or 2 seconds rather
than 3 seconds. Notably, we observed slightly higher
validity correlations for 1 second versus 2 and 3 seconds
for the dimensions Touched and Taste (Figures 3A, 3B).
Although these consistency differences between
truncated datasets were small, they were constant across
subsets. A possible reason for this is that individual
fixations tendencies toward Touched objects or objects
with Taste are only stable insofar as they are guided
by bottom–up processes and have a higher degree of
intra-subject variability as soon as later, top–down
processes come into play. For example, earlier fixations
toward objects with Taste may be driven by relatively
stable individual levels of saliency for low-level features,

such as the high color contrast of these objects. Later,
top–down-directed fixations may in turn more heavily
depend on the variable states of the observer, such as
hunger or satiety.

Further, these analyses were based on trimming
the viewing data rather than the actual viewing
duration during the experiment. We cannot exclude
the possibility that shortening trial times during
testing would have different and maybe unexpected
consequences due to the altered pace of the experiment.
Pilot data from our lab suggest that experiments with a
2-second viewing duration yield individual differences
with excellent internal consistency; however, this
comes with an intercept shift across the given semantic
dimensions. Future research could aim for an in-depth
comparison of 2-second and 3-second trial durations in
the same sample.

In the present study fixation differences were
assessed with a free-viewing task. Past research has
demonstrated that low-level properties of gaze behavior
and the low-level features of fixated regions vary
between tasks and can also interact with individual
differences (Kardan, Berman, Yourganov, Schmidt, &
Henderson, 2015; Kardan, Henderson, Yourganov,
& Bergmann, 2016). However, these studies did not
consider individual differences in semantic saliency.
Future research should test whether saliency along
these dimensions is modulated by task and in particular
whether such modulations are limited to intercept
shifts on the group level or interact with individual
differences.

In sum, we have replicated consistent individual
differences in gaze behavior and documented that
they can be estimated using less than 2 minutes of
free-viewing data.

Keywords: eye movements, individual differences,
free-viewing, saliency
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