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Abstract

Tractography is an important tool for the in vivo analysis of brain connectivity based on diffusion 

MRI data, but it also has well-known limitations in false positives and negatives for the faithful 

reconstruction of neuroanatomy. These problems persist even in the presence of strong anatomical 

priors in the form of multiple region of interests (ROIs) to constrain the trajectories of fiber 

tractography. In this work, we propose a novel track filtering method by leveraging the groupwise 

consistency of fiber bundles that naturally exists across subjects. We first formalize our groupwise 

concept with a flexible definition that characterizes the consistency of a track with respect to other 

group members based on three important aspects: degree, affinity, and proximity. An iterative 

algorithm is then developed to dynamically update the localized consistency measure of all 

streamlines via message passing from a reference set, which then informs the pruning of outlier 

points from each streamline. In our experiments, we successfully applied our method to diffusion 

imaging data of varying resolutions from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) and Human Connectome Project (HCP) for the consistent reconstruction of three 

important fiber bundles in human brain: the fornix, locus coeruleus pathways, and corticospinal 

tract. Both qualitative evaluations and quantitative comparisons showed that our method achieved 

significant improvement in enhancing the anatomical fidelity of fiber bundles.
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1. Introduction

The advent of diffusion magnetic resonance imaging (dMRI) (Basser et al., 1994) allows the 

study of structural connectivity in the human brain in vivo. To noninvasively reveal and 

study the trajectories of white matter pathways of human brain based on dMRI, tractography 

is a central approach (Basser et al., 2000; Mori et al., 1999) and has been successfully 

applied in neuroimaging studies of various brain disorders. On the other hand, recent 

validation studies (Aydogan et al., 2018; Maier-Hein et al., 2017) showed tractography 

techniques had critical limitations in the reliable reconstruction of neuroanatomy. To this 

end, we propose in this paper a novel track filtering algorithm for the robust reconstruction 

of fiber bundles with groupwise consistency. We will demonstrate that the groupwise 

consistency is able to compensate for limited anatomical knowledge in tractography-based 

fiber bundle reconstruction.

Fiber bundles can be generated by either deterministic (Basser et al., 2000; Mori et al., 1999) 

or probabilistic tractography techniques (Behrens et al., 2007; Descoteaux et al., 2009; 

Tournier et al., 2019). To remove artifacts from tractography results, various approaches 

have been proposed for the filtering of fiber tracks with the inclusion of different degree of 

anatomical priors. For the filtering of whole brain tractograms, several methods have been 

developed that examine how well the tractogram fits the dMRI data or the fiber orientation 

models computed from the dMRI data and remove streamlines with low data fidelity 

(Daducci et al., 2015; Pestilli et al., 2014; Smith et al., 2015). Clustering techniques 

(Guevara et al., 2011; O’Donnell and Westin, 2007) for the reconstruction of major fiber 

bundles are most related to our current work. By taking advantages of the geometric 

similarity of pathways, clustering algorithms can be applied to fiber tracks from individual 

subjects or multiple subjects warped into a common space. Recently, this approach was 

applied to the whole brain tractography of 100 HCP subjects for the extraction of common 

clusters and construction of white matter atlases, which were then applied to the whole brain 

tractogram of individual subjects for bundle reconstruction (Zhang et al., 2018). This 

approach is still largely data-driven and anatomical labels were typically assigned after the 

generation of clusters (O’Donnell and Westin, 2007). For fiber bundle reconstruction, the 

most conventional type of approach uses strong anatomical priors in the form of region-of-

interests (ROIs) to increase the validity of tractography-based solutions (Catani et al., 2002; 

Wakana et al., 2004). This method is most suitable for the reconstruction of fiber bundles 

with well characterized anatomy (Tang et al., 2018). Based on this approach, a white matter 

query language (WMQL) was developed as an automated framework for ROI-based bundle 

segmentation (Wassermann et al., 2016).

Even with the use of strong ROI-based anatomical priors, however, residual artifacts still 

frequently occur in the reconstructed fiber bundles (Rheault et al., 2020). This is because we 

usually can only provide a small number of ROIs to constrain the fiber trajectories due to 

either incomplete anatomical knowledge or the high cost of generating extensive anatomical 

labels. To remove outliers from ROI-based reconstruction of fiber bundles, track filtering 

methods based on geometric distances (Garyfallidis et al., 2012) or topological analysis 

(Aydogan and Shi, 2015) were proposed. More recently, topographic regularity was 

proposed as a novel criterion for the removal of outlier streamlines (Wang et al., 2018). A 
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cluster confidence index (CCI) was introduced to model the geometric similarity of 

neighboring tracks and remove outliers (Jordan et al., 2018). One common theme of these 

methods is that they assume a certain level of geometric or topographic regularity at the 

individual level to compensate for the insufficiency of anatomical constraints, but 

consistency across subjects is not considered. In addition, the filtering process typically 

operates at the level of whole streamlines.

In this paper, we develop a novel track filtering method for fiber bundles by incorporating 

regularity from the perspective of groupwise consistency. In essence, our method will filter 

the fiber bundles from a group of subjects simultaneously and take advantage of the 

regularity that naturally exists at the group level to remove randomly occurring errors in 

each subject, thus compensating for the gaps in anatomical priors. Compared to previous 

track filtering methods for fiber bundles, there are several unique aspects in our work. First, 

we develop an intuitive definition of groupwise consistency that provides flexible controls 

over the level of desired consistency across the group from three different aspects: degree, 

affinity, and proximity. Second, we measure the groupwise consistency at each point on a 

streamline via an iterative message passing mechanism from a set of carefully constructed 

reference set of fibers. Third, we perform the filtering at the local level by iteratively pruning 

away inconsistent portion of each streamline instead of making a binary decision as in many 

previous works. This is one of the unique aspects of our method that not only allows the 

elimination of whole streamlines with defects but also the extraction of streamline segments 

reproducible across subjects, which can be highly valuable when precise end ROIs cannot be 

properly defined for a fiber bundle. In our experiments, we will demonstrate this property 

enables the reconstruction of anatomically meaningful and consistent sub-bundle structures 

from fiber bundles dominated by highly spurious outliers. We will also show the proposed 

method can be easily applied to perform conventional filtering tasks that either accept or 

reject a track from a bundle.

The rest of the paper is organized as follows. In section 2, we propose our definition of 

groupwise consistency and develop the numerical algorithm to implement this concept to 

achieve track filtering at the group level. In section 3, we present experimental results on the 

reconstruction of three important bundles: fornix, locus coeruleus (LC) pathways, and the 

corticospinal tract (CST) to demonstrate the efficacy of our method over conventional 

filtering methods. Finally, discussions and conclusions are made in section 4.

2. Method

In this section, we develop the proposed track filtering algorithm based on a novel and 

flexible definition of groupwise consistency across fiber bundles. The main steps of our 

method are illustrated in Fig. 1. After nonlinearly warping all fiber bundles into a common 

space, we iteratively estimate the level of groupwise consistency at each point on each 

streamline and conduct the pruning of outlier points to enhance the overall consistency 

across subjects. Streamlines will be rejected or refined during the filtering process for the 

generation of the final outputs.
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2.1. Definition

We denote a set of input fiber bundles from N subjects as ℱ̇ = Ḟ1, Ḟ2, …, ḞN , where Ḟn is 

the input bundle from the n-th subject. To perform the proposed groupwise filtering, these 

fiber bundles are first coregistered into a common coordinate space as illustrated in Fig. 1 

and denoted as ℱ = F1, F2, …, FN . For practical implementation, we typically warp all 

fiber bundles into the common MNI152 space (Fonov et al., 2011) using the nonlinear 

registration computed by the ANTS software (Avants et al., 2008). Each streamline in F is 

represented as a polyline f = {x(l) | l ∈ [1, S]} with S points in ℝ3. For groupwise filtering, 

our goal is to estimate a subset of the streamline f, which we denote as f = x(l) | l ∈ la, lb , 

that are consistent with streamlines from other subjects. More specifically, we consider the 

streamline segment, f ⊆ f, as groupwise consistent if all points in f  are close to streamlines 

from a certain number of other subjects in F. Formally, we define the conditions G(L; K; ξ) 

for f , a portion of a streamline f, to have groupwise consistency as follows:

• Degree (L): the minimum length requirement of the sub-streamline structure f
that are consistent to streamlines from other subjects.

• Affinity (K): the number of subjects in the group that contain streamlines to 

which f shares consistency.

• Proximity (ξ): a distance parameter reflecting the extent of closeness between f
and streamlines from other subjects.

This definition is flexible in several aspects. The first parameter L specifies the minimum 

length or proportion of a streamline that needs to be consistent with tracks of other subjects. 

This will avoid the inclusion of overly short segments that do not reflect the connectivity of 

the fiber bundle. For fiber bundles with well-defined end ROIs, setting a relatively high 

degree parameter L will ensure a valid representation of the overall bundle similar to 

conventional filtering approaches can be obtained. The second parameter K can be 

considered as an affinity measure that controls the trade-off between inter-subject 

consistency and individual variability. The distance parameter ξ determines the closeness 

when evaluating the consistency among fiber trajectories. Taken together, these conditions 

characterize groupwise consistency locally at the sub-streamline level. On the contrary, 

previous filtering methods often first perform fiber clustering and make a decision about 

each cluster. Thus, the proposed groupwise definition allows the development of filtering 

algorithms that can measure groupwise consistency and perform the pruning/filtering at a 

higher resolution than previous methods.

2.2. Algorithmic details

To computationally realize this flexible definition of groupwise consistency for fiber 

bundles, we essentially need to estimate a fraction f  of each streamline f that is consistent 

with streamlines from K other subjects in the group. Since this portion f  is unknown, the K 
subjects contributing to its groupwise consistency cannot be determined a priori. To tackle 

this challenge, we develop an iterative algorithm that is composed of consistency estimation 

and pruning of inconsistent points. At each iteration, a reference set is constructed and 

dynamically updated for each streamline and a message passing mechanism is developed to 
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estimate the level of consistency at each point, which then guides the pruning process to 

remove inconsistent portion of the streamline.

1) Reference Set: For any pruned or unpruned streamline ft at the t-th (t = 0, 1, …) 

iteration, which equals the input streamline f at t = 0, we construct a subject specific 

reference set Rk
t = rk

m |m = 1, …, M  composed of the M most similar streamlines from the 

fiber bundle Fk of the k-th subject. In most scenarios, the fiber bundle Fk is saturated with 

streamlines sharing similar trajectory and a subsampled one Fk
t  would be enough to be used 

for reference researching. Practically, we offer an optional parameter, subsampling rate r, to 

control the percentage of streamlines stochastically selected from Fk for reference set 

construction. The parameter r provides a trade-off between accuracy and efficiency. Low 

subsampling rate could effectively reduce the computational burden, while the overly 

subsampled fiber bundle may underrepresent the original trajectories. We used the fast fiber 

k-NN algorithm proposed in (Wang and Shi, 2019) to efficiently construct the reference set. 

Given a streamline ft and a searching scope, e.g. Fk or Fk
t , the fast fiber k-NN algorithm 

ranks each streamline in the scope according to its similarity to ft. Then the top-M 

streamlines are extracted to form the subject specific reference set.

To meet the affinity criterion that K subjects will be needed to define the groupwise 

consistency, we build the groupwise reference set Gt of each track ft at the t-th iteration as 

follows:

Gt ft = argminℛ′ ⊆ ℛt, |ℛ′| = K ∑
Rk

t ∈ ℛ′
∑

rk
m ∈ Rk

t
dmc ft, rk

m ,

where ℛt = Rk
t |k = 1, …, N − 1  is the collection of all subject specific reference sets and 

dmc(·,·) is the mean closest point (Corouge et al., 2004) distance depicting the streamline-

wise distance. Specifically, this distance measure between two streamlines ft and rk
m ∈ Fk is 

defined as:

dmc ft, rk
m = 1

|ft|
∑

x ∈ ft
min

y ∈ rk
m

x − y,

where |ft| is the number of points on f t. The groupwise reference set Gt ft  consists of the 

top K subject specific reference sets in terms of the total distance between ft and the 

reference tracks.

2) Message Passing: Using the groupwise reference set Gt ft  at the current iteration, 

we will define a consistency measure at each point on ft to enable localized track filtering. 

Inspired by the message passing mechanism in graph-based optimization (Wainwright et al., 

2005), we will quantify the consistency level of each point by measuring the messages that it 

received from the reference set.
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Given any point x ∈ ft, we denote a neighborhood point set N = ni|i = 1, …, |N| , where ni is 

the closest point to the i-th streamline in the reference set Gt ft . Note that the total number 

of points in N equals the number of reference streamlines in Gt ft , i.e., M × K. The message 

the i-th neighborhood point sends to x is defined as e−
x − ni2

σ2 , which decays exponentially as 

the distance between these two points increases. Note the distance x − ni is normalized with 

respect to the distance scale parameter σ which controls the quantitative conversion from 

point-wise distance to point-wise affinity. By summing up the messages from all 

neighboring points, we obtain the consistency measure at x as:

p(x) = ∑
i = 1

|N|
e−

x − ni2

σ2 .

This message passing process is carried out at all points on ft to define the localized 

consistency measure on the streamline. An illustration of the consistency measure 

calculation based on message passing is shown in Fig. 2. From the final consistency measure 

plotted in Fig. 2 (b), we can see that the local variation of the consistency level has been 

successfully captured, which will then inform the pruning process for the removal of outlier 

in fiber bundles.

We consider any point on a streamline with its consistency measure below THD as an 

outlier. To preserve the continuity of each streamline during the filtering process, we filter 

them at each iteration by pruning the outlier points at both ends. For a streamline f t, we 

obtain the filtered

3) Track Pruning: After the estimation of the groupwise consistency measure for all the 

tracks from all subjects, we filter the fiber tracks via a pruning process. We denote the set of 

filtered bundles from all subjects as ℱt at the t-th iteration and p ℱt  as the distribution of 

the consistency measure of the points on all the fiber bundles in ℱt. At the t-th iteration, we 

first calculate the mean μpt  and standard deviation σpt  of p ℱt  to determine the filtering 

threshold at the group level:

THD = μpt − 2σpt .

one ft+1 for the next iteration after removing its outlier points.

A filtered track will be rejected if it fails to meet the minimum degree of consistency in G(L; 

K; ξ), i.e., a sufficient amount of points after the pruning. We thus employ a length 

constraint Lmin to realize this condition on the minimum degree of consistency. In our 

algorithm, the Lmin is a ratio parameter, indicating that minimum ratio of the length of the 

pruned track to the overall mean streamline length. The mean streamline length, the average 

number of points on streamlines in input fiber bundles, characteristics the streamline length 

able to reflect meaningful connectome. A higher Lmin requires the filtering result to preserve 
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more end-to-end interconnectivity. Besides, note that outlier points may exist in the interior 

of the track, which could result in local inconsistency. We constrain such interior local 

inconsistency by using another ratio parameter Lmax controlling the maximum number of 

outlier points that are tolerable in the filtered track. The filtered track will be rejected if the 

ratio of outlier point number to the overall mean streamline length exceed Lmax. With a 

small Lmax, the filtering process would be sensitive to the interior local outliers. Together 

these two parameters will control the filtered track to have enough degree of consistency 

while keeping the number of residual outlier points small.

4) Proximity Estimation and Termination Criterion: Consider that the proximity 
(ξ) constraint locally requires that the filtering result f  and its counterparts, white matter 

trajectories from other subjects, have certain extent of closeness. We use the average 

distance between the pruned streamline and its references to quantitatively reflect the group-

wise closeness as follow:

dmean ft = 1
K × M ∑

rk
m ∈ Rk

t , Rk
t ∈ Gt

dmc ft, rk
m .

The iterative process would not terminate until all pruned streamlines reach the proximity 

requirement. Thus, the overall groupwise inconsistency, ξt = max
f ∈ Fi , Fi ∈ ℱt

dmean ft , is used 

as the stopping indicator. The pruning process would terminate once ξt is below a certain 

threshold. δ.

The overall implementation of our groupwise filtering algorithm is summarized in 

Algorithm 1. The operations ReferenceSet, MessagePassing, TrackPruning, and 

ProximityEstimation implement the main steps described above. Once the filtering process 

stops, the same pruning operations are applied to corresponding points in the original fiber 

bundles in the last step of the algorithm, which produces the filtered fiber bundles F  for all 

the subjects in the original space. If filtering at the whole streamline level is desired to have 

complete end-to-end connections, our method can also recover the pruned portion and 

generate whole-streamline filtering results for tracks that are retained after the group-wise 

filtering process, i.e., tracks including a portion meeting the groupwise consistency criteria.

While there are multiple parameters in the proposed algorithm, many of the parameters can 

be set a priori and perform robustly across different track filtering tasks. For all our 

experiments, we set r = 0.2, M = 3, σ = 8 mm, and δ = 3 mm. The rest of the parameters 

about groupwise consistency such as affinity K, anatomical length constraint Lmin, and local 

inconsistency tolerance Lmax can be adjusted in different filtering scenarios. We will 

demonstrate the intuitive ways of parameter setting and corresponding filtering results next 

in the experiments.
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Algorithm 1.

Groupwise Track Filtering Algorithm

Input: Original fiber bundles of N subjects ℱ̇ = Ḟk |k = 1, …, N
The corresponding warped bundles in a common space: ℱ = Fk |k = 1, …, N .

Parameters: K: affinity parameter, Lmln: consistency parameter, Lmax: local inconsistency tolerance parameter, δ: 
proximity parameter for termination, r: subsampling rate, M: reference set size, σ: distance scale 
parameter

Output: Filtered fiber bundles in original space ℱ = Fk |k = 1, …, N

Main Steps:

  ℱ0 ℱ;

  t ← 0;

  ξt ← ∞;

  while ξt ← δ do

   for ∀ft ∈ ℱt
 do

    Gt ft  ← ReferenceSet(ft, ℱ, K, M, r);

    p(ft) ← MessagePassing(ft, Gt ft , σ);

   end

   ℱt + 1
 ← TrackPruning(p ℱt

, Lmin, Lmax);

   ξt ← ProximityEstimation ℱt + 1
;

   t ← t + 1;

  end

  ℱ ℱt
;

3. Experimental results

In this section, we present experimental results to demonstrate the proposed algorithm on the 

groupwise filtering and reconstruction of important fiber bundles in human brain. We 

applied our method to diffusion MRI (dMRI) data from both the second phase of 

Alzheimer’s Disease Neuroimaging Initiative (ADNI2) (Mueller et al., 2005) and Human 

Connectome Project (HCP) (Van Essen et al., 2012). With the aim of developing biomarkers 

for the early detection of Alzheimer’s disease (AD), the ADNI enrolls subjects ranging from 

55 to 90 years old. The study cohort consists of varying disease stages: cognitively normal 

(CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and 

AD. The ADNI2 dMRI data used in our experiment were acquired on 3-T GE Medical 

Systems scanners. Each diffusion MRI scan contains 59 axial slices reconstructed to 

256×256 matrix with voxel size 2.7×2.7×2.7 mm3. Each scan includes 46 separate image 

volumes: 5 T2-weighted b0 images and 41 diffusion-weighted images (b = 1000 s/mm2). 

The HCP enrolls healthy young adults in the age range of 22–35 years. The advanced multi-

shell diffusion MRI data of HCP was acquired on a 3T Siemens Connectome Skyra scanner. 

The dMRI data of HCP has an isotropic spatial resolution of 1.25×1.25×1.25 mm3 from 270 
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gradient directions over three b-values (b = 1000, 2000, 3000 s/mm2) (Sotiropoulos et al., 

2013). In our experiments, we used the preprocessed dMRI data from the 500-Subject 

release of HCP. For both HCP and ADNI2 dMRI data, we first reconstructed the fiber 

orientation distribution (FOD) (Tran and Shi, 2015) and then ran FOD-based tractography in 

MRtrix (Tournier et al., 2019) for ROI-based bundle reconstruction. We used the iFOD1 
algorithm in MRtrix for FOD-based probabilistic tractography. As shown in previous 

validation studies (Aydogan et al., 2018), key parameters including step_size, angle, and 

cutoff_threshold of the FOD at each step of the tractography algorithm all contribute to the 

regularity of the fiber streamlines. For each fiber bundle, we picked these tractography 

parameters to ensure a sufficiently complete representation of these bundles are 

reconstructed according to our experience.

3.1. Fornix bundle reconstruction from ADNI2 data

In the first experiment, we applied our method for the groupwise reconstruction of the fornix 

bundle of 40 subjects from ADNI2 including 10 subjects each from groups with Alzheimer’s 

disease (AD), early mild cognitive impairment (EMCI), late mild cognitive impairment 

(LMCI), and cognitively normal (CN). As an important white matter tract of the limbic 

system, the fornix bundle was shown to be sensitive to the early neurodegeneration in the 

hippocampus (Mielke et al., 2012). While the fornix anatomy is relatively well described in 

neuroanatomy (Nieuwenhuys et al., 2008), the limited resolution in clinical dMRI data does 

not provide sufficient information to accurately identify small ROIs such as the mammillary 

body that receives fornix projection.

In our experiment, we first manually delineated several ROIs in the T1-weighted MRI of the 

MNI152 atlas and then registered them to the subject space as the anatomical constraints for 

fornix reconstruction. As shown in Fig. 3, the seed ROI (in green) and inclusion ROI (in red) 

corresponding to the two ends of fornix body were depicted on the axial and coronal slices 

respectively. The exclusion ROIs (in blue) were drawn on the sagittal slices to avoid the 

tracking artifacts resulting from the entanglement of the fornix and neighboring tracts such 

as the anterior commissure. To further reduce false positives in bundle reconstruction, the 

hippocampus masks and cortical regions produced by FreeSurfer (Fischl et al., 2002) were 

used as inclusion and exclusion ROIs for FOD-based tractography, respectively. Other 

related tractography parameters are as follows: step_size = 0.2 mm, angle = 6°, and 

cutoff_threshold = 0.025. For each subject, we generated 1000 streamlines for the fornix 

bundle.

As shown in Fig. 5, the reconstructed fiber bundles contain a large number of outliers. With 

the following key parameters in our method: K = 24, Lmin = 0.6, and Lmax = 0.05, our 

method successfully removed outlier portion of the tracks and produced a consistent 

reconstruction of the fornix body. Note that the affinity K = 24 is 60% of the total number of 

subjects in the dataset. The pruning results with different termination criteria are 

demonstrated in Fig. 4, where the filtered bundle of a representative subject was plotted. At 

the convergence of the algorithm, the reconstructed fiber bundles were obtained and shown 

in Fig. 5. These results demonstrate that our method is capable of extracting anatomically 
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meaningful and consistent fiber bundles even from inputs dominated by such highly spurious 

outliers used in this experiment.

The subjects involved in this experiment are from multiple groups in terms of clinical 

diagnosis of AD. This results in the potential pathological heterogeneity in the dataset of 

reconstructed fornix bundle. The affinity parameter K, which controls the scope of 

groupwise consistency in population, would have the most significant impact on the filtering 

results. We examined the impact of the affinity parameter K qualitatively. By fixing other 

parameters, we varied the parameter K in groupwise filtering. The reconstruction results of a 

representative subject are shown in Fig. 6. We can see residual outliers can still be seen at 

relatively smaller value (K = 8 or 16 which is 20% and 40% of total number of subjects). 

With the increase of K, results become more constrained and lead to a reconstruction that 

underrepresents the fornix. This is especially obvious when K was chosen as 39, which is 

the maximum value for a group of 40 subjects. This example also demonstrates that the 

affinity parameter K is robust. Changing K in the range from 16 to 32 results in little 

geometrical differences in the final filtering results. The observations conform to the 

expectation that varying the parameter K allows the trade-off between inter-subject 

consistency and individual variability. It is also detectable in Fig. 5, that the general 

morphological characters of each fornix bundle are preserved.

3.2. Locus coeruleus pathway and atlas from HCP data

In the updated Braak staging of tau pathology (Braak et al., 2011), the locus coeruleus (LC) 

nuclei in brainstem was considered the earliest region with tau tangles, one of the defining 

hallmarks of AD. There is thus increasing interests in studying the LC morphology and 

connectivity (Clewett et al., 2016). In vivo reconstruction of LC pathways in human brains, 

however, has been relatively under studied. In this experiment, we applied our method to 

obtain groupwise consistent reconstruction of LC pathways to the medial temporal lobe 

(MTL), which corresponds to Braak stage I after the LC (Braak stage 0). A robust and 

consistent reconstruction of the LC pathways could facilitate the investigation of the 

propagation of tau pathology along fiber pathways (Gibbons et al., 2019) and improve our 

understanding about the early development of AD.

We used the dMRI data from 50 HCP subjects in this experiment to demonstrate the 

consistent reconstruction of LC pathways on the right hemisphere of these subjects. Two 

ROIs were used in the tractography-based reconstruction. The first ROI was the right LC 

mask nonlinearly warped from an atlas in the MNI152 space (Keren et al., 2009). This ROI 

was used as the seed region in tractography. The second ROI was the amygdala mask 

produced by FreeSurfer (Fischl et al., 2002) and used as an inclusion ROI. Parameter 

settings for FOD-based probabilistic tractography are listed as follows: step_size = 0.125 

mm, angle = 4.5°, and cutoff_threshold = 0.05. Each input LC bundle contains around 1000 

streamlines.

As shown in Fig. 8, while the ROIs played an important role in constraining the trajectories 

of the fiber pathways, the tractography results still tend to be contaminated by erroneous 

outliers varying from subject to subject. Parameters used in our method were chosen as Lmin 

= 0.8, Lmax = 0.05, and K = 49. Compared to the filtering implementation for fornix bundle, 
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we can choose stricter constraints on affinity and consistency in this experiment because of 

the high anatomical homogeneity across HCP subjects. Constrained only by the ROIs at the 

two ends, the original LC pathway contains many streamlines with interior false positive 

portions (pointed and circled out in Fig. 7 (a)). We also show how the maximum outlier 

length Lmax affects the filtering result. As shown in Fig. 7, cleaner reconstruction of the LC 

pathway can be obtained with the decrease of the Lmax. When the Lmax is small enough, e.g. 

less than 0.1, its influence on filtering results almost vanishes. The final reconstruction 

results are shown in Fig. 8, where clean and consistent reconstruction of the LC pathways 

have been successfully obtained. These results match very well with the trajectories of the 

dorsal noradrenergic pathway of the LC as described in previous literature (Marien et al., 

2004).

Using the reconstructed LC pathway of the 50 HCP subjects, we created a probabilistic atlas 

in the MNI152 space following the same approach in (Tang et al., 2018). As shown in Fig. 9, 

this atlas shows the support of the non-zero regions are compact and well connected, which 

further confirms the consistent trajectories of the reconstructed pathways.

3.3. Quantitative comparison of corticospinal tract reconstruction from HCP data

In the third experiment, we applied our groupwise filtering method to the reconstruction of 

the corticospinal tract (CST) and quantitatively compared its performance with two publicly 

available methods. The data of 20 HCP subjects from a previous brainstem atlas project 

(Tang et al., 2018) was used in this experiment. For each CST bundle, five ROIs in the 

brainstem region (Fig. 11 (b)) were manually delineated by an experienced neuroanatomist 

in (Tang et al., 2018) to guide the accurate reconstruction of the CST. To evaluate the 

performance of different track filtering methods, we used only one brainstem ROI (ROI 1 as 

shown in Fig. 11 (a)) in tractography-based reconstruction of the left CST of each subject. 

The other four ROIs were used as ground truth to quantitatively measure the accuracy of 

filtered tracks by different methods. With the brainstem ROI as an inclusion ROI, we also 

used the left precentral gyrus from the FreeSurfer Aseg labels (Fischl et al., 2002) as the 

seed region. For FOD-based tractography, the parameter setting is as follows: step_size = 

0.125 mm, angle = 4°, and cutoff_threshold = 0.025. Each reconstructed CST contains 

around 500 streamlines.

From the input CST bundles shown in the first row of Fig. 10, we can see some frequent 

outliers in the brainstem area and the lateral projections to part of the precentral gyrus that 

do not contribute to the CST. Following the similar parameter selection strategy presented in 

the LC pathway filtering experiment, we used the following parameters: K = 19, Lmin = 0.8, 

and Lmax = 0.01 for our groupwise filtering algorithm. We selected a small Lmax to remove 

streamlines with short false positive segments (pointed out by arrow in Fig. 10). The high 

consistency requirement, Lmin = 0.8, lead the filtering process to produce result with a high 

degree of consistency. As shown in the second row of Fig. 10, our method successfully 

removed these outliers and generated consistent and clean bundles that follow the correct 

anatomy. We also displayed the filtering results at the whole-stream level by adding back the 

pruned points for tracks retained by the filtering algorithm, highlighting the end-to-end 

connectivity from the motor cortex to the spinal cord, in the bottom row of Fig. 10. For the 

Xia and Shi Page 11

Neuroimage. Author manuscript; available in PMC 2021 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



filtered bundle from all subjects, we calculated the number of tracks and listed their 

distribution in Table 2, which will be used to guide parameter tuning in the tools we will be 

compare with.

The first publicly available method we compare with is the track filtering method in the 

QuickBundles software tool (Garyfallidis et al., 2012), which was applied to the same input 

bundles as our method. More specifically, we chose the threshold for distance between 

curves as 5 mm and cluster size as 70 streamlines in QuickBundles, which means the 

maximum Minimum Average Direct-flip (MDF) distance between curves within a cluster 

was limited to 5 mm, and all streamlines belonging to clusters with less than 70 curves were 

discarded. With the increase of the threshold for cluster size, more outliers will be removed 

but also potentially valid tracks. For all subjects we counted the number of tracks in the 

filtered fiber bundles and fine-tuned the threshold of cluster size such that the lower end of 

the track number distribution will be slightly below our method as listed in Table 2. This 

suggests we have filtered a comparable or more outlier tracks with the QuickBundles 

method as compared to our method. A comparison of the filtering results from 

QuickBundles and our method on an HCP subject is shown in Fig. 11. While QuickBundles 

successfully filtered out the outlier tracks projecting to the inferior and lateral portion of the 

precentral gyrus, it did not completely remove the tracks with defects in the brainstem area, 

which our method was able to handle consistently across the group. We also compared our 

method with the cluster confidence index (CCI) based streamline filtering (Jordan et al., 

2018). Given a streamline, the streamlines within a certain MDF distance (θcci) are 

employed as references. The CCI qualitatively reflects the reproducibility of individual 

streamline according to the overall similarity with its reference, where the streamline-wise 

similarity is characterized by the Kcci − th power of the reciprocal of the MDF distance. We 

set Kcci = 1, θcci = 5 mm and the CCI threshold was fine-tuned to be 30 based on the same 

criteria used above for QuickBundles, i.e., the lower end of the track number distribution 

will be slightly below our method to ensure a comparable number of outliers were removed 

(Table 2). Qualitatively, a filtering result example from CCI based method was demonstrated 

in Fig. 11 (d), where we can observe that inconsistent streamlines were removed properly at 

the cost of removing more valid tracts in comparison with our method. Both QuickBundles 

and CCI based filtering method have high computational efficiency by completing the 

processing of the 20 CST bundles in around 10 s.

Two automatic bundle reconstruction approaches, introduced in (Garyfallidis et al., 2018), 

and (Zhang et al., 2018) are tested for further comparisons. These methods used whole brain 

tractography as the input and extracted individual fiber bundles based on the precomputed 

tractography atlases. To apply these methods to the 20 HCP subjects used in our experiment, 

we first generated whole brain tractography containing 100k streamlines (top right in Fig. 11 

(e)) for each subject using the FOD-based probabilistic tractography of MRtrix (Tournier et 

al., 2019). The following parameter setting was used for the tractography: step_size = 0.125 

mm, angle = 4°, and cutoff_threshold = 0.025.

The first atlas based approach, which has been implemented as the RecoBundles tool in 

Dipy (Garyfallidis et al., 2014), was applied for the left CST reconstruction. In this 

approach, the whole brain tractography of each subject was first registered to a population-
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average tractography atlas (Yeh et al., 2018) using the nonlinear registration computed by 

the ANTS software (Avants et al., 2008). Following the guidance of parameter setting in 

(Garyfallidis et al., 2018), we chose the following parameters for RecoBundles: 

cluster_threshold = 15 mm, model_cluster_threshold = 5 mm, and reduction_threshold = 20 

mm and fine-tuned the parameter pruning_threshold to be 6 mm so that the lower end of 

track number distribution will be slightly below out method (Table 2) because this method 

also follows similar techniques from QuickBundles. As demonstrated in Fig. 11 (e), we can 

see that the extracted fiber bundle generally follows the trajectory of CST, but many of the 

tracks extracted from the whole brain tractography terminated prematurely before reaching 

the end of the medulla. The second atlas-based approach (Zhang et al., 2018) has been 

distributed as part of the whitematteranalysis tool in the SlicerDMRI project (Norton et al., 

2017). Both affine and nonrigid registration (O’Donnell et al., 2012) were computed to warp 

the tracts to the atlas space by using tools provided in SlicerDMRI. After that, the atlas-

based method in SlicerDMRI was applied to extract the left CST as shown in Fig. 11 (f). 

Compared to the manually delineated ROIs, we can see a large number of false positives in 

the brainstem area were included in this reconstruction.

To quantitatively compare the performance of different methods, we calculated the distance 

between the fiber bundles and the other four manually delineated ROIs (ROI 2–5) not used 

in bundle reconstruction. Because all the ROIs were delineated on axial slices, we denote the 

set of points in the j-th ROI of the i-th subject as Ui
j: Given a fiber bundle of the i-th subject, 

we denote its intersection with the corresponding axial slice of the j-th ROI as the point set 

V i
j. For comparison, the Hausdorff distance dH Ui

j , V i
j  between these two-point sets was 

computed for the original input bundles, filtered bundles from our method, QuickBundles, 

and CCI based reconstruction. These Hausdorff distances indicate the mismatches between 

streamlines and the underlying anatomy delineated by ROIs. Statistics of the Hausdorff 

distances for each method and ROI were reported in Table 1. Our method, QuickBundles, 

and CCI based filtering used the same input bundles (Original CST as listed in Table 1), and 

the results show that our algorithm achieved the best performance while all three methods 

were able to enhance the fidelity to manually delineated ROIs. We also estimated the 

Hausdorff distance between these four ROIs (ROI 2–5) and CSTs generated by the two 

atlas-based tools in RecoBundles and SlicerDMRI. The results in Table 1 suggests much 

larger errors as compared to the manually delineated labels in the brainstem. This is 

consistent with the large number of outliers as illustrated in Fig. 11 (e) and (f). Because the 

results from SlicerDMRI contain much larger number of tracks than other method, we 

applied manually delineated ROI 1 as an inclusion region to the bundle reconstructed by 

SlicerDMRI for a fair comparison to other methods. This removed many of the outliers and 

improved distance measure to other ROIs are listed in Table 1 as SlicerDMRI + ROI 1, 

which are comparable to the performance of the input bundles listed as Original CST. Such 

anatomical constraints were not imposed for CSTs generated by RecoBundles because it 

tends to extract tracks from the whole brain tractography that terminate early and rarely 

reaches ROI 1.

With the manually delineated ground truth labels for brainstem ROIs, we can also 

demonstrate the impact of parameters used in our method. Because the CST bundle has clear 

Xia and Shi Page 13

Neuroimage. Author manuscript; available in PMC 2021 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



end ROIs on both the cortical and brainstem area, we have selected very high degree related 

parameters (large Lmin = 0.8 and smaller Lmax = 0:01). In addition, we have selected a high 

affinity parameter (K = 19) because the prior knowledge that HCP subjects are young and 

healthy. Thus, we focused on the fine tuning of parameters related to the proximity 

condition: σ and δ, and examined their impact on the Hausdorff distances of the 

reconstructed bundle with respect to the ground truth labels. As shown in Fig. 12, the 

colored curves and associated shaded regions demonstrate the mean and standard deviations 

of the Hausdorff distances from the reconstructed bundle to each ROI with respect to the 

change of these two parameters. The black dots show the number of fiber tracks in the 

reconstructed bundle under each parameter value. With the increase of σ, the consistent 

measure computed from message passing becomes more insensitive to proximity conditions 

and could result in the pruning of more tracks. From Fig. 12 (a), we can see that σ = 6 ~ 8 

mm would be good trade-offs. For the δ parameter, its decrease will lead to stricter stopping 

criteria and the elimination of more tracks. We thus set it as δ = 3 mm to ensure a sufficient 

number of tracks can be retained (around or above 100 for the CST bundle) in the final 

reconstruction. Overall, the fine tuning of the parameters strikes a balance between applying 

the proximity condition and ensuring enough number of tracks to effectively represent the 

geometry of the fiber bundle.

3.4. Computational cost

In all experiments, our method was implemented in python on a desktop computer with 3.60 

GHz Intel i7–6850K CPUs and 64 GB RAM. We conducted each experiment ten times to 

obtain a robust estimation of running times. The overall processing times of all subjects in 

the experiments are summarized in Table 3.

4. Discussion and conclusion

In this work we developed a novel groupwise track filtering algorithm for the consistent 

reconstruction of fiber bundles from diffusion imaging data. Our method is based on a 

flexible definition of groupwise consistency that controls the degree, affinity, and proximity 
of each track with respect to other group members. A key element of our algorithm is the 

dynamic construction and update of a reference set for each track that allows the efficient 

implementation of localized consistency evaluation based on message passing and outlier 

pruning. In summary, the main contributions of our work are a) Proposed a general 

conceptual framework for characterizing groupwise consistency of fiber tracks; b) 

Developed a novel numerical algorithm that iteratively and locally prunes away inconsistent 

portion of each track; c) Demonstrate the general applicability of the proposed algorithm on 

fiber bundles with varying level of artifacts and complexity; d) Performed quantitative 

comparisons based on ground truth from manually delineated labels and showed that 

groupwise filtering can compensate for the gap in anatomical knowledge and achieve more 

faithful reconstruction of fiber bundles.

Accurate bundle reconstruction relies on intensive anatomical priors. Multiple automated 

bundle reconstruction methods such as TRACULA (Yendiki et al., 2011), 

whitematteranalysis (O’Donnell and Westin, 2007; Zhang et al., 2018), Recobundles 
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(Garyfallidis et al., 2018), TractSeg (Wasserthal et al., 2018), WMQL (Wassermann et al., 

2016) taking advantages of the anatomical priors in the form of segmentations of reference 

tracts, tractography atlas, and brain parcellation atlases to effectively and efficiently 

reconstruct various fiber bundles. With these methods, the analysis of white matter at the 

fiber bundle level becomes very conveniently. While limited attention was paid for 

considering whether each individual streamline in the fiber bundles is reliable and 

reproducible. From (Rheault et al., 2020), we know that the reproducibility of streamlines is 

much more sensitive than which of whole bundle volume. If we would like to leverage the 

information at the streamline level, it is necessary to determine how reliable each streamline 

is. In (Jordan et al., 2018), the cluster confidence index is proposed to quantitatively indicate 

the reliability of individual streamline according to its similarity with neighborhoods. In this 

work, we further generalize the reliability concept to be the reproducibility across subjects 

(groupwise consistency) and construct a framework to extract the most reproducible sub-

bundle structures.

The underlying assumption for the success of the proposed method is the existence of 

certain level of commonness in the fiber bundles across subjects. This is commonly adopted 

in brain mapping research, where image or surface registration was first applied to factor out 

variability across population before group level analysis. In our experiments, we warp all 

fiber trajectories into a common space using nonlinear image registration (Avants et al., 

2008) before the filtering process. This ensures that individual variability in white matter 

anatomy is taken into account. Tractography registration methods proposed in (Garyfallidis 

et al., 2015; O’Donnell et al., 2012) could also be useful to align the fiber bundles before the 

application of our groupwise filtering algorithm. Without referring to the images, these 

registration methods have the potential advantages of handling the bundle alignment task 

from patients with severe white matter atrophy, lesion, and tumor.

In the algorithmic implementation of the proposed groupwise filtering framework, the 

parameters used for controlling the degree (Lmin and Lmax) and affinity measures (K) are 

typically chosen according to the prior knowledge with respect to individual fiber bundles. 

For fiber bundles without stringent ROIs that determine the end points of the tracks, we 

demonstrate a proper choice of the degree parameter can help prune away spurious portions 

on both ends of the fiber bundle and produce a consistent representation of the fornix 

bundle. This strategy can be generally applicable to various fiber bundles that project 

diffusively to broad cortical areas and therefore have high variability in their tractography 

based reconstruction. For example, the anterior commissure projects to the broad areas 

including the middle and inferior temporal gyrus and would benefit from our method to 

achieve a consistent reconstruction for comparison across subjects. For fiber bundles that 

can be defined with relatively precise end ROIs, we can increase the degree requirement 

(larger Lmin and smaller Lmax). Similar to existing track filtering methods, this will achieve 

essentially a binary decision (accept/reject) on each streamline with the assistance of 

groupwise consistency. For the affinity measure, our method allows its adjustment for fiber 

bundles or cohorts with varying levels of heterogeneity across the group. For the fornix 

bundle reconstruction from the ADNI data, we demonstrated the robustness of the results 

with respect to the change of the affinity (K) parameter and the preservation of subject level 

variability in the reconstructed fiber bundles. For young and healthy subjects from the HCP, 
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a higher affinity parameter is selected in our experiments that reflects the prior knowledge 

about the higher degree of similarity in this cohort. For the proximity condition, the 

strengthening of its requirement (smaller δ) will result in the filtering of more artifacts and 

potentially the removal of valid tracks from the reconstructed fiber bundles. As demonstrated 

in Fig. 12, we chose proximity parameter by balancing the removal of artifacts and the 

preservation of a sufficient number of valid tracks in the CST bundle. Overall, the 

parameters for the degree, affinity and proximity conditions in our method can be selected 

intuitively because the clear expectation as explained above about their effects on the filtered 

filter bundles.

As a fiber bundle filtering tool, our method depends on the original inputs and could be 

affected by the bias issue of tractography algorithms (Maier-Hein et al., 2017). In our CST 

experiment, the fiber pathways emanating from the lateral portion of the precentral gyrus are 

harder to reconstruct because the need of crossing regions with complicated fiber geometry 

and the dramatic turning angles as they join the descending portion of the CST at the 

internal capsule. Fiber tracks from the lateral portion of the motor cortex thus tend to be 

severely under-represented and highly variable across subjects. As a result, our method will 

filter out these tracks due to their lack of groupwise consistency. Improvements in 

tractography algorithms will help provide more balanced representation of input fiber 

bundles to our algorithm and hence generate better reconstruction results. For example, the 

Anatomically Constrained Tractography (ACT) (Smith et al., 2012) can improve 

tractography quality and hence the downstream filtering algorithms. Recently (Rheault et al., 

2019), proposed a tractography algorithm to mitigate the bias in the fiber bundle 

reconstruction by introducing anatomical and orientational prior knowledge for tractography. 

For future work, we will investigate such tractography tools and examine their impact on our 

groupwise filtering method. In addition, it will be highly valuable to perform validations 

against ground truth provided by tracer injection data in other anatomical regions such as the 

internal capsule for the CST bundle (Innocenti et al., 2018).

In summary, we developed an iterative algorithm to prune away inconsistent artifacts of fiber 

tracks for the reconstruction of fiber bundles with groupwise consistency. Results from our 

method can improve the comparability of bundle-based representations of white matter 

connectivity and hence potentially provide increased power in the detection of group 

differences. In future work, we will apply our method to perform more extensive validations 

and study the impact of groupwise filtering on the detection of connectivity changes of 

critical fiber bundles in brain disorder such as the Alzheimer’s disease.
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Fig. 1. 
An illustration of the proposed groupwise track filtering framework. All fiber bundles from 

N subjects will first be nonlinearly warped to a common space such as the MNI152 atlas. 

Outlier points (colored in yellow) will be iteratively pruned based on the consistency 

measure obtained via messages passed from tracks in a reference set, which is updated 

dynamically. Once the pruning process is completed, the same pruning operations are 

applied to points on the original tracks to obtain the filtered fiber bundles.
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Fig. 2. 
Calculation of localized consistency measures on a track based on message passing. (a) The 

points on the track under consideration (cyan) are plotted as gray dots. The points on the 

three reference tracks are plotted in red, green, and blue, respectively. (b) Each point on the 

track under consideration is color-coded according to the consistency measure from 

messages they receive from neighboring tracks. The consistency measures range from 0 to 3 

as 3 reference tracks are used in this example.

Xia and Shi Page 22

Neuroimage. Author manuscript; available in PMC 2021 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
ROIs used for fornix bundle reconstruction are plotted against the MNI152 T1 image. (a) A 

sagittal view of the manually drawn seed (green), inclusion (red), and exclusion (blue) ROIs. 

(b) An axial view of the manually draw exclusion ROIs. Note they do not overlap with the 

seed and inclusion ROIs.
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Fig. 4. 
The iterative pruning results with different proximity requirement of the fornix bundle of an 

EMCI subject. The original bundle, and the filtering outcomes with proximity threshold δ = 

20 mm, 7 mm, 3 mm, and 2 mm, corresponding to the results after 1, 2, 5, and 10 iterations 

of filtering, are displayed from left to right, respectively.
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Fig. 5. 
Input and reconstructed fornix bundles from ADNI2 subjects. Each sub-figure from (a) to 

(d) shows three input (top row) and filtered (bottom row) bundles from the AD, LMCI, 

EMCI, and CN group, respectively.

Xia and Shi Page 25

Neuroimage. Author manuscript; available in PMC 2021 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
The filtering results of the same EMCI subject in Fig. 4 with different choices of the affinity 

parameter K. The input fiber bundle, and the filtered bundle with K = 8, 16, 24, 32 and 39, 

are shown from left to right, respectively.
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Fig. 7. 
The impact of the parameter Lmax on track filtering performance. (a) Input LC pathway of 

an HCP subject. Spurious tracks were highlighted by the ellipsoid and arrow. (b) Filtered LC 

pathways with varying Lmax = 0.05, 0.1, 0.3, and 0.5, from left to right, respectively.
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Fig. 8. 
Results of filtering the right LC bundle from five HCP subjects. Top row: input LC 

pathways; Bottom row: filtered bundles.
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Fig. 9. 
A probabilistic atlas of the right LC bundle is plotted on 8 coronal slices in the MNI152 

space. (a) indicates the zoom-in region (within the red box) on one coronal slice. The 

corresponding regions on different coronal slices are magnified and displayed in (b).
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Fig. 10. 
Groupwise track filtering results of the left CST from five representative HCP subjects. Top 

row: input fiber bundles from FOD-based tractography. The white arrow and ellipse 

highlight main outliers removed during the filtering process. Middle row: filtered fiber 

bundles generated by our groupwise filtering algorithm. Bottom row: filtering results at the 

whole-streamline level by adding back pruned points for tracks retained after the groupwise 

filtering process, i.e., tracks shown in the middle row.
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Fig. 11. 
A comparison of the filtering results from our method and other track filtering methods and 

two tract reconstruction methods for the left CST of an HCP subject. (a) The input bundle 

reconstructed with one inclusion ROI (the white disk). (b) The overlay of the filtered bundle 

from our method and the five manually delineated ROIs (white disks). (c) The overlay of the 

filtered bundle form QuickBundles and the five manually delineated ROIs (white disks). (d) 

CCI-based result. The left CST bundle reconstructed by the atlas-based method in 

RecoBundles and SlicerDMRI are displayed in panel (e) and (f), respectively. The whole 

brain tractography, used as the input for both atlas-based methods, is displayed in the top-

right in (e).
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Fig. 12. 
The impact of proximity parameters on CST reconstruction with our groupwise method. The 

mean and standard deviation of Hausdorff distances (y-axis on the left side) from the 

reconstructed bundle to each ROI (2–5) are plotted in (a) and (b) as colored curves and 

shaded regions with respect to the change of the parameters σ and δ, respectively. In 

addition, the number of tracks (y-axis on the right side) in the reconstructed bundle are 

plotted as black dots with respect to the change of parameters.
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Table 1

Hausdorff Distance of Fiber Bundles to Manually Delineated ROIs. The unit of the distance is in mm.

ROIs Approaches Hausdorff Distance (mean ± std mm)

ROI 5 Original CST 9.49 ± 2.20

Proposed method 2.33 ± 1.19

QuickBundles 4.76 ± 1.92

CCI 3.10 ± 1.76

RecoBundles 11.81 ± 3.63

SlicerDMRI 16.25 ± 3.10

SlicerDMRI + ROI 1 9.34 ± 2.18

ROI 4 Original CST 9.74 ± 2.50

Proposed method 3.10 ± 1.56

QuickBundles 5.89 ± 2.21

CCI 4.26 ± 2.10

RecoBundles 13.19 ± 4.02

SlicerDMRI 18.15 ± 2.79

SlicerDMRI + ROI 1 9.32 ± 2.20

ROI 3 Original CST 9.86 ± 1.86

Proposed method 3.78 ± 1.91

QuickBundles 6.68 ± 2.65

CCI 5.41 ± 2.07

RecoBundles 13.14 ± 3.22

SlicerDMRI 18.75 ± 3.30

SlicerDMRI + ROI 1 9.76 ± 1.90

ROI 2 Original CST 7.46 ± 1.49

Proposed method 2.48 ± 1.20

QuickBundles 4.92 ± 1.99

CCI 3.65 ± 1.76

RecoBundles 12.27 ± 4.23

SlicerDMRI 16.43 ± 3.00

SlicerDMRI + ROI 1 7.23 ± 1.23
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Table 2

Size (num of tracks) of filtered fiber bundles.

Approaches Num of Tracks (mean ± std; [min, max])

Proposed method 168.90 ± 45.37; [98, 253]

QuickBundles 197.70 ± 80.89; [84, 381]

CCI 229.45 ± 75.64; [80, 342]

RecoBundles 146.90 ± 51.08; [78, 269]

SlicerDMRI 381.10 ± 101.26; [220, 611]

SlicerDMRI + ROI 1 81.75 ± 43.17; [25, 210]
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Table 3

Summary of the computing cost in each experiment.

Filtering Task # Subjects Time (mean ± std seconds)

Fornix 40 1087.99 ± 20.74

LC Pathway 50 991.24 ± 17.92

CST 20 535.19 ± 9.07
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