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Abstract

The retina is prone to oxidative stress from many factors which are also involved in the pathogenesis of degenerative
diseases. In this study, we used the application of blue light as a physiological stress factor. The aim of this study was to
identify the major source of intracellular ROS that mediates blue light-induced detrimental effects on cells which may lead
to cytotoxicity. We hypothesized that outer segments are the major source of blue light induced ROS generation. In
photoreceptors, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes and the recently found
respiratory chain complexes may represent a major source for reactive oxygen species (ROS), beside mitochondria and
chromophores. Therefore, we investigated this hypothesis and analysed the exact localization of the ROS source in
photoreceptors in an organotypic culture system for mouse retinas. Whole eyeball cultures were irradiated with visible
blue light (405 nm) with an output power of 1 mW/cm2. Blue light impingement lead to an increase of ROS production
(detected by H2DCFDA in live retinal explants), which was particularly strong in the photoreceptor outer segments. Nox-2
and Nox-4 proteins are sources of ROS in blue light irradiated photoreceptors; the Nox inhibitor apocynin decreased ROS
stimulated by blue light. Concomitantly, enzyme SOD-1, a member of the antioxidant defense system, indicator molecules
of protein oxidation (CML) and lipid oxidation (MDA and 4-HNE) were also increased in the outer segments. Interestingly,
outer segments showed a mitochondrial-like membrane potential which was demonstrated using two dyes (JC-1 and TMRE)
normally exclusively associated with mitochondria. As in mitochondria, these dyes indicated a decrease of the membrane
potential in hypoxic states or cell stress situations. The present study demonstrates that ROS generation and oxidative
stress occurs directly in the outer segments of photoreceptors after blue light irradiation.
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Introduction

Oxidative stress is considered to be a major factor in the

pathogenesis of degenerative diseases of the retina including age-

related macular degeneration (AMD) [1]. Furthermore, the

antioxidant capacity in the retina (e.g. via macular molecules like

lutein and zeaxanthin) is reduced in AMD patients [2]. Indeed,

compared to other tissues, the retina is particularly prone to the

generation of reactive oxygen species (ROS) due to the very high

oxygen levels in the choroid, the extraordinary high metabolic

rates and exposure to light, especially light of shorter wavelengths

[1,3,4,5,6,7]. Furthermore, lipids of outer segment membranes of

photoreceptors (with a very high amount of polyunsaturated fatty

acids, PUFA) can be oxidized by radicals produced during these

processes.

Because of the extremely high oxygen gradient from the choroid

to the inner segment of the photoreceptors [8], it has been

suggested that the oxygen consuming mitochondria in inner

segments play the primary role in oxidative stress reactions of the

outer retina [9,10]. As discussed by these authors, mitochondria

represent a major source of endogenous ROS in the photorecep-

tors and the underlying RPE. Indeed, mitochondria are particu-

larly sensitive to oxidative stress due to the handling of electrons in

the respiratory chain [11]. In addition, after blue light exposure,

more electrons deviate from the respiratory chain in the

mitochondria, resulting in further damage: in fact, inhibiting the

mitochondrial transport chain in RPE cells or addition of

mitochondria-specific antioxidants blocks ROS formation and cell

death [4]. Furthermore, chromophores in general, especially the

cytochromes can be sources of ROS [2,4].

The NADPH oxidase (Nox) family of enzymes has recently been

recognized as an generator of ROS in photoreceptors after

damage by serum deprivation [12] or cone cells in a model of

retinitis pigmentosa [13]. We have previously demonstrated that

blue light irradiation resulted in increased superoxide anion

production [7]. It is undetermined whether Nox proteins

contribute to the generation of ROS by blue light irradiation.

The new findings that enzymes of the respiratory chain are also

located in the membranes of the outer segments give the topic of

ROS generation in photoreceptors an exciting new perspective

[14,15,16]. These studies demonstrated that the activity of

respiratory chain complexes in outer segment fractions was
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comparable to that found in retinal mitochondria-enriched

fractions. They showed that in isolated outer segments a proton

potential difference exists across the disk membranes, similarly

formed as double membranes as the double membranes of the

mitochondria. This implies that the outer photoreceptor segment

respiratory complexes might also be able to generate ROS.

The aim of the present study was to investigate ROS in outer

segments of photoreceptors after blue light irradiation. We

hypothesized that outer segments are the major source of blue

light induced ROS generation. ROS derived from Nox proteins

may be essential for triggering blue light damage. In addition to

Nox proteins, we are looking for evidence of involvement of extra-

mitochondrial respiratory complexes in outer segments in blue

light damage. For this purpose it is necessary to investigate ROS

production and mitochondrial membrane potential in real time in

the retina, particularly in the outer segments of photoreceptors.

Using an organotypic culture system for mouse retinas, we

recently demonstrated that oxidative damage is a major contrib-

uting factor to photoreceptor cell death after blue light exposure

[7]. The advantage of using this culture system is that the

photoreceptors and their outer segments are in good order and

faultless allowing for a detailed in situ analysis and examination of

ROS production in real time in live retinal tissue. In contrast,

methods relying on isolated photoreceptors are unsuitable because

the very few photoreceptor cell lines that are available do not

produce outer segments. To obtain isolated photoreceptors with

outer segments, primary cells must be isolated from intact retinas,

but outer segments are very fragile and are prone to shearing off

during the photoreceptor cell isolation process. In addition,

isolation of outer segments very likely causes cumulative damage

to the outer segments that would compound effects provoked by

blue light irradiation, thus aggravating the analysis of blue light

induced damages. Using the same model, we found that the outer

segments (with their newly found respiratory complex activity)

produce massive amounts of ROS under blue light stress – more

than the mitochondria of the inner segment. Another important

outcome of our study is the corroboration of the above mentioned

mitochondria-like activity in the outer segments via special dyes

which normally show exclusively the functional state of mitochon-

drial membranes.

Methods and Materials

Organ culture
The organotypic model of photoreceptors is well established

and has already been characterized in detail [7]. On postnatal

day 2464 days (shortly after weaning), C57BL/6 mice of either

sex were sacrificed by cervical dislocation. Their eyes were

immediately enucleated and transferred into phosphate buffered

saline (PBS). The eyeballs were punctured with a needle (BD

Microlance 3, 27G60.5 Inch) to create a small hole which

enabled fluid exchange and were transferred into an optimized

cell culture medium. The eyeballs were cultivated in almost

their original form in medium (DMEM/F12 GIBCO (cell

culture medium)+10% fetal calf serum (FCS)+2% B-27 supple-

ment+1% penicillin-streptomycin+2 mM glutamine) in a 6-well

culture plate at 37uC with a CO2 level of about 5% in a cell

culture incubator for different lengths of time. Where indicated,

eyeballs were cultivated in medium with 4 mM apocynin

(Abcam, Cambridge, UK).

Ethics Statement
All animal experiments were approved by the ethics committee

of the TU Dresden and the license for removal of organs was

provided by the Landesdirektion Dresden (Az.: 24D-9168.24-1/

2007-27).

Irradiation with blue light
Illumination was produced by a LED-based system (# LZ1-

00UA05 BIN U8; LedEngin, Santa Clara, USA) that was

constructed in our lab [7]. It generated short wavelength blue

light (peak at 405 nm) with an output power of 1 mW/cm2. The

eyes were positioned in cut cell culture inserts (transparent; BD,

Heidelberg, Germany) so that their corneas faced the blue light

diodes (1 per well). Non-irradiated eyes were used as the controls.

Measurement of intracellular reactive oxygen species
(ROS) production

For evaluation of ROS production in the photoreceptors we

used a dye for live staining – 5-(and-6)-chloromethyl-29,79-

dichlorodihydrofluorescein diacetate, acetyl ester (CM-

H2DCFDA; Molecular ProbesH-Invitrogen, Darmstadt, Ger-

many). First, the retinas were dissected after 0.5 and 1 h blue

light exposure, respectively. Next, the retinal explants were loaded

with 25 mM CM-H2DCFDA (in PBS) for 10 min at 37uC in a cell

culture incubator. CM-H2DCFDA is non-fluorescent until the

acetate groups are removed by intracellular esterases and

oxidation occurs within the cell. Then it yields green fluorescence

(excitation ,492–495 nm/emission 517–527 nm). CM-

H2DCFDA detects ROS production in form of hydrogen peroxide

(H2O2), peroxynitrite anions (ONOO2), hydroxyl radicals (.OH)

or peroxide radicals (ROO.). After the staining, the samples were

rinsed once in PBS, then transferred to 4% paraformaldehyde

(PFA) and immediately fixed for at least one to two hours. Then,

the retinal explants were embedded in 4% agarose and cut in

40 mm vertical sections using a vibratome (VT1200 S; Leica

Microsystems, Wetzlar, Germany) for a suitable determination of

ROS in the different layers. The sections were mounted on glass

slides and without delay the slides were analyzed using a LSM 510

confocal laser scanning microscope (Carl Zeiss, Jena, Germany)

and IX-81 inverted microscope (Olympus, Jena, Germany),

respectively. The time frame between vital staining of the tissue

and analyzing the images was up to six hours. Images were

obtained using an Apo-406 objective. Same acquisition settings

were used throughout all experiments for each microscope to allow

direct comparison of retinal explants treated with or without blue

light and with or without apocynin, respectively. Digital images

were processed using ImageJ free software (Rasband, W.S.,

ImageJ; U.S. NIH, Bethesda, USA). Only cropping of the images

was performed – there was no adjustment to the brightness. The

mean fluorescence intensity ratio of outer segments and inner

segments was determined in 10 different regions of interest (same

size) from one retinal section per time point (each of them as

representative of 3 experiments). The regions were distributed

equally over each full respective layer. The ratio between

irradiated outer or inner segments (numerator) and non-irradiated,

time-matched control inner segments (denominator) was calculat-

ed to determine increases in the general ROS production in

specific treatment groups.

Measurement of mitochondrial membrane potential
Mitochondrial membrane potential (MMP) was assessed by

measuring the potential-dependent accumulation of 5,59,6,69-

tetrachloro-1,19,3,39 tetraethylbenzimidazolylcarbocyanine iodide

(JC-1) [17,18,19] or tetramethylrhodamine, ethyl ester (TMRE)

[20] which also apparently also the membranes in the outer

segments of the photoreceptors. Retinas were freshly prepared as

Stress Reaction in Outer Segments

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e71570



whole mounts from animals after decapitation and enucleation.

Immediately afterwards, they were incubated with either 10 mg/

ml JC-1 or 20 nM TMRE. The procedure from killing to

obtaining the first images took ca. 2 min. Additionally the

organotypic cultures were cultivated and irradiated for 6 h and

12 h. The retinal whole mounts were prepared and stained for

10 min as mentioned before.

Immunohistochemistry
After the cultivation periods, each eyeball was fixed for 30 min

in 4% paraformaldehyde (PFA) at room temperature. Then the

eyeball was cut in half through the equator to permit removal of

the anterior segment and vitreous body and lens. The remaining

eyecup was fixed overnight at 4uC in 4% PFA. After fixation the

eyecups were cut in half or quarters and put in embedding

cassettes. Before embedding the samples were pretreated at room

temperature for 4 times 20 min in 16 PBS, then 1 h 70% (v/v)

ethanol (EtOH), 1 h 96% (v/v) EtOH, 1 h EtOH 100% (v/v) and

30 min in xylene. It followed the embedding in paraffin at 65uC
for 2 h. The retinas were positioned in a way to enable subsequent

sagittal sections and allowed to cool.

Sagittal sections of the eyecups were cut at 7 mm with a

microtome (RM2065; Leica Microsystems, Wetzlar, Germany).

The sections were flattened out in a hot water bath (ca. 40–45uC)

and then mounted on slides, which were pre-silanized to enhance

tissue adherence. The slides were dried overnight at 37uC. For

storing they were cooled down to room temperature. The slides

were deparaffinized in xylene for 365 min and hydrated for

362 min in 100% (v/v) EtOH, 262 min in 96% (v/v) EtOH,

2 min in 70% (v/v) EtOH, 2 min in 40% (v/v) EtOH. Then they

were rinsed 2 times in distilled H2O.

If heat induced antigen retrieval was recommended, then the

deparaffinized slides were placed in a cuvette in citrate buffer

containing citric acid monohyrate and tri-sodium citrate dehy-

drate in H2O, and cooked for 2 times 5 min in the microwave at

800 W. After cooling for 15 min, the slides were rinsed in distilled

H2O and then 2 times for 5 min in PBS buffer. The sections were

blocked in blocking solution (PBS+5% normal goat serum+0.3%

Triton X 100+1% bovine serum albumine (BSA)) for 1 h at room

temperature and incubated with the primary antibody (diluted in

PBS) overnight in a humid chamber at 4uC. The next day the

slides were washed 2 times for 5 min in PBS and afterwards

incubated with the fluorescence-linked secondary antibody (diluted

in PBS) for 30 min at 37uC. After that the slides were washed 2

times for 5 min in PBS. The sections were stained for 10 min with

DAPI (Sigma-Aldrich, 1:50 in PBS) to allow a better identification

of the retinal layers, shortly rinsed in PBS, and a coverslip was

mounted on the section with DABCO mounting medium. If

necessary the coverslip was fixed with nail polish to avoid further

movement.

Fluorescence images were obtained using an Axio Imager Z1

microscope (Carl Zeiss). The same acquisition settings were used

throughout all experiments to allow direct comparison of retinal

explants treated with or without blue light. Digital pictures were

acquired, stored, and visualized with AxioVision 4.7 Software

(Carl Zeiss).

Antibodies used for this method: polyclonal rabbit anti-Nox-4

(ab60940; Abcam, Cambridge, UK; dilution 1:200), polyclonal

rabbit anti-gp91-phox ( = anti-Nox-2; 07-024; Millipore,

Schwalbach, Germany; dilution 1:50), polyclonal rabbit anti-

MDA (PAB14723; Abnova, Heidelberg, Germany; dilution

1:100), monoclonal mouse anti-4-HNE (MAB6115; Abnova;

dilution 1:20), polyclonal rabbit anti-CML (gift from Prof.

Schleicher; dilution 1:1000), monoclonal mouse anti-SOD-1

(clone 30F11; Novocastra Laboratories Ltd., Newcastle upon

Tyne, UK; dilution 1:500), secondary antibodies (Dianova;

Germany; dilution 1:100).

Western blot analysis
After the cultivation periods, the retinas were removed and for

each sample two to three retinas were put directly in 80 ml of lysis

buffer including (60 mM Tris-HCl, 1% (m/v) SDS, 1 mM

Na3VO4 in distilled H2O+protease inhibitor Complete; Roche

Diagnostics, Mannheim, Germany) in a 2 ml tube. The samples

were homogenized using an ultrasonic processor (Hielscher

Ultrasonics, Teltow, Germany), followed by an incubation on ice

for 30 min. Next, the samples were centrifuged at 12000 g for

5 min at 4uC. The supernatant including the proteins of interest

was kept in a new 1.5 ml tube and the pellet was discarded. The

proteins were directly frozen at 280uC at this point or were

subjected to a BCA-assay for determining the protein concentra-

tion in each sample.

The preparation of outer segments was done according to

previous protocols [21,22]. To better protect the tissue, protease

inhibitor (Complete; Roche Diagnostics) was added to the

solution. We pooled 8–10 mouse retinas for each sample to

obtain enough outer segment material.

Total protein of the lysate supernatant was determined using

BCA Protein Assay Kit (Thermo Scientific, Rockford, USA)

and 10 mg of total protein of each sample redissolved in 66
SDS sample buffer (300 nM Tris-HCl, pH 6.8; 30% (w/v)

glycerol; 10% (w/v) SDS; 0.1% bromophenol blue; 100 mM

DTT). After boiling the samples for 5 min at 95uC they were

loaded on a 10% SDS-polyacrylamide gel. The separated

proteins were transferred to a 0.45 mm PVDF-membrane

(Immobilon-PTM; Millipore, Schwalbach, Germany). After

blocking the PVDF-membrane in TBS-T (137 mM NaCl,

2.7 mM KCl, 20 mM Tris–HCl, 0.2% Tween 20; pH 7.4)

containing 5% non-fat dry milk, it was incubated with

polyclonal rabbit anti-Nox-4 (ab60940; Abcam, Cambridge,

UK; dilution 1:500), polyclonal rabbit anti-gp91-phox ( = anti-

Nox-2; 07-024; Millipore, Schwalbach, Germany; dilution

1:500), polyclonal rabbit anti-MDA (PAB14723; Abnova,

Heidelberg, Germany; dilution 1:500), or rabbit polyclonal

anti-b actin (NB100-78420; Novus Biologicals, Littleton, CO,

USA; dilution 1:1000), for 2 h at RT or overnight at 4uC. The

membrane was washed three times for 10 min then incubated

with secondary HRP conjugated antibodies (ECL anti-rabbit

IgG or ECL anti-mouse IgG; GE Healthcare, Little Chalfont,

UK; dilution 1:5000 or 1:2000, respectively) for 1 h at RT

followed washing again (three times for 10 min). Chemilumi-

nescent signal was generated using Immobilon Western

Chemiluminescent HRP Substrate (Millipore, Billerica, MA,

USA) and detected with an Image Reader LAS-3000 (Fuji

Photo Film, Tokyo, Japan). Protein quantification was per-

formed with ImageJ free software (Rasband, W.S., ImageJ;

U.S. NIH, Bethesda, USA). Each lane was quantified along

with the corresponding loading control (b-actin).

Real-Time-PCR
The isolation of RNA of whole retinas was carried out

according to the manual of the RNeasyH Mini Kit (Qiagen,

Hilden, Germany). The RNA concentration was measured with a

NanoPhotometer (Implen, München, Germany).

Reverse transcription of mRNA into cDNA was performed

using SuperScript II Reverse Transcriptase according to manu-

facturer’s instructions (Life Technologies, Darmstadt, Germany).

Equal amounts of total RNA (500 ng) were incubated for 3 min at
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70uC and subsequently reverse transcribed into cDNA using

random hexamer primers for 1 h at 42uC. Quantification was

performed by real-time PCR with GoTaq qPCR Master Mix

(Promega, Mannheim, Germany) as described previously [23].

Rpl32 was used as reference gene for cDNA content normaliza-

tion. Amplification started with an initial denaturation step at

95uC for 2 min, followed by 45 cycles of denaturation at 95uC for

20 s, annealing for each gene at 60uC for 30 s, and extension at

72uC for 10 s. After final extension at 72uC for 2 min, melt-curve

analysis was performed following every run to ensure a single

amplified product in each reaction.

Following primers were used:

Nox-2 forward 59-AGCTATGAGGTGGTGATGTTAGT-

GG-39,

Nox-2 reverse 5-9CACAATATTTGTACCAGACAGACTT-

GAG-39,

Nox-4 forward 5-9TGTTGGGCCTAGGATTGTGTT-39,

Nox-4 reverse 5-9AGGGACCTTCTGTGATCCTCG-39

Rpl32 forward 59-GCGCTGCCTACGAGGTGGCTG-39,

Rpl32 reverse 59-CTGGCCCTTGAACCTTCTCCGC-39.

Analysis of the raw data was performed with the iQ5 software

(Bio-Rad, Munich, Germany). Evaluation of the data was done

using a mathematical model of relative expression ratio in real-

time PCR under constant reference gene expression [24].

Statistical analysis
Data are presented as mean 6 standard error of mean (SEM).

One-way analysis of variance (ANOVA) was used throughout.

When significance was achieved, it was followed by post hoc

Bonferroni test. Statistical analysis was performed using GraphPad

Prism 5.03 (GraphPad, SanDiego, CA, USA) and significance was

accepted at *p,0.05. For qPCR we used t-test and paired t-test.

We accomplished a minimum of three independent experiments.

Results

Increase of ROS production in outer retinal layers after
blue light damage

To evaluate the exact localization of ROS production in

photoreceptors, we treated live retinal explants with blue light

for 0.5 h or 1 h. Intracellular ROS production was measured by

incubating the tissue with the ROS indicator CM-H2DCFDA,

confirming an increased ROS generation in photoreceptors

after blue light exposure (Figure 1A). A 0.5 h exposure to blue

light stimulated the greatest amount of ROS formation, as

evidenced by the oxidation of CM-H2DCFDA (Figure 1B). To

quantify the level of ROS production in inner segments (ISs)

and outer segments (OSs) the intensity of the fluorescence signal

was analysed by Image J software. In both the IS and OS, ROS

Figure 1. Reactive oxygen species (ROS) production is increased in outer retinal layers after blue light damage, particularly in outer
segments. A. Confocal laser scanning microscopy images of 40 mm vibratome sections of retinas are presented. After 0.5 h of blue light exposure,
irradiated explants and respective non-irradiated explants (controls) were loaded with 25 mM 5-(and-6)-chloromethyl-29,79-dichlorodihydrofluorescein
diacetate, acetyl ester (CM-H2DCFDA; ROS indicator). Irradiated explants showed higher fluorescence intensity in OS and IS compared to time-
matched controls (same microscope settings). Scale bar represents 10 mm; images are representative of 3 experiments B. Quantitative analysis of ROS
production in outer and inner segments of retinal explants. Retinas were exposed to visible blue light for 0.5 h and 1 h. The graph displays the mean
fluorescence intensity ratios of irradiated photoreceptor cell layers versus non-irradiated time-matched controls, the IS of the controls are normalized
to 1 (determined by Image J software). Bars represent the mean 6 standard error of mean (SEM) from n = 10 different equal regions of interest (ROIs;
* shows significance compared to IS-control; *p,0.05 determined by ANOVA, post hoc Bonferroni test). C: Magnification of confocal laser scanning
microscopy images of the outer retinal layers of figure 1 after 0.5 h of blue light exposure. The ROS production in the outer segments of the
photoreceptors is increased more than in the inner segments. This is indicated by a more intense fluorescence of CM-H2DCFDA in the outer segments
than in the inner segments after irradiation periods with blue light. OS: outer segments; IS: inner segments; ONL: outer nuclear layer; OPL: outer
plexiform layer; INL: inner nuclear layer.
doi:10.1371/journal.pone.0071570.g001
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production was stimulated by blue light exposure. ROS

production increased 2.3-fold in IS and 3.2-fold in OS after

0.5 h compared to the basic fluorescence in the control IS.

Furthermore, there was 1.4-fold increase in IS and 2.1-fold

increase in OS after 1 h. In the OS of the controls, more ROS

was produced than in the IS (Figure 1B, 1C).

Increase of stress-relevant proteins in outer segments
after blue light damage

In prior studies we showed that blue light irradiation resulted in

increased superoxide anion production [7]. Therefore, we

evaluated the expression of NADPH oxidases (Nox) proteins,

which produce superoxide anions. Nox enzymes are transmem-

brane carriers and because the membranes in the outer segments

were damaged after blue light exposure [7], we hypothesized an

influence of blue light on these proteins.

Blue light irradiation increased Nox proteins in the outer

segments of photoreceptors. To further investigate if Nox proteins

contributed to the generation of ROS, apocynin was used [12].

When retinal whole mounts were treated with 4 mM apocynin,

ROS was substantially reduced (Figure 2). Also, we detected an

increase of Nox-2 protein in the outer segments of photoreceptors

that were exposed to blue light irradiation for 12 h compared to

their time-matched controls (Figure 3). Nox-4 expression in the

outer segments of the blue light damaged retina was slightly

changed compared to the time-matched control after 12 h

(Figure 3). The differences in the expression of Nox-2 were

confirmed by Western Blot analysis (Figure 4). However, after 1 h

irradiation, Nox-2 and Nox-4 proteins are increased compared to

their time-matched controls (Fig. 4A and 4B).

Additionally to the immunohistochemical analysis of Nox-2 and

Nox-4 we determined the mRNA expression of both Nox

isoforms. Total RNA from retina homogenates was prepared

and subjected to real-time PCR. Nox-2 and Nox-4 were the major

Nox isoforms in murine retina (Figure 5A). Nox-2 showed the

highest expression. In contrast, Nox isoforms Nox-1 and Nox-3

were below the level of detection (data not shown). Both Nox-2

(1.7-fold, Figure 5B) and Nox-4 (1.4-fold, Figure 5B) mRNA

expression showed a trend to be increased after 1 h blue light

irradiation compared to the time-matched control sample without

reaching statistical significance (n = 9).

Blue light induced lipid peroxidation was assessed by immuno-

histochemistry detection of malondialdehyde (MDA) and 4-

hydroxy-nonenal (4-HNE). These are reactive intermediates in

the formation of advanced lipoxidation endproducts (ALEs). Thus,

they are frequently measured as indicators of lipid peroxidation

and oxidative stress. We detected an increase of MDA, 4-HNE

and their adducts in the outer segment of retinas that were

exposed to blue light irradiation for 12 h compared to their time-

Figure 2. ROS production is reduced by the Nox inhibitor
apocynin. Merged CM-H2DCFDA fluorescence and bright field
microscopy images of 40 mm vibratome sections of retinas are
presented. After 1 h of blue light exposure, irradiated explants and
respective non-irradiated explants (controls) were loaded with 25 mM
CM-H2DCFDA. In some cases, explants were pretreated with 4 mM
apocynin during blue light exposure. The Nox inhibitor apocynin
effectively reduced the levels of ROS production in the photoreceptors.
The arrowheads mark the assumed border between IS and OS. The
images are representative of 3 experiments. OS: outer segments; IS:
inner segments; ONL: outer nuclear.
doi:10.1371/journal.pone.0071570.g002

Figure 3. Immunofluorescence intensity of Nox-2 and Nox-4 proteins increased after 12 h of blue light exposure. A, C, Paraffin
sections of retinas after 12 h of cultivation. B, D, Paraffin sections of retinas after 12 h of blue light exposure. Nox-2 was increased in the OS (B) while
Nox-4 immunofluorescence intensity appeared slightly increased compared to the control (C, D). A–D, scale bar 50 mm; images are representative of
n = 3 experiments OS: outer segments; IS: inner segments; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner
plexiform layer; GCL: ganglion cell layer.
doi:10.1371/journal.pone.0071570.g003
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matched controls (Figure 6). A MDA adduct (ca. 75 kDa) in the

irradiated sample of the OS segment fraction was increased, but

decreased in the pellet (Figure 7). Other proteins (ca. 70 kDa and

38 kDa) were also influenced by blue light in OS and in the

cytosolic fraction (pellet), respectively (Figure 7).

N(6)-Carboxymethyllysine (CML) is an advanced glycation

endproduct (AGE). Under oxidative stress, AGE formation can be

increased beyond normal levels. CML is the most used marker for

AGEs. We detected an increased CML expression in the outer

segment layer of retinas after 12 h of blue light irradiation

compared to time-matched controls (Figure 8).

Superoxide dismutase 1 (SOD-1) is an enzyme that catalyzes the

dismutation of superoxide anions to oxygen and hydrogen

peroxide. After 12 h of blue light exposure to the retina sample,

we detected that SOD-1 expression rose especially in the outer

segments of the retina via immunohistochemical staining (Figure 9).

Western Blot analysis confirmed these data by an increase of the

SOD-1 enzyme in the outer segment fraction compared to the

time-matched control (data not shown).

Outer segments showed a mitochondria-like membrane
potential

After probing the blue light induced ROS production and

observing the generation of secondary oxidized metabolites or

enzymes involved in radical metabolism we wanted to test the

hypotheses of mitochondria-like activity of the outer segments in

dark environment and with blue light impact.

To a possible intact membrane potential in the outer segment

disks, we had to prepare the photoreceptors very quickly (as we

know from mitochondria, where every time delay leads to

depolarization). Thus, retinas were freshly prepared from animals

after decapitation and enucleation. They were shortly incubated

Figure 4. Effect of blue light on Nox-2 and Nox-4 protein expression. A,Western blot analysis showing increased Nox-2 and Nox-4 protein
expression in OS following 1 h of blue light exposure (+) or in controls. The blots were first exposed to anti-Nox-2 or anti-Nox-4, respectively and then
to anti-beta-Actin antibody as loading control. Images are representative of 5 experiments. B, Bar chart of densitometric analysis of Nox-2 and Nox-4
expression after 1 h and 12 h compared to control beta Actin. Bars represent the mean 6 SEM from n = 5 experiments (* shows significance
compared to control; *p,0.05 determined by ANOVA, post hoc Bonferroni test).
doi:10.1371/journal.pone.0071570.g004

Figure 5. mRNA expression of NADPH oxidase isoforms in retinas. A, NADPH oxidase (Nox) isoforms Nox-2 and Nox-4 are expressed in the
retina of untreated control mice. B, Nox-2 and Nox-4 mRNA expression after 1 h of blue light exposure of irradiated retinas compared to time-
matched non-irradiated controls. The mRNA expression was quantified by real-time PCR. Rpl32 was used as reference gene. Data are shown as
relative expressions 6 SEM (A) or as x-fold of time-matched controls 6 SEM (B). Statistics: t-test (A; p = 0.341) or paired t-test (B; Nox-2: p = 0.272; Nox-
4: p = 0.239), n = 9.
doi:10.1371/journal.pone.0071570.g005
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with either 10 mg/ml JC-1 or 20 nM TMRE, two markers of the

MMP in living cells which also apparently stained the outer

membranes of the photoreceptors. Slight changes in the color of

JC-1 (from orange – yellow to yellow and then to green) were

detectable which could indicate a change of the extra-mitochon-

drial membrane potential (Figure 10). TMRE does not show such

distinctive changes in intensity after short-term cultivation

(Figure 10).

A longer irradiation with blue light for 6 h and 12 h showed a

decrease in TMRE products after 6 h: it was higher in the

irradiated retinas than in the time-matched controls (Figure 11).

The green monomeric form of JC-1 (sign for MMP collapse) was

present to a greater extent in both irradiated retinas than in the

controls (Figure 12). Fluorescent red J-aggregates (the appearance

which is seen in healthy cells) were still seen after 12 h irradiation

and in the controls (Figure 12).

Discussion

While it is a well known fact that blue light can elicit ROS

generation in the retina, it is not clear exactly how and where

ROS are generated inside the photoreceptors [25,26]. ROS are

diffusible and short-lived molecules. Thus, localizing the ROS

signal at the specific subcellular compartment is essential for

activating redox signalling events after receptor activation. ROS

are involved in physiological signalling reactions, but it also

accepted that excessive amounts of radicals are able to initiate

vicious cycles within the cell metabolism [27,28,29]. This is

especially true for the photoreceptors because they harbour within

their outer segments a vast amount of photosensitive pigments

(generating e.g. A2-PE hydrolyzed to A2E as major component of

lipofuscin) [30]. In a study on isolated frog rods, Demontis et al.

showed that rhodopsin in the outer segment, when activated by

blue light, can produce oxidative radicals which can also lead to

lipid peroxidation [31]. On the other hand a robust amount of

reactive oxygen species is produced in the ellipsoid when cultured

photoreceptor cells (without a true outer segment) are exposed to

blue light [32].

The exact intracellular localization and quantitative relation of

ROS production, however, has not been shown until now. In this

paper we have demonstrated for the first time that not only the

inner segment of the photoreceptors but also the outer segments

directly are a source of radicals that mediate blue light-induced

detrimental effects on cells which may lead to cytotoxicity. The

Nox proteins are essential sources of ROS production in

photoreceptor outer segments, although obviously multiple factors

contribute to it. This observation was supported by experiments

with the Nox inhibitor apocynin. In addition, we could show a

blue light stimulated increase of the antioxidant defence enzyme

superoxide dismutase 1 (SOD-1) in the outer segments of the

photoreceptors.

The increased levels of MDA, 4-HNE which we also found after

blue light indicate lipid peroxidation and formation of advanced

glycation endproducts. Both processes indicate secondary reac-

tions to radicals [33,34]. Regarding structural damage in a recent

paper we showed that the membranes of mouse photoreceptor

Figure 6. Expression of malondialdehyde (MDA) and 4-hydroxy-nonenal (4-HNE) increased after 12 h of blue light exposure in
outer segments. A, C, Paraffin sections of retinas after 12 h of cultivation. B, D, Paraffin sections of retinas after 12 h of blue light exposure.
Oxidative stress caused by blue light exposure led amongst others to lipid peroxidation and end-products like MDA and 4-HNE increased
considerably in the OS (B, D). The respective time-matched controls showed only a weak autofluorescence in the OS (A, C). A–D, scale bar 50 mm;
OS: outer segments; IS: inner segments; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer;
GCL: ganglion cell layer.
doi:10.1371/journal.pone.0071570.g006

Figure 7. Effect of blue light on MDA adducts. Western blot
analysis of MDA adducts after 12 h blue light exposure and in controls.
The blot was first exposed to anti-MDA and then to anti-ß-Actin
antibody as loading control. From the retina that was irradiated with
blue light (+) or not (2), were different fractions loaded on a gel –
isolated outer segments (OS), cytosolic proteins in the pellet and other
proteins (remaining fractions). The expression of different MDA adducts
changed with blue light damage, especially of the proteins with sizes of
70 kDa and 38 kDa, marked with asterisks.
doi:10.1371/journal.pone.0071570.g007
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outer segments get distorted after blue light irradiation [7]. This

feature occurred after a longer irradiation time compared to the

time scales used in the present study. Possibly, the distortion and

membrane ruptures we found were caused by a longer lasting

ROS attack on the PUFA containing membranes.

On the other hand it is a relatively new and hitherto largely

ignored finding that the outer segments themselves contain the

mitochondrial machinery for the oxidative phosphorylation

[16]. Interestingly, we could corroborate the mitochondria-like

staining behaviour with the mitochondrial membrane dye JC-1

which Bianchini et al. used for depicting specifically the

photoreceptor outer segments (in a green colour – indicative

for depolarized mitochondrial membranes) [35]. In the present

paper we could add the functional aspect to this morphological

information: the outer segments are not only specifically

depicted by JC-1 but also react functionally like mitochondria

stained with this dye - they lose their red colour (indicative for

polarized membranes of well functioning mitochondria) over

time (due to anoxia in the explanted whole mount) and get

yellowish and later showed the full green colour of depolarized

membranes. This was corroborated by a further indication of

membrane depolarization via another mitochondrial membrane

dye we used, TMRE. At this time one can only speculate

whether this unique staining behaviour of the outer segment

membranes is due to a proton electrochemical potential

difference across the disk membrane which was already shown

by Uhl and Desel in 1989 [36]. It now accepted that many types

of rhodopsins are capable to pump protons although with low

efficiency [37].

In the light of the present results, the process of constant disk

renewal should therefore be a major function of the inner segment

mitochondria because shedding of outer segment membrane disks

is prone to interference by blue light and ROS and requires a vast

amount of energy: the photoreceptors as a whole consume 3–4

times more energy than all other retinal or central nervous system

cells [38,39]. However, the present results indicate that not only

the mitochondria of the inner segment but also the outer segments

themselves should be responsible for this very high oxygen

consumption of the outer retina [8] and for a high ROS

production in addition to Nox proteins. The high levels of oxygen

coming from the normally well-perfused choroidea might promote

oxidative stress. In addition to this, we have found that oxidation

enzymes in outer segments (able to produce ROS) like Nox-2

increased after blue light impact. Members of the Nox family of

enzymes generate superoxide radicals by one electron-reduction of

molecular oxygen by NADPH [40]. Bhatt et al. (2010) also found

that in the photoreceptors Nox-4 increased most among the Nox

family after stressing mouse retina explants with serum depriva-

tion. The authors found that both rods and cones reacted:

however, they did not differentiate outer and inner segment of the

photoreceptors [12]. Also Usui et al (2009) could show in

transgenic mice that Nox plays a central role in cone cell death

Figure 8. Expression of N(6)-Carboxymethyllysine (CML) was increased in OS after 12 h of blue light irradiation. A, Retina paraffin
section after 12 h of cultivation. B, Retina paraffin section after 12 h of blue light exposure. In the irradiated sample an increase of CML in the OS was
detected. A–B, scale bar 50 mm; images are representative of n = 3 OS: outer segments; IS: inner segments; ONL: outer nuclear layer; OPL: outer
plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer.
doi:10.1371/journal.pone.0071570.g008

Figure 9. Expression of SOD-1 was increased in OS after 12 h of
blue light. A, Retina paraffin section after 12 h of cultivation. B, Retina
paraffin section after 12 h of blue light exposure. Under both conditions
the expression of SOD-1 was higher in OS than in IS. The irradiated
sample showed an increase of the protein in the OS. A–B, scale bar
50 mm; images are representative of n = 3 experiments OS: outer
segments; IS: inner segments; ONL: outer nuclear layer; OPL: outer
plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL:
ganglion cell layer.
doi:10.1371/journal.pone.0071570.g009
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Figure 10. Short-term cultivation with Mitochondrial membrane potential (MMP)-dyes TMRE and JC-1. Images of RPE-OS-layer of whole
mounts directly after preparation of the retina during live staining with TMRE (A) and JC-1 (B), respectively. The color of JC-1 slightly changes from
orange-yellow (t = 2 min) to yellow (t = 10 min) and then to yellow-green (t = 20 min) in the pictures of merged fluorescence channels and DIC-
images, which could indicate a change of a extra-mitochondrial membrane (B). TMRE does not show such distinctive changes in intensity after short-
term cultivation (A). A–B, images are representative of three experiments; scale bar 20 mm.
doi:10.1371/journal.pone.0071570.g010

Figure 11. Decrease of TMRE products after 6 h and 12 h of blue light irradiation in OS. Images of the outer segment layer of whole
mounts stained with 20 nM TMRE after 6 h (A, B) and 12 h cultivation (C, D). The blue light irradiated samples (B, D) showed a distinct decrease of
TMRE products in the outer segment layer compared to the time-matched controls (A, C). The images are representative of 3 experiments. The
arrows point to leftovers of the RPE.
doi:10.1371/journal.pone.0071570.g011
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in retinitis pigmentosa – an effect which they could reduce by an

inhibitor of Nox [13].

Blue light rapidly induced ROS formation in retinal explants

after 0.5–1 h. This is most probably due to increased NADPH

oxidase activity. The classical NADPH oxidase activation in

macrophages involves translocation of phosphorylated cytosolic

subunits to the membrane thus forming an active Nox-2

complex [41]. A similar process might be responsible for the

rapid increase of ROS formation in our system. The increase

in Nox-2 and Nox-4 mRNA and protein expression beginning

after 1 h might represent a cellular adaptation to prolonged

blue light exposure. Increasing amounts of Nox proteins might

be needed to form additional NADPH oxidase complexes. Part

of the observed Nox-2 expression might also represent

monocytes/macrophages. Furthermore, increasing evidence

support a role of Nox-4 in mitochondrial ROS release of

different cell types [42,43]. Therefore, Nox-4 might contribute

to mitochondrial release of ROS in our retinal explant model

as well.

Our experiments show that blue light possibly induces ROS in

outer segments via NADPH oxidase as well as the mitochondria-

like activity of the outer segments. The cross talk between NADPH

oxidases and mitochondria-like activity may stimulate NADPH

oxidases. An example of such a cross-talk between NADPH

oxidases and mitochondria has been recently shown with SOD-2

depletion causing an increase in NADPH oxidase activity, whereas

SOD-2 over-expression reduces activation of NADPH oxidases

and NADPH-generated ROS [44]. SOD-1 deficiency leads to

aging in tissue with changes attributable to an elevation of ROS,

also seen in the retina of Sod12/2 mouse retina [45].

In our further investigations we will concentrate on the

differentiation between ROS sources Nox and respiratory chain

in photoreceptor outer segments. The exact nature of the

mitochondria-like appearance of the outer segments and their

extra-mitochondrial aerobic metabolism will also be examined in

these studies.
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