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Abstract
The growing number of bike sharing systems (BSS) in many cities largely facilitates biking

for transportation and recreation. Most recent bike sharing systems produce time and loca-

tion specific data, which enables the study of travel behavior and mobility of each individual.

However, despite a rapid growth of interest, studies on massive bike sharing data and the

underneath travel pattern are still limited. Few studies have explored and visualized spatio-

temporal patterns of bike sharing behavior using flow clustering, nor examined the station

functional profiles based on over-demand patterns. This study investigated the spatiotem-

poral biking pattern in Chicago by analyzing massive BSS data from July to December in

2013 and 2014. The BSS in Chicago gained more popularity. About 15.9%more people

subscribed to this service. Specifically, we constructed bike flow similarity graph and used

fastgreedy algorithm to detect spatial communities of biking flows. By using the proposed

methods, we discovered unique travel patterns on weekdays and weekends as well as dif-

ferent travel trends for customers and subscribers from the noisy massive amount data. In

addition, we also examined the temporal demands for bikes and docks using hierarchical

clustering method. Results demonstrated the modeled over-demand patterns in Chicago.

This study contributes to offer better knowledge of biking flow patterns, which was difficult to

obtain using traditional methods. Given the trend of increasing popularity of the BSS and

data openness in different cities, methods used in this study can extend to examine the bik-

ing patterns and BSS functionality in different cities.

Introduction
Biking is gaining popularity in many cities, which brings health and environmental benefits [1,
2]. Biking for commuting and recreation is one promising approach to counter the trend of
declining physical activity [3]. In addition, promoting bikes as means of transportation is asso-
ciated with reduction in pollution and traffic congestion [4]. In the United States, based on
short trip analyses from national household travel survey (NHTS), from 2001 to 2009, about
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half of all trips were within 4,828 meters (three miles). However, more than 70 percent of these
trips involved automobiles [5]. Subtle change in short distance travel from driving to biking
may therefore dramatically contribute to environment and public health [6].

The growing number of bike-sharing systems (BSS) in many cities does much to facilitate
biking for transportation and recreation purposes [7, 8]. The increasing popularity of the bike-
sharing systems has developed alongside technological changes. Most recent bike-sharing sys-
tems produce time and location specific data, which enables the study of travel behavior and
mobility at the individual level [9]. The data also provide useful information for transportation
planning and management [10]. However, because of their relatively short history of smart
BSS, despite a rapid growth of interest, studies on biking behavior using massive BSS data, and
the underneath mobility pattern, remain limited [11, 12].

Previous studies that consider this topic leave several issues poorly addressed. First, under-
standing and visualizing patterns out of massive bike-sharing data is challenging. The cluttered
display and overlaps of thousands of trips make it very difficult to extract informative patterns
[13]. For instance, Fig 1 represents ten percent and one percent of bike trips on weekends in
Chicago; the cluttered display of trips eclipsed the underneath patterns. Better trip analysis
methods are required in order to discover and differentiate biking patterns during different
time periods, such as weekdays, weekends, peak hours or even years. Second, since users can
check-out bikes from one station, and return to any stations, bikes can be disproportionally
distributed among different docks in the network. This may present a challenge; namely, that
people may not be able to find a bike at certain stations because of empty docks, or they may
experience difficulty returning a bike because of full docks. Few studies have investigated the
spatiotemporal patterns of the over-demand for bikes and docks at different locations and
times and the associated clusters. Third, most BSS in the US were developed in recent years.
Furthermore, these systems’ trip data of was opened to the public even more recently. The
Divvy bike-sharing systems in Chicago, for example, were launched in June 2013. Few studies
have analyzed the system use and compared spatial patterns in 2013 and 2014.

Fig 1. Ten percent and one percent subset of weekend trip map in 2013.

doi:10.1371/journal.pone.0137922.g001
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Given this context, this study aims to answer two questions by analyzing rich amount of
data generated by the bike-sharing system in Chicago: 1. How do bike flow patterns vary as a
result of time, weekday or weekend, and user groups? 2. Given the flow patterns, what was the
spatiotemporal distribution of the over-demand for bikes and docks in 2013 and 2014? This
study contributes a better understanding of public biking mobility patterns. By using the pro-
posed flow clustering based on community detection method, this study clearly demonstrates
biking patterns by identifying major and representative clusters at certain windows of time,
and filtering out noisy and unrepresentative trips. In addition, modeling over-demand patterns
using hierarchical clustering helps to better understand the characteristics of bike station usage
across all stations. The cluster profile analysis indicates the functional characteristics of each
cluster. Ultimately, results can be used to maintain a balanced bike-sharing system, as well as
design new biking facilities to promote active transportation.

The Public Bike-Sharing System
Public Bike-Sharing has a half-century long history [14]; however, the popularity of the BSS
remained low until recent decades. The capability of providing flexible mobility, as well as
reducing emission and transportation costs increased the popularity of the modern BSS. By the
end of 2013, there were about 0.6 million public bikes located in 600 cities across the world [15].

Many BSS studies were conducted in European cities. As of 2009, there were about 19 Euro-
pean countries operating bike-sharing programs [14]. Among these studies, analyzing the
impact of the BSS on mobility was one research focus. For instance, French cities offered many
early bike-sharing systems, including the Vélo’v in Lyon, in 2005, and the Vélib’ in Paris, in
2007. The percentage of trips by bikes increased from 1.0% in 2001, to 2.5% in 2007, in Paris,
and from 0.5% in 1995 to 2% in 2006 in Lyon [16, 17, 18]. Another group of studies focused on
the bike-sharing spatial usage patterns in cities, such as speed and pathways. In Lyon, France,
previous studies analyzed BSS usage patterns and typology of cyclists using Vélo’v data [10, 19,
20]. In Barcelona, Spain, studies examined the station characteristics, such as spatial distribu-
tion and service patterns, of the Bicing program [21,22]. Some scholars have also considered
the spatial inequality of bike-sharing programs and gender difference. Goodman and Cheshire
investigated the BSS use patterns of women and residents of deprived areas, using usage data
[1]. Beecham and Wood found that BSS usage patterns of female customers were very different
from those of male customers using London’s Cycle Hire Scheme [9].

Asian cities also witnessed a fast development in bike-sharing systems, with ‘Nubija’ in South
Korea, ‘C-Bike,’ and ‘YouBike’ in Taiwan being representative systems [23]. Zhang et al. analyzed
the bike-sharing systems in terms of service, business model, and management in five cities in
China [24]. Shaheen et al. conducted intercept surveys in Hangzhou to understand factors influenc-
ing bike-sharing adoption, and barriers to adoption [25]. Zhao et al. analyzed bike sharing travel
patterns by gender and day of the week, and found significant variation in both variables [26].

Comparing the BSS in Europe and Asia, the BSS in the US was more limited prior to 2010.
By 2010, there were about 101 bike-sharing programs, in about 125 cities around the world,
with US having only one [14]. Since 201, however, many US cities started to operate the third
generation BSS, such as Boston, New York, Seattle, and Chicago. However, due to the relatively
short history of the modern BSS, especially in the US, research on biking mobility and travel
patterns remains less documented [11].

Flow pattern analysis
There have been a number of studies examining BSS functionality and human biking behavior.
Corcoran et al. summarized two types of data that are more used in bike sharing research: data
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capturing stocks (stations) and data capturing flows (trips) [12]. Stock based analysis can reveal
the fluctuations in demand and availability in space and time, but hardly reflect the mobility
dynamics, such as movement patterns across a city [12]. There were many studies that examine
station-use patterns in the previous studies: Froehlich et al., for instance, used 13 weeks of bike
station data to investigate user behavior in Barcelona [21]. Etienne and Latifa used model-
based clustering method on stations’ departure/arrival counts to explore bike-sharing patterns
in Paris [27], associating station neighborhood characteristics with the generated mobility pat-
terns. Faghih-Imani and Eluru developed models to estimate destination preference using dis-
tance, land use, built environment, and access to public transportation infrastructure [6].
However, most flow-based analyses were confined to the domain of operational studies, aiming
to maximize utility and balance biking networks. However, there have been few studies that
examine trip data with the more generic goal of better understanding the dynamics of human
spatial mobility [12]. For instance, questions such as the overall biking behavior in a city during
peak hours or holidays remain largely unexamined, and to answer these questions, more inves-
tigations are required in order to analyze and visualize the complicated citywide trip data.

Flow based analysis, in general, is more analytically complex and difficult to visualize than
point based analysis. Lines or curves are usually used to represent flows. However, when flow
data becomes bigger, lines representing flows overlap, and the underneath pattern is eclipsed
[28]. Several practical approaches have been used to resolve this difficulty, such as sampling or
showing a small subset of flow at a time [29, 30]. However, these approaches may either miss
some information conveyed by the whole dataset, or lose an overview of patterns revealed by
the data [28]. Many recent studies have proposed new methods to analyze and visualize flow
data. Zhu and Guo proposed a flow clustering method to extract clusters of similar flows, and
reveal summarized flow patterns of taxi trips in Shenzhen, China [13]. Holleczek et al. analyzed
and visualized urban mobility patterns using cellphone call data, coupled with public transport
smart cards [31]. Taxi trip data and cellphone call data usually contain information about ori-
gins and destinations, which resemble the bike-sharing dataset. However, except for bike shar-
ing data visualization competitions in some cities, there have been far fewer papers that analyze
massive flow datasets with the more generic goal of understanding overall patterns of bike
sharing behaviors [12].

Over-demand because of asymmetric flows
One feature of bike sharing is the flexibility of checking-out a bike at a station, and returning it
to another station. The flexibility of shared bike systems also pose challenges to ensure both
bike and dock availability at different places [32]. From previous consumer satisfaction studies,
two main problems that promote frustrations are the difficulty to check-out a bike at the start
of the journey, due to an empty station, and the difficulty of returning a bike at the destination,
due to a full station [33]. These problems can be mitigated by using real time smartphone pro-
grams, which inform users of bike and dock availability at a certain location. It is also impor-
tant to gain a holistic view of station usage in order to improve service. Froehlich et al. used
activity score clusters and available bike clusters to identify similar stations, and showed how
travel behaviors relate to location, neighborhood, and time of day [21]. Etienne and Latifa used
a model-based count series clustering method to detect station service attributes, such as rail-
way stations, parks, employment, and housing, and their temporal demand profile [27]. How-
ever, few studies compared these station features across different years. For a young bike-
sharing system developed in recent years, it is important to study over-demand patterns in
order to better relocate stations and bikes. For instance, from the operator side, if nearby sta-
tions have different temporal over-demand patterns, operators can provide incentives to
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encourage riders to return bikes to nearby stations that have more check-out demand. By
doing so, operators can save more bike rebalancing costs. Additional studies are needed to
quantify demand and service performance of the system, and thereafter provide guides for sys-
tem management and potential expansion.

Data and Method

Data
We investigated the spatiotemporal patterns of bike sharing behavior in Chicago in 2013 and
2014. Chicago’s BSS are named Divvy, which were launched in late June 2013. The system
includes 300 stations and about 3000 bikes. All bikes are available 24 hours, each station has a
touchscreen kiosk and docking system which support bikes check-in and check-out using a
member key or ride code. Divvy is owned by the Chicago Department of Transportation
(CDOT) and operated by Motivate, a company focusing on large-scale bike share systems [34].

Data used in this study was obtained from Divvy website [34]. The dataset includes both
trip and station information in both 2013 (from June 27) and 2014. Station data consists of
coordinates and dock capacities. Trip data includes massive records about start and end sta-
tions, start and end time of trips, trip duration, user types either day pass or annual member-
ship, age and gender information for annual members. To analyze the land use profile
associated with stations, we also collected land use inventory from the Chicago Metropolitan
Agency for Planning (CMAP). The inventory we used was the 2010 parcel-based land use
information. This dataset contains fine-grained land use classes at detailed geographic unit.

Data preparation
Since the Divvy system was launched in late June 2013, for seasonal consistency, we first subset
data in both years from July 1 to December 31. For flow analysis, which will be introduced
shortly, we filtered out trips with identical origin and destination (we refer it as same origin-
destination rule). Without actual routing information, such trips are not meaningful for flow
analysis. Previous study also indicated that such trips might be problematic because of bike
malfunctioning and returned back to the original check-out point [6]. In addition, we also
deleted trips with duration less than 1 minute; because these trips may not show a common use
of the bike-sharing system (we refer it as short trip rule). In 2013, around 5.5 percent and 0.31
percent of trips were deleted because of the same origin-destination rule and the short trip rule
respectively. The numbers were 3.7 percent and 0.33 percent in 2014 respectively.

Bike flow dynamics
To answer the first question “How do the bike flow patterns vary because of time, weekday or
weekend, and user groups”, we first identified neighborhood flows for each trip, and then used
community detection algorithms to detect trip clusters. Because previous studies pointed out
the possible travel pattern difference between weekdays and weekends, and different user
types, we first divided our dataset into two groups: trips happened on weekdays or weekends as
well as trips made by subscribers or customers.

Specifically, the first step of this analysis was to identify neighboring flows. In this study, we
define each trip as a flow from origin to destination. Hence, the neighboring flows of Flow p is
defined as NFp = {Fq2Fa|Oq2NEI(Op) & Dq2NEI(Dp)}. Where O and D are the origin and des-
tination of flow p respectively. NEI function represents a dichotomous function to select if
point q is within the neighborhood of point p. Zhu and Guo summarized two methods to cal-
culate nearest neighbors for flows, including Euclidian Distance and K-Nearest-Neighbor [13].

Biking Behavior through Lens of Massive Bike Sharing Data

PLOS ONE | DOI:10.1371/journal.pone.0137922 October 7, 2015 5 / 20



In this study, because bike stations in the city periphery were far fewer than city center, we
used the Euclidean neighborhoods for clustering analysis to control the search radius for sta-
tions in the periphery. Neighborhood flows are defined as:

NðFp; dÞ ¼ fFq 2 FjOq 2 EdðOp;OqÞ < d&Dq 2 EdðDp; DqÞ < dg
where O is the origin and D is the destination, d is the distance parameter.

It is computation-intensive to calculate each pair of all trips in the dataset. Instead, we first
created a station list S, which contains the neighbor stations based on Euclidean Neighbor-
hoods for each station. We then created two lists LO and LD for each trip Ti to store the trip
IDs. These trips should satisfy two criteria:

1. LOðFiÞ ¼ fFq 2 FjOq 2 Sig
2. LDðFiÞ ¼ fFq 2 FjDq 2 Sig
where F represents all flows in the dataset. O and D represent origin point and destination
point respectively. S is the station list created in the previous step.

Then the neighboring flow IDs for Fi is just the intersection of LO and LD for flow Fi. We cal-
culated the distance between two neighboring flows using Euclidian distance for both origin and
destination. Hash mapping for each pair of neighboring flows was used to store the distance.

The second step was to group similar flows into same cluster using graph community detec-
tion techniques. We first constructed a graph with neighboring flows being nodes and distance
between flows being edge weights. Fastgreedy detection algorithm was used in this study (For-
mulas 1 and 2). This algorithm aims to optimize modularity functions, which is an index to
evaluate the performance of network partitioning [35, 36].

Q ¼ 1

2m
SC2PSv;w2CðAvw �

kvkw
2m

Þ Formula 1

Avw ¼ 1; if vertices v and w are connected

0; Otherwise
Formula 2

(

Where Q is the modularity index. Modularity is one index to describe the structure of net-
works. It was designed to measure the strength of division of a network into smaller communi-
ties. Networks with high modularity suggest dense connections between the nodes within
communities but sparse connections between nodes in different communities [37]. So the aim
of this algorithm is to maximize the value Q. C is one community in the whole set of P. v, w rep-
resent nodes in the network.

Initially, every vertex in the graph was assigned to one community. Then communities were
iteratively merged so that each step generated the largest increase of the current modularity.
The algorithm stopped when the maximum modularity change became negative. In this study,
the outputs of the algorithm were a set of communities, which represented similar flows
among all biking trips. We used centroid of origins and destinations for all flows in a commu-
nity to better visualize clusters.

Spatiotemporal demands for bikes and docks
To answer the second questions “what are the spatiotemporal over-demands distribution for
bikes and docks in 2013 and 2014”, we extracted demand features for each station, compared
the demand with the estimated capability for individual station, and clustered similar stations
in terms of use patterns. In demand analysis, we subset our dataset into trips happened in
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weekday and weekend, but not by subscriber and customer because both use types collectively
contributed to the station loads.

Specifically, the first step was to define the demand features for bikes and docks. We first
defined the analysis time window. Longer time window may lose some variability within each
window while shorter time window may introduce too many features that are not representa-
tive for the temporal behavior clustering. Prior studies used seven time windows to aggregate
biking behavior: 7-9AM, 9AM-1PM, 1-3PM, 3PM-5PM, 5PM-8PM, 8PM-12AM and 12AM-
5AM [21]. In this study, we followed this trend and used more homogenous divisions: every
two hours being a window except 12am-6am when few riding happens. During each time win-
dow, net check-in value was calculated by formula 3.

Nik ¼ St2Wi
INk � St2Wi

OUTk Formula 3

Where i is one of the ten time-windows, k is the station ID, IN and OUT are check-in and
check-out numbers respectively. It is important to look at the net value because if large number
of check-in and check-out happen simultaneously, the demands for bikes and docks will be
cancelled off, which will not introduce additional use pressure for such station. To model the
check-in request when all docks are full and check-out request when all docks are empty, we
hypothesized the available bike number at the start of each time window as half of the capacity
for each station to maximize both check-in and check-out capacity at each station. Hence, the
sum of the net check-in value and the hypothesized bike number S at station k, represents the
demand pressure for station k at time window t. If the N is much greater than the capacity,
over-demand for docks occurs in window t. Similarly, if N is a big negative value, the demand
for bikes will be significant. This is a simple simulation because operators always redistribute of
bikes among different stations. But this index reflects the demand pressures and redistribution
cost which will be valuable to understand travel patterns and maintaining systems.

We used agglomerative hierarchical clustering methods to find the stations with similar
temporal demands. Agglomerative hierarchical clustering is one type of “bottom up”
approaches, which assigns each observation as a cluster first and merges pairs of clusters with
similar feature signature into same clusters. The similarity between two clusters can be quanti-
fied by different metrics, such as Euclidean distance, Manhattan distance, and Cosine distance.
Since each cluster may contain multiple stations, we need to define a function (linkage criteria)
of the pairwise distances between two clusters [38]. Results of the clustering process merge sta-
tions with similar usage pattern into the same clusters. In this study, the total over-demand
numbers for docks and bikes of all weekdays were aggregated to ten time windows (the same
window in the previous step). We used cosine distance (Formula 4) as the dissimilarity metric,
and complete linkage was used as the linkage criteria.

cosðA; BÞ ¼ Sn

i¼1SAi
� SBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sn

i¼1SAi

2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn

i¼1SBi

2

q Formula 4

Where cos(A,B) suggests the cosine distance between station A and B. SAi represents one over-
demand variable at time window i

To analyze the characteristics of the derived clusters, we investigated the user, directional,
and land use profiles for each cluster when over-demand happened. User profile reflected the
dominant user characteristics associated with each cluster, including the number of trips, sub-
scribers and customers, gender, age, and ride duration six aspects. Based on the over-demand
analysis, we aggregated the user profile for each station at the time when the over-demand hap-
pened. Directional profile reflected the dominant ride directions at different time window for
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stations in each cluster. The direction was calculated based on the angle between the line con-
necting origin and destination and the horizontal axis. We used rose diagram to represent the
overall direction distribution. We also compared the directional profiles for each cluster during
the morning and afternoon peak hours and other time windows. Land use profile depicted the
major land use types associated with each cluster. In this study, we mainly focused on residen-
tial (single-family, single-family attached, and multi-family), commercial (shopping malls,
regional & community retail centers, large-site retail, office, and hotel/motel), educational (K-
12 education and post-secondary education), vacant (vacant residential land), recreational
(open space and primarily recreation) land use, which are the major land use types in the data-
set. Consistent with trip clustering analysis, we used the same neighborhood distance to calcu-
late a buffer around each station. The average area of certain kind of land use type within the
neighborhood was calculated and aggregated for each cluster. These three profiles were used to
infer the functional differences for each cluster.

Results

Distance threshold selection
The value of distance threshold influences the cluster structure and computation intensity. If d
is too small, the number of small clusters will be higher. If d is too large, it requires more
computational power. We compared different distance threshold d to find an appropriate
value. The dataset is based on subscribers’ weekend trips in 2013. Fig 2 shows the neighboring
stations and trips for the given distance. To find the best neighborhood distance threshold, we
plotted the distance radius versus three indicators, neighboring stations, trips greater than 1,
and trips greater than 20. Based on neighboring stations, we found that the curve leveled off
around 426.7 meters (1,400 feet). In addition, we found that when the distance was close to
426.7 meters (1400 feet), almost 75 percent of stations can detect neighbors, and more than
50% of trips had more than 20 neighboring trips. This value should be sufficient for flow clus-
tering analysis, with reasonable computation load. Hence, in the flow dynamics analysis, we
select 402 meters (0.25 mile) (1,320 feet, in the range of 1,200–1,400 feet) as the threshold
distance.

Overall trip description
From July 1 to December 31, there were 756,670 trips in 2013 and 1,548,935 in 2014. Among
these trips, in 2013, 53.3 percent of trips were made by subscribers, who had unlimited 30-min-
ute bike trips throughout the year. In 2014, this number increased to 69.2 percent, suggesting
the BSS gained more regular users. Fig 3 shows the overall pattern of Divvy system usage over

Fig 2. Neighboring stations and trips for the given distance.

doi:10.1371/journal.pone.0137922.g002

Biking Behavior through Lens of Massive Bike Sharing Data

PLOS ONE | DOI:10.1371/journal.pone.0137922 October 7, 2015 8 / 20



the two years. The total rides by customers and subscribers increased from 2013 to 2014, espe-
cially significant in the time window July to August, when Divvy was launched in 2013. Sea-
sonal differences were also obvious. There were significantly more rides in summer than in
winter (Fig 3).

We also compared the customers’ and subscribers’ travel patterns at different times of a day.
Overall, subscribers’ travel patterns were similar to overall weekday travel patterns. Usage
peaked at rush hours, around 8am and 6pm. Moreover, the spike during the afternoon rush
hour was sharper than in morning, which suggested that traffic concentration in the afternoon
was more significant (Fig 4). Weekend BSS usage was much less than on weekdays. Comparing
user type, customers were much more frequent than subscribers. From this, we can infer that
subscriber uses were more commute-oriented, and customer uses were more recreation-ori-
ented. Most customer and weekend use concentrated and evenly distributed between 10am
and 8pm (Fig 5).

People rode longer during weekdays than weekends, but surprisingly, females in general
rode longer in duration than males (Fig 6). We also compared the distance traveled between

Fig 3. Comparison of Divvy daily usage between two years.

doi:10.1371/journal.pone.0137922.g003

Fig 4. Subscribers’ biking behavior at different time periods.

doi:10.1371/journal.pone.0137922.g004
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females and males. In 2013, females on average rode 113.4 meters (372 feet) and 210.3 meters
(690 feet) more than males did on weekends and weekdays, respectively.

Bike flow dynamics
The trip dataset contained large amounts of information. Plotting only ten percent or one per-
cent of trips still generated a cluttered map (Fig 1). In contrast, results of our bike flow cluster-
ing demonstrated meaningful patterns. We compared bike flow patterns in the morning and
afternoon peak hours on weekdays in 2013 and 2014. Weekends did not show any travel peak

Fig 5. Customer’ biking behavior at different time periods.

doi:10.1371/journal.pone.0137922.g005

Fig 6. Median of trip duration for males and females in 2013 and 2014.

doi:10.1371/journal.pone.0137922.g006
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hours, but customers and subscribers exhibited different biking behaviors. Fig 7 showed results
of the comparisons. Fig 7a1 demonstrated people’s travel patterns during weekday morning
peak hours. We detected 260 clusters with size greater than 20. Intuitively, the inbound trips
were dominant. A majority of trips travelled into the downtown areas. Many long travel clus-
ters were also discernable, such as flow clusters from South Chicago to downtown areas. The
average Euclidean travel distance among all stations was 1.96 miles. Fig 7b1 showed biking pat-
terns of afternoon peak hours during weekdays. As opposed to morning patterns, outbound
trends were obvious. The green color suggested many bikes were checked-out in the downtown
area, and traveled to surrounding areas, which were represented by the red color. Interestingly,
during weekends, customers and subscribers’ biking behaviors exhibited different patterns. Fig
7c1 showed customers’ travel patterns. We can clearly identify many trip clustered into the
Downtown, Navy Pier, and a belt along Lake Michigan, where recreational bike lanes were con-
centrated. The average flow cluster distance for customers was 2.2 miles, which was signifi-
cantly higher than for subscribers. Unlike customers, subscribers’ weekend travels did not
show particular patterns (Fig 7d1). Although some clusters still flow to downtown, the travel
patterns were generally more diverse than that of customers.

Fig 7. (a) Flow clusters for morning peak hours on weekdays. (b) Flow clusters for afternoon peak hours on weekdays. (c) Customers’ travel patterns during
weekend. (d) Subscribers’ travel patterns during weekend. Background color represents the flow-in density. Red color means trips converge while green
color means trips flow away. Group 1 represents 2013 and Group 2 represents 2014.

doi:10.1371/journal.pone.0137922.g007
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The overall flow patterns were similar in 2013 and 2014. Morning and afternoon peak hours
revealed similar strong inbound and outbound clusters. Flow hotspots for subscribers and cus-
tomers had similar spatial patterns. The main difference was the cluster intensity. Comparing
cluster numbers with the size greater than 20, there were 260 flow clusters in 2013. This num-
ber increased to 378 in 2014. This reflected the fact that although a significant amount of peo-
ple started using the Divvy system, overall usage patterns remained the same in two years.

Spatiotemporal demands for bikes and docks
To investigate spatiotemporal over-demands for bikes and docks in 2013 and 2014, we mod-
eled the total cases of dock overload and bike insufficiency for each station in both years. Fig 8
shows the results. Demand for bike check-in and check-out in 2014 was much higher than in
2013, especially for several stations, such as #100, #164, and #212, where almost no over-
demand situations happened in 2013. Second, we found that several stations experienced high
dock and bike demands at different time windows, such as at stations #91 and #192. These sta-
tions were close to transit stations, and over-demand patterns closely correlated with work
commute. Third, interestingly, we noticed that several stations experience greater check-in
pressure from 10am-14pm during weekdays, such as #76, #97, #35, #177, and #268. Almost all
stations were close to the shores of Lake Michigan.

To find the spatiotemporal patterns of over-demand for bikes and docks, we also conducted
hierarchical clustering analysis. Based on the spatiotemporal demands analysis, we found that

Fig 8. Demands for dock and bike that exceed the hypothesized service capacity. Counts above zero represent the total number of bikes that are not
able to check in due to full docks. Counts below zero represent the total number of failed attempts to check out bikes due to empty docks. Colors represent
different time windows.

doi:10.1371/journal.pone.0137922.g008
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stations exhibit several usage patterns: strong morning peak check-in, strong morning peak
check-out, strong non-peak hour use, mixed use, and low use. Hence we used five classes to
clustering the over-demand patterns. To better illustrate the temporal use patterns for each
type of station, we plotted a temporal use spectrum based on the over-demand rate for docks
and bikes (Fig 9). The red curve represented a strong demand for check-in requests, and the
green curve represented a strong check-out request. The map showed the spatial distribution
of these five clusters. Cluster A represented a relatively low use cluster. In 2013, stations in
Cluster A did not experience any overload problems, while this happened to some stations dur-
ing peak hours in 2014. Cluster B exhibited a strong non-peak hour use. Locations of these sta-
tions were close to the Chicago Museum Campus, Millennium Park, and Magnificent Mile. We
thus suspect this cluster might be related to recreational travels. Cluster C and Cluster D
showed opposite temporal usage trends. Cluster C showed a strong check-in trend in the
morning peak hours, and a strong check-out trend in the afternoon peak hours. We estimated
these stations might be associated with workplace. On the other hand, many bikes checked-out
in the morning, and returned in the afternoon. These stations were more associated with resi-
dence. The temporal use signatures of Cluster E were different from the rest of the classes. The
use rate was higher than Cluster A, but the demand for check-in and check-out was mixed.
Demand for bike rebalancing for this type of station was not as strong as other types.

To further investigate the characteristics associated with each cluster, we conducted user,
directional, and land use profile analysis. Table 1 reflected the user profile of each cluster in
2013 and 2014. Cluster C and D were associated with the most trips and subscribers in both
2013 and 2014, suggesting these stations were used more for commuting purposes. Cluster B
was the only class of which the number of customers was much higher than that of subscriber’s.

Fig 9. Spatiotemporal clusters for bike and dock over-demand. Stations were classified into five classes. Each cluster has its own temporal use pattern.
Red curve represents the over check-in pattern and green curve represents the over check-out pattern.

doi:10.1371/journal.pone.0137922.g009
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In addition, the average trip duration for Cluster B was also significantly longer than the rest of
Clusters. The user profile suggested this cluster was more associated with recreational trips.
Based on the over-demand pattern, Cluster A did not show any over-demand cases in 2013
while the cases emerged in 2014. The user profiles of Cluster A in 2014 and Cluster E were sim-
ilar to C & D but with much fewer trips. The user gender did not show obvious patterns among
clusters and between two years. Comparing two years, in general, increasing number of youn-
ger people started to use the Divvy Systems in 2014 across five clusters.

Directional profile revealed the dominant ride directions at different time window for sta-
tions in each cluster. As with the flow cluster analysis, we can find a strong inbound direction
for Cluster D during the morning peaks and a strong outbound trend for Cluster C during the
afternoon peaks. In addition, we also noticed some interesting patterns. After 8pm, most clus-
ters become less busy. However, most stations in Cluster B were still active and revealed some
directional patterns. Fig 10 reflected the over-demand directional profile for stations in Cluster
B after 8pm. The trips exhibited a strong north-south flow direction along the coast. These
trips resembled recreational rides along the coastal park close to Michigan Lake, which was a
hotspot for activities in the evening. In addition, in Cluster C and D, there were some stations
had greater check-out records than check-in records during both morning and afternoon
peaks (Fig 11). In the morning, bikes in these stations were checked out and ridden to most
directions on the east side of the Chicago River. The flow directions implied the activity hot-
spots during the work time. During the afternoon peak hours, however, bikes of these stations
were mostly ridden to the west and north directions. Fewer bikers moved the south direction.
Cluster A and E did not show particular directional profiles.

We also calculated the land use profile for each cluster. Cluster C was mostly associated
with commercial land use. The average area of commercial land use surrounding stations in
Cluster C was 152576.8 square meters. Comparing to Cluster B and C, more stations in Clus-
ters A, D, E were closer to residential area. Although stations in Cluster A contained relatively
fewer trips, their neighborhood covered a lot of educational land use. Most stations in Cluster
C were located in downtown areas. For those stations in Cluster C but not in downtown areas,
they were mostly related to educational facilities, for instance, University of Illinois at Chicago
in the west and DePaul University in the north. For recreational land use, Cluster B accounted
for 48.8%. This also confirmed that many trips connecting stations in Cluster B were recrea-
tional-related. A good deal of vacant residential land was in the neighborhood of Cluster A.
This may partly explain the relatively lower usage for Cluster A. The land use profile further
demonstrated the characteristics of each cluster (Table 2).

Table 1. User profile of each cluster when the modeled over-demand happened in 2013 and 2014.

Year Cluster Customer # Subscriber # (%) Trip # Ave. Duration (Sec) Male # Female # (%) Median Age

2013 A 0 0 (N/A) 0 N/A 0 0 (N/A) N/A

B 38283 12602 (24.8) 50885 1607 9832 2767 (22.0) 34

C 21826 95771 (81.4) 117597 864 78992 16777 (17.5) 36

D 36453 58682 (61.7) 95135 1078 49481 9199 (15.7) 38

E 12952 21937 (62.9) 34889 1109 17165 4772 (21.8) 33

2014 A 37186 146586 (79.8) 183772 909 107532 39058 (26.6) 31

B 59182 38498 (39.4) 97680 1363 27949 10547 (27.4) 34

C 32698 271523 (89.3) 304221 772 219220 52251 (19.2) 34

D 76517 214345 (73.7) 290862 939 170362 43970 (20.5) 35

E 38252 109640 (74.1) 147892 937 82627 27020 (24.6) 32

doi:10.1371/journal.pone.0137922.t001
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Fig 10. The over-demand directional profile for stations in Cluster B in the evening.

doi:10.1371/journal.pone.0137922.g010
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Discussion
The bike sharing system in the US developed rapidly in recent years. From usage comparisons
in Chicago, the overall trips made from July to December have doubled from 2013 to 2014.
Among all trips, the proportion from subscribers increased from 53.3% to 69.2% from 2013 to
2014. Consistent with prior study, we found that women rode longer than men. By comparing
the average origin and destination distances between women and men, we found that females
on average rode 113.4 meters (372 feet) and 210.3 meters (690 feet) more than males did on
weekends and weekdays, respectively. In Chicago, only about 21% of members are women
[39]. It is possible that most women who use the BSS are regular users, and are more interested
in physical activity. These women are thus more likely to pursue longer trips [39]. It would be
interesting to compare gender differences in other cities.

Fig 11. The stations had significantly more check-out records than check-in records during bothmorning and afternoon peaks in Cluster C and D.

doi:10.1371/journal.pone.0137922.g011
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This study investigated bike-sharing patterns from both flow and station perspectives. From
flow pattern analysis, we developed an effective approach to extract meaningful clusters from
massive amounts of travel data. The derived travel patterns were valuable to provide reference
and evidence for sustainable transportation planning. For instance, we found that there were
long distance biking clusters connecting south Chicago and downtown areas. One reason for
this long distance ride was the well-connected and standalone bike lanes along the Lake Michi-
gan. People are willing to bike longer for both transportation and recreation purposes if the
urban environment is safe and encouraging. From a station demand analysis, this paper also
examined temporal patterns of over-demand for bikes and docks. Results of station demand
analysis were valuable in order to better operate the sharing systems. For instance, by compar-
ing system use between two years, we observed that the modeled over-demand rate at several
stations grew significantly faster from 2013 to 2014. Operators may need to consider additional
redistribution approaches in order to handle the disproportional increase. In addition, the pre-
sented methods were able to efficiently handle large amounts of flow data, and extract underly-
ing patterns of travel behaviors. Results clearly revealed distinct travel amounts, direction, and
concentrations at different times of day.

The asymmetry feature of trips in a network (disproportionate amount of trips between two
stations at certain time) may cause insufficient services for docks or bikes. This study used a
simple but effective model to estimate over-demand across space and time. Results from station
clustering suggested that even geographically close stations might exhibit different demand
patterns. The system operator may propose incentives to encourage people to return bikes to
close stations, where demand is higher during certain time windows. For instance, station A at
Canal St. & Madison St. and station B at Canal St. & Monroe St. Although these two stations
were only several blocks away, their over-demand patterns were very different. Operators can
provide incentives to attract users to return bikes to station B, rather than station A, during
morning peak hours to reduce rebalancing costs.

Insight gained from this study can be extended to other cities. In this study, we found domi-
nant inbound flows in the morning and outbound flows in the afternoon peak hours. This cor-
responded to the zonal urban structure (single-center) of Chicago. This general flow pattern
may apply to cities with similar concentric zone urban structure. However, cities with other
urban structures such as Sector Model or Multiple Nuclei Model can apply the flow clustering
method to investigate the relationship between biking patterns and city structures. Second, in
this study, we observed the land use profile of station clusters were related to the BSS use pat-
terns. For instance, stations close to universities may boost students’ physical activity while sta-
tions near parks and recreational areas may involve more customer usage. The different user
groups may generate unique mobility patterns. These factors should be considered when
deploying the systems. Also, future studies can investigate if the mixed land use is associated

Table 2. The average area of certain land use type in station buffers. Unit of the area is square meter. Numbers in the parenthesis represent the percent-
age of land use of certain kind among five clusters.

Cluster Commercial Residential Educational Recreational Vacant Residential

A 12685.2 (4.7) 194040.1 (27.5) 45156.6 (38.0) 61738.0 (7.7) 8341.3 (46.4)

B 48418.8 (17.8) 91234.4 (12.9) 8565.9 (7.2) 391928.4 (48.8) 52.5 (0.3)

C 152576.8 (56.0) 62178.2 (8.8) 18682.1 (15.7) 74155.7 (9.2) 3339.3 (18.6)

D 36189.8 (13.3) 174675.6 (24.7) 27093.8 (22.8) 117305.4 (14.6) 1775.7 (9.9)

E 22509.11 (8.3) 184401.8 (26.1) 19477.8 (16.4) 157228.1 (19.6) 4454.7 (24.8)

doi:10.1371/journal.pone.0137922.t002
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with more biking activities. Third, this study also examined the spatial-temporal usage differ-
ence for subscriber and customers. The knowledge gained from analyzing the biking mobility
could be very helpful to identify complementary patterns, which will be useful to optimize the
systems. For instance, currently many BSS employ a flat rate. Planners might consider develop-
ing floating rate systems to encourage people to return bikes to the desirable locations or
encourage customers use less when and where utilitarian demand is high. Methods used in this
study can be also applied in different city context. The over-demand model can be applied in
other cities to anticipate usage patterns. This would be helpful for better rebalancing bikes and
more effective budgeting. In addition, the clustering methods can be applied to other broader
problems involving data with origin-destination forms. For instance, such method can be used
to study the taxi mobility patterns if the dataset contains pick-up and drop-off locations.

We plan to extend current study by integrating public transit data, and data for other types
of transport. First, as city transportation data becomes more available, it offers great opportuni-
ties to crowd-source multiple datasets, such as public transit data or car sharing data, with
which to examine city transportation patterns. Bike sharing data can be integrated with other
public transit data to harmonize bike-sharing infrastructure with public transit transportation
service. In our study, we found that the stations with the most over-demand during weekdays
were actually not located at the center of the business district, but rather very close to Union
Station and subway stations. Many commuters use public transit to traverse longer distances,
and then connect with Divvy Bikes to get to their final destinations. It would be interesting to
jointly look at travel patterns of public transit and bike sharing, in order to create a more seam-
less multi-modal transportation system. City planners can expand infrastructure to smooth
connections between subway and bike stations. Policy-makers can consider an integrated or
discounted fair to promote joint use of these two systems.

Conclusion
This study investigated the spatiotemporal biking pattern in Chicago by analyzing BSS data
from July to December in 2013 and 2014. Our work mainly contributes to the growing litera-
ture in bike-sharing systems in two aspects. First, we detected and visualized flow clusters by
examining massive individual trips. Results clearly reflected major spatiotemporal bike flow
patterns in Chicago. Second, this study also analyzed station over-demand patterns across the
city. Results of hierarchical clustering revealed the spatial distribution of stations with different
temporal use signatures. We also used user, directional, and land use profiles to investigate the
functional characteristics of the derived clusters. The proposed methods can be applied to
other cities in order to study citywide biking behavior, and mobility patterns. The results are
useful in planning future stations, and developing incentives to better rebalance bike service.
We plan to extend our current study by integrating public transit data to create a more seam-
less multi-modal transportation system.
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