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Abstract
The ongoing pandemic (also known as coronavirus disease-19; COVID-19) by a constantly emerging viral agent commonly 
referred as the severe acute respiratory syndrome corona virus 2 or SARS-CoV-2 has revealed unique pathological findings 
from infected human beings, and the postmortem observations. The list of disease symptoms, and postmortem observations 
is too long to mention; however, SARS-CoV-2 has brought with it a whole new clinical syndrome in “long haulers” including 
dyspnea, chest pain, tachycardia, brain fog, exercise intolerance, and extreme fatigue. We opine that further improvement 
in delivering effective treatment, and preventive strategies would be benefited from validated animal disease models. In this 
context, we designed a study, and show that a genetically engineered mouse expressing the human angiotensin converting 
enzyme 2; ACE-2 (the receptor used by SARS-CoV-2 agent to enter host cells) represents an excellent investigative resource 
in simulating important clinical features of the COVID-19. The ACE-2 mouse model (which is susceptible to SARS-CoV-2) 
when administered with a recombinant SARS-CoV-2 spike protein (SP) intranasally exhibited a profound cytokine storm 
capable of altering the physiological parameters including significant changes in cardiac function along with multi-organ 
damage that was further confirmed via histological findings. More importantly, visceral organs from SP treated mice revealed 
thrombotic blood clots as seen during postmortem examination. Thus, the ACE-2 engineered mouse appears to be a suitable 
model for studying intimate viral pathogenesis thus paving the way for identification, and characterization of appropriate 
prophylactics as well as therapeutics for COVID-19 management.

Keywords Humanized mouse · SARS-CoV-2 spike protein · Clinical symptoms · Multi-organ damage · Disease 
management

Introduction

All over the world humans have been affected by the con-
stantly emerging new coronavirus agent. Officially, the 
very first report was traced in Wuhan City of China dur-
ing December 2019, and outbreaks are still being reported 

globally. Investigations are undergoing to the nature of its 
origin though [1, 2]. The causative infectious agent has been 
named as the severe acute respiratory syndrome-coronavirus 
2019 (also known as SARS-CoV-2 or COVID-19, in short). 
Infected people exhibit symptoms such as fever, malaise, 
dry cough, and dyspnea, and are also diagnosed with vary-
ing degree of pneumonia [3]. Currently there are not many 
effective treatment modalities or the cure available; however, 
vaccines are highly effective in preventing the hospitaliza-
tion, severe disease, and death. Researchers are working to 
understand disease mechanism(s) of SARS-CoV-2 infection 
so that they could design more effective drugs, and develop 
newer versions of the foolproof vaccines against COVID-19 
to stop the ongoing pandemic.

While some viral agents such as poxviruses exhibit 
a wide host-range for transmissibility, and propagation 
including propensity to infect unrelated animal species but 
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unfortunately the SARS-CoV-2 does not infect laboratory 
mouse unless the mouse has been engineered genetically 
to express human ACE-2 gene; the receptor employed by 
SARS-CoV-2 agent to enter inside the human cells [4]. In 
fact, laboratory mouse has served as the ‘workhorse’ for 
advancing biomedical research, and for devising newer 
therapies, and also to test, and validate underlying disease 
processes. The current study was designed using an engi-
neered mouse to simulate some of the COVID-19 relevant 
disease symptoms, and to capture inflammatory signature 
markers that appear to be relevant for COVID-19 long-haul-
ers. SARS-CoV-2 virus interacts with angiotensin convert-
ing enzyme II (ACE-2) receptor on cell surface. The recep-
tor is present on various cell types throughout body, e.g., 
lungs, heart, stomach, liver, and kidney. The virion surface 
is coated with a spike protein (SP) that has two subunits: 
S1, and S2 (Fig. 1). The ‘S’ protein is known to induce both 
humoral, and cellular immune responses, and remains the 
target of vaccines that are based on full-length S protein, 
and its receptor-binding domain, including DNA, viral vec-
tor, and subunit-based vaccines. In addition, the peptides, 
antibodies, organic compounds, and short interfering RNAs 
(siRNAs) are additional therapeutics under development [5, 
6]. Interestingly, the COVID-19 mRNA vaccines that are in 

use currently have been shown to induce neutralizing anti-
body response against the SARS-CoV-2 [7].

Once the S1 subunit attaches to cell, it is recognized 
by the ACE-2 receptor while the S2 subunit assists with 
fusion with cell membrane [8]. Virus then triggers an intense 
immune response [9–15]. The immune system detects the 
virus, and then cytokines, helper T-cells, and white blood 
cells become active [16–34]. This leads to the “cytokine 
storm” that contributes to multi-organ damage and can 
lead to death [35, 36]. In many cases the infection can be 
asymptomatic, or the virus just causes flu-like symptoms 
[37–45]. One of the symptoms is the shortness of breath 
due to extensive lung-cell death causing alveoli dysfunction 
[46]. Cells' death can also lead to edema, vessels clogging, 
and pneumonia. Individuals with co-morbidities, e.g., dia-
betes, hypertension, and cancer and people over the age of 
65 are highly susceptible to developing pneumonia due to 
their compromised immune system [47].

Surprisingly, COVID-19 also causes clots inside the 
blood vessels of lungs, heart, kidney, and other vital organs, 
and these blood clots can induce additional medical emer-
gencies like stroke or a heart attack, potentially resulting in 
death [48]. It is believed that clots are the results of SARS-
CoV-2 induced damage in the lining of blood vessels. This 
damage can induce platelets recruitment to prevent the blood 
leaking out into the surrounding tissues. In fact, clots are 
formed to fix the damaged blood vessels; however, exces-
sive clotting could block vessels though, thus disrupting 
the blood flow [48]. Research has shown that the number 
of available ACE-2 receptors can influence clots forma-
tion. In that context, more ACE-2 receptors can increase 
viral fusion events, thus potentially increasing blood ves-
sels’ injury, hence paving the way for more clot formation. 
Unfortunately, excessive coagulation/coagulopathy could 
result in a “clotting cascade” leading to thrombosis (blood 
clot within a blood vessel). SARS-CoV-2 also causes acute 
cardiovascular injury. The proposed cause of cardiovascu-
lar injury is myocarditis because of the SARS-CoV-2 led 
systemic inflammation. Protein–protein interactions during 
infection lead to not only formation new virus particles but 
also cause tissue (blood vessel, myocardium, etc.) injury 
[49]. When spike protein binds to ACE-2 receptor in the 
heart, it alters cell-signaling process thus causing myocardial 
injury [48]. COVID-19 not only causes de novo myocardial 
injury but also puts individuals on a serious health risk tra-
jectory who happen to have diabetes, are obese, have coro-
nary artery disease, or  heart failure, therefore, expediting 
myocardial injury further. In short, COVID-19 can severely 
affect heart’s potential long-term effects from myocardi-
tis that essentially include “arrhythmia, heart failure, and 
increased risk of stroke or subsequent heart attacks”.

Another side effect of COVID-19 is excess fluid accumu-
lation within body. When blood vessel encounters a foreign 

Fig. 1  A schematic depicting the severe acute respiratory syndrome-
coronavirus 2 (SARS-CoV-2) virion and binding of its spike pro-
tein (SP) with the host cell receptor. The SARS-CoV-2 ‘SP’ medi-
ates binding of the virion with its receptor angiotensin converting 
enzyme 2 (ACE-2), and promotes fusion between the virion and host 
cell membrane thus allowing the virion entry into host cell. The viral 
ribonucleic acid (RNA) is a single stranded, and non-segmented that 
is ~ 30 kilobase in size is enclosed inside a protein coat known as 
the capsid. It is the capsid that is coated with ‘SP’ protein which has 
two subunits known as S1 and S2. The S2 subunit recognizes ACE-2 
receptor on host cell membrane while S1 subunit helps mediate viral 
fusion with the cell
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pathogen then endothelial cells react by changing from a 
squamous shape to a columnar shape that helps “adhesion 
molecules” attract cells such as leukocytes, and chemokines 
thus allowing the immune system to fight off the pathogen. 
When helper cells are recruited then shape of the endothelial 
lining is altered that can result in “thrombogenic basement 
membrane” leading the neutrophils to expand under the effects 
of cytokines, specifically IL-1a, and when this inflammatory 
process is further activated then endothelial lining gets dis-
rupted. Furthermore, the endothelial cells containing metal-
loproteinases (MMPs) can destroy basement membrane of the 
arteries, and capillaries in the lungs causing fluid leakage [50]. 
It is important to remember that there are many variants of the 
SARS-CoV-2 such as alpha (B.1.1.7), beta (B.1.351), gamma 
(P.1), the commonest one delta (B.1.617.2), but very recently 
more newer variants, and sub-variants of “Omicron” and its 
progeny have been identified. The variants/sub-variants such 
as BA.1, BA.2, and their respective lineages are the modified 
forms of the original virion wherein mutations arise that raise 
public health concerns since they tend to spread easier and 
faster, causing worse symptoms, making testing less accurate, 
and that basically “escape” the immune surveillance provided 
by the COVID-19 vaccines or by natural infection [51–54]. 
The alpha, beta, gamma, and delta variants were first detected 
in the United Kingdom, South Africa, Brazil, and India, 
respectively. The delta along with other such variants/sub-
variants are the current mutant virions that are present in the 
USA. These have been shown to be “more transmissible” than 
the alpha variant that had swept through the world [51–55]. 
New immune-evading Omicron variants such as BA.4, BA.5 
are most likely present in many U.S. states [56].

There are currently not many known effective treatments or 
cure available for SARS-CoV-2, and if one gets infected there 
are only a few palliative measures that can be taken to decrease 
the symptoms. Convalescent sera, and the monoclonal anti-
bodies have been shown to impart some protection during the 
early phase of the infection. Since there is no universal known 
treatment or cure, thus it is highly recommended that one gets 
vaccinated to decrease the chances of contracting COVID-19. 
In the present study, we treated the engineered ACE-2 mouse 
as well as human cells with SARS-CoV-2 spike protein (SP) 
and collected multiple data sets. The study paradigm turned 
out to be highly encouraging in understanding the COVID-19 
in a much more elaborate way, and we believe that the results 
might help in devising better tools in diagnosing, treating, and 
preventing breakthrough infections, and managing COVID-19 
symptoms in the long-haulers.

Materials and methods

Measurement of physiological parameters 
in animals

Male, and female transgenic mice expressing the human 
ACE-2 receptor (B6.Cg-Tg(K18-ACE2)2Prlmn/J, Geno-
type: Hemizygous genotype, Hemizygous for Tg(K18-
ACE2)2Prlmn were purchased from the Jackson Labora-
tory (Bar Harbor, ME, USA). The mice (in short, we will 
refer them as the ACE-2 mice) were housed in a patho-
gen-free environment under conditions of 20 °C ± 2 °C, 
50% ± 10% relative humidity, 12 h light/dark cycles, and 
they were provided with food standard chow diet, and 
water ad libitum. The animal procedures were reviewed 
and subsequently approved by the Institutional Ani-
mal Care and Use Committee (IACUC) of the Univer-
sity of Louisville School of Medicine, Louisville, Ken-
tucky, USA. Further, the animal care and guidelines of 
the National Institutes of Health (NIH, USA) were also 
adhered to. The male, and female mice approximately of 
the same age (10–12 weeks) were recruited. The mice 
were anesthetized with Ketamine/Xylazine (50/10 mg/Kg), 
and then administered intranasally with the SARS-CoV-2 
spike protein (ECD-His-tag, Genescript, Cat# Z03481), SP 
in short, and the followed by 100 μL air [57]. Post treat-
ment mice were followed up to 5 days. Their body tem-
perature, body weight, respiration rate, heart rate, systolic 
and diastolic pressure, and the intraocular pressure (IOP) 
were recorded in the SP treated and untreated mice groups 
as reported earlier in our published work [58–60]. Only 
measurements that were judged by data analytical system 
to be within the acceptable parameters were recorded, as 
valid.

Echocardiography of the SARS‑CoV‑2 spike protein 
(SP) treated ACE‑2 mice versus untreated ACE‑2 mice 
groups

Ultrasound was performed using Vevo 2100 imaging sys-
tem; cardiac and aortic data were collected as described 
[61]. Mice were placed supine on a warm platform 
(37 °C) under isoflurane anesthesia. Using a MS550D 
(22–25 MHz) transducer, thoracic cavity was imaged. Aor-
tic arch velocity, and cardiography function were assessed 
in pulse wave, and color Doppler modes. The transducer 
probe was placed on left hemithorax of the mice in the 
partial left decubitus position. Two-dimensionally targeted 
M-mode echocardiograms were obtained from a short-axis 
view of the left ventricle at or just below the tip of mitral-
valve leaflet and were recorded. LV size, and the thickness 
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of LV wall were also measured. Only the M-mode ECHO 
with well-defined continuous interfaces of the septum, 
and posterior wall were collected indicating the diastolic 
(longer), and systolic (shorter) chamber lengths of the 
ACE-2 mice treated with spike protein (SP) in comparison 
to the untreated control ACE-2 mice.

Creatine kinase isoform measurement

The blood levels of creatine kinase (CK) activity were also 
measured. In brief, the tissue-specific injury was determined 
by measuring the CK isoforms in serum samples from each 
group of mice. The CK-MM represents the cardiac and skel-
etal-muscle-specific isoform, while the CK-BB is primarily 
a nerve-specific and kidney-specific isoform, respectively. 
From each mouse, 10 µl of serum was mixed with 1 µl of 
activator, and loaded onto the CK gel as instructed by the 
manufacturer (QuickGel® CK Vis Isoenzyme Procedure; 
Helena Laboratories, TX, United States). The gels were run 
at 400 V for 4:15 min. The standard (ST) amounts of CK 
isoforms were also loaded in parallel to the samples [62, 63].

Experiments on human cells for the cytokine 
profiling, and Western blotting

Human umbilical vein endothelial cells (HUVEC), and 
human coronary artery endothelial cells (HCAEC) were 
treated either with SP or with freshly mixed poly(I:C) 
poly[I:C]-HMW, Invivogen, tlrl-pic) @ 2.5  mg/ml and 
SP (5–15 μg) in 10 μl sterile phosphate buffered saline 
(PBS). The respective control cells were treated with either 
@ 2.5 mg/kg poly (I:C) or PBS using the same volume, 
and cells were harvested at 6 h or 24 h post treatment. The 
relative expression profile of cytokines was performed 
using a proteome profiler antibody array (R&D Systems, 
ARY015; Minneapolis, MN) post 24 h of treatment. The 
arrays were hybridized with an equal amount of total pro-
tein from HUVEC treated and untreated SP, and control 
reagents. Assay was performed according to the manufac-
turer's protocol. For Western blotting, antibodies such as 
IL6 (Cat. #12153), IL8 (Cat. #94407), MIG (Cat. #30327, 
and uPAR (Cat. #12863) were purchased from Cell Signal-
ing Technology (Danvers, MA) while CD147 antibody (Cat. 
#ab64616) and GAPDH (Cat. #SC-365062) were purchased 
from Abcam (Waltham, MA) and Santa Cruz Biotechnology 
(Santa Cruz, CA, USA), respectively. Anti-rabbit IgG-HRP 
conjugate and anti-mouse IgG-HRP conjugate, both were 
bought from Cell Signaling Technology (Cat. #7074, and 
Cat. # 7076, respectively). For GAPDH, primary antibody 
dilution used was 1:3000, and secondary antibodies with 
HRP conjugation, dilutions used were 1:5000, respectively. 
Protein was isolated using protein extraction buffer (RIPA 
lysis buffer, protease inhibitor cocktail and PMSF). Lysates 

were spun in extraction buffer for 12 h and then centrifuged 
at 12,000×g for 15 min. Supernatants at different time points 
from HUVEC and HCAEC were transferred to new tubes 
and protein concentrations were analyzed via Bradford 
protein estimation assay. Protein samples (a total protein 
of 50 µg) were run on a 10/12% sodium dodecyl sulfate 
(SDS)-polyacrylamide gel with Tris–glycine SDS buffer. 
Proteins from the gel were transferred electrophoretically 
overnight onto a PVDF membrane at 4 °C. Membranes were 
blocked with a 5% milk solution for 1 h. Primary antibod-
ies were diluted at a concentration 1:1000 in TBST buffer 
and incubated on membrane overnight. All membranes were 
washed in TBST buffer 4 × and then incubated with second-
ary HRP conjugated antibody solution for 1 h at room tem-
perature. Four TBST buffer washing steps followed before 
membranes were developed using a chemiluminescent sub-
strate in a BioRad Chemidoc (Hercules, Calif., USA). Band 
intensities were determined using densitometry analysis. 
Relative optical densities of protein bands were analyzed 
using gel software Image Lab 3.0. Membranes were stripped 
and re-probed with GAPDH as the loading control. Expres-
sion levels of each protein were also quantified as shown in 
the respective bar charts, n = 3–5 petri dish/group. For mol-
ecules that were difficult to demonstrate via Western blot-
ting, were subjected for an extra step of immunoprecipitation 
assay to before visualizing them on the blots.

Visceral organ observation, and histopathological 
investigation

Mice vital visceral organs were collected, and observed for 
their appearance after the experiments. The heart, lung, and 
kidney samples were also collected in 4% buffered paraform-
aldehyde for fixation, and were processed after embedding 
in paraffin. After that 5 µm-thick sections from each sample 
were cut, and stained with hematoxylin and eosin (H&E). 
The detailed methods for tissue processing, and staining 
have been described [64].

Statistical analysis

Data from mice, and human cells were collected, and sta-
tistically analyzed using the GraphPad Prism 9.0 (Graph-
Pad Software, United States). Multiple comparisons were 
performed using one-way ANOVA with Bonferroni, as 
appropriate to analyze the difference between the groups, 
including a Tukey's post hoc analysis for the groups' com-
parison. The comparisons between two groups were per-
formed by unpaired Student’s t-test. The *p < 0.05 was 
regarded as statistically significant. The data are reported 
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as mean ± SEM, and error bars indicate SEM, n = 3–5 petri 
dish or 3-5 animals/group.

Results

Animals, especially transgenic strains such as mice have 
served excellent disease models in dissecting out the 
complex disease processes, and in testing new therapeutic 
compounds [65]. As per our “a priori” belief that binding 
of the SARS-CoV-2 virion’s spike protein (SP) to the host 
cell receptor, i.e., angiotensin converting enzyme 2 (ACE-
2) in humans is associated with downstream cellular, and 
molecular signaling events. We could show many of the 
salient features that are generally seen in the COVID-19 
patients in the clinic. To our knowledge, this study is one 
of the first disease modeling investigations in an experi-
mental setting wherein we attempted to capture some of 
the clinical features, and postmortem observations that are 
seen in COVID-19 patients. In addition, we were able to 
collect data points both at whole organism level, as well 
as, under in vitro human cell culture conditions employ-
ing a range of tools such as cellular, biochemical, physi-
ological, and histopathological approaches. While many 
studies have sought to simulate infection related observa-
tions; however, we are unaware of the similar attempts by 
others of using an engineered, and a humanized animal 
species, and other similar resources to specifically study 
a rage of parameters that are highly relevant to the actual 
COVID-19 clinical scenario. We believe that the findings 
from this study could help us learn further and gain newer 
insight(s) toward improving the efficacy of the currently 
available diagnostic, therapeutic, and prophylactic strate-
gies to control the ongoing pandemic.

Measurement of physiological parameters, 
and echocardiography in mice

In some mice the body temperature post administration 
of the SARS-CoV-2 spike protein (SP) appeared to be lit-
tle high but was not significant; however, during the next 
few days the temperature dropped down significantly in 
comparison to the control/untreated mice. Similarly, the 
body weight in the treated mice group was found to be less 
(Fig. 2A). Future work should focus whether temperature 
variation could potentially determine the disease outcome 
in models but in COVID-19 infected humans hypothermia 
displayed abnormal markers of coagulopathy thus clearly 
suggesting a hypercoagulable phenotype; however, hyper-
thermic slow resolvers did exhibit elevated inflammatory 
markers and the highest odds of mortality [66]. It is worth 
mentioning that COVID-19 is associated with clinically 

significant weight loss and risk of hospitalization in human 
subjects since the disease negatively impacts body weight 
and the nutritional status [67]. The respiration and heart 
rates were found to be not significantly affected in the SP 
treated ACE-2 mice in comparison to the untreated ACE-2 
mice which contrasts with the observations in human 
patients (Fig. 2A) [68]. Likewise, the systolic and diastolic 
pressures were not affected much (Fig. 2B). This finding 
was in direct contrast to the clinical observation in human 
patients wherein COVID-19 increased both systolic, and 
diastolic blood pressures, and thus became a new onset of 
hypertension [69, 70]. Interestingly, the intraocular pres-
sure (IOP) in SP treated ACE-2 mice was significantly 
affected than the untreated ACE-2 mice (Fig. 2B). COVID-
19-related ocular hypertension has also been reported in 
human subjects [71].

More importantly, the echocardiography findings; how-
ever, did reveal alterations in cardiac functions as seen in 
the representative M‐mode echocardiography images from 
each group, i.e., SP administered, and control (saline) 
administered (CTL) indicating diastolic (longer) and sys-
tolic (shorter) chamber lengths in the ACE-2 mice treated 
with SP in comparison to the untreated control ACE-2 mice. 
The contraction and relaxation of the myocardium are found 
to be attenuated in the SP treated mice in comparison to 
the untreated control ACE-2 mice (Fig. 3). Clinical stud-
ies in human subjects have reported an association between 
COVID-19 and cardiovascular disease. Notably, the pre-
existing cardiovascular disease appears to be strongly linked 
with worse outcomes such as death in patients with COVID-
19. Nonetheless, COVID-19 itself can also induce cardiac 
injury, acute coronary syndrome, arrhythmia, and venous 
thromboembolism [72].

Creatine kinase assay

When the serum samples were subjected to assess the rela-
tive activities of various isoforms of the phospho-creatine 
kinase (CK) employing a gel-based assay from the SP treated 
ACE-2 mice, and untreated ACE-2 control mice groups, the 
tissue-specific injury was evident in the treated group as 
determined by the measurement of respective CK isoforms. 
For example, the muscle (CK-MM) injury was maximum, 
and significant followed by heart (CK-MB), and brain (CK-
BB) (Fig. 4A and B). In fact, COVID-19 is accompanied 
by multiorgan failure in many patients, and that is strongly 
associated with increasing mortality rate [73, 74].
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Protein array profiling, and Western blotting 
for cytokines/inflammatory molecules, on human 
cells

The expression profile of cytokines was captured by array 
analysis, and important protein targets were investigated 
via Western blotting either from cell culture supernatants 
or cell lysates that were treated with SP alone or with Poly: 
IC for different time points. Poly I:C is a synthetic polyi-
nosinic-polycytidylic acid double-stranded RNA and has 
been used to stimulate release of cytokines and interferon-
gamma production [57, 75]. The results revealed significant 
changes in the levels of cytokines and key protein molecules 
in the SP treated cells than the non-treated cells (Figs. 5, 6, 

and 7). Cytokines such as IL-6 have been considered as a 
potential COVID-19 early disease biomarker, and relevant 
prognostic tool for the development of fatal pneumonia in 
patients [76–79]. Interestingly, high CD47 levels seems to 
contribute to vascular disease, vasoconstriction, and hyper-
tension thus predisposing individuals to serious complica-
tions like pulmonary hypertension, lung fibrosis, myocardial 
injury, stroke, and acute kidney injury [80, 81]. The role of 
urokinase plasminogen activator receptor (uPAR) has been 
suggested as one of the main orchestrators of fatal progres-
sion to pulmonary, kidney, and heart failure in COVID-19 
patients. Newer drugs that could regulate uPAR system may 
help treat severe complications COVID-19 [82]. Because 
lack of therapeutic options for tackling acute respiratory 

Fig. 2  A Measurement of the body temperature, weight, respiration, 
heart rate, blood pressure (systolic, and diastolic), and intraocular 
pressure (IOP). The human angiotensin converting enzyme 2 trans-
genic mice (B6.Cg-Tg(K18-ACE2)2Prlmn/J, Genotype: Hemizy-
gous genotype, Hemizygous for Tg(K18- ACE2)2Prlmn; in short, 
ACE-2 mice) were treated or untreated with the SARS-CoV-2 spike 
protein (SP). A Daily body temperature, and the body weight of the 
ACE-2 mice administered with SP via the nasal route were compared 
to the control mice (without SP). Unpaired t-tests were performed, 
*p < 0.01, **p < 0.001 ***p < 0.001, ****p < 0.0001, respectively, 
n = 3–5 mice/group. The respiration rate, and heart rate of ACE-2 
mice (measured while doing the echocardiography) were also 
recorded. Unpaired t-test were performed, p < 0.2056, p < 0.2002, 
respectively, n = 4. B Blood pressure was measured by Coda non-

invasive instrument. Unpaired t-tests were performed, p < 0.3890, 
n = 3–5 mice/group. Systolic, and diastolic pressure were measured, 
and the unpaired t-test were performed, p < 0.4696, n = 3–5 mice/
group. Similarly, IOP was also measured by iCareLab tonometer, and 
unpaired t-test was performed, p < 0.0023, n = 3–5 mice/group. The 
body temperature is significantly decreased in mice treated with SP 
(35.50 ± 1.01 vs 31.39 ± 0.52), the body weight of those treated with 
SP were found to be significantly less (30.68 ± 0.73 vs 26.27 ± 0.42); 
however, the respiration rate (130.00 ± 7.4 vs 112.40 ± 18.7 breaths 
per minute), heart rate (321.70 ± 8.9 vs 358.00 ± 16.7 beats per min-
ute), systolic (122.00 ± 8.3 vs 136.90 ± 8.56  mmHg), and diastolic 
blood pressure (93.33 ± 6.0 vs 105.00 ± 8.26 mmHg) were not signifi-
cantly different. Interestingly, IOP was significantly decreased in mice 
treated with SP (13.43 ± 1.2 vs 9.500 ± 0.43)
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distress syndrome (ARDS) in COVID-19 patients, atten-
tion has now focused on differentiating hyper- and hypo-
inflammatory phenotypes of ARDS to help develop effec-
tive therapeutic interventions. In this regard, IL-8 which is 
a pro-inflammatory cytokine performs an important role in 
neutrophil activation and has been identified for the progres-
sion of COVID-19 disease [83, 84]. Furthermore, it has been 

reported that COVID-19 patients with severe outcome also 
display higher plasma levels of chemokines such as CXCL9/
MIG, CXCL8/IL-8, and CXCL10/IP10 along with cytokines 
IL-6 and IL-10 than the patients with the milder form of the 
COVID-19 [85]. From our animal disease modeling study, it 
is apparent that molecules such as IL-6 and IL-8 can be used 

Fig. 3  Echocardiography of the SP treated ACE-2 mice versus 
untreated ACE-2 mice groups. Representative M-Mode image of par-
asternal long-axis view images from each group are presented indi-
cating diastolic (longer) and systolic (shorter) chamber lengths in the 

ACE-2 mice treated with SP in comparison to the untreated control 
ACE-2 mice. The contraction and relaxation of the myocardium are 
attenuated in SP treated mice in comparison to the untreated control 
ACE-2 mice, n = 3–5 mice/group

Fig. 4  Creatine phosphokinase (CK) levels in SP treated ACE-2) 
mice versus untreated ACE-2 mice. SP treated (SP #1 and SP #2) 
were higher compared to the control mice. Differences in CK levels 
(A) is due to multi-organ damage such as skeletal muscle (CK-MM), 

heart (CK-MB), and the brain (CK-BB) (B). The binding of SP to 
ACE-2 receptor causes multi-organ damage. Two-Way ANOVA with 
multiple comparisons, **p < 0.009, n = 3–5 mice/group
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Fig. 5  The proteome profiler with antibodies arrays reveals induc-
tion of cytokines in primary human umbilical vein endothelial cells 
(HUVEC). The cells were treated either with sterile phosphate buff-
ered saline (PBS/saline) alone or SP; or with 10 mg of Poly I:C, or 

both SP and Poly I:C. The quantitation and comparison of SP induced 
CD147, IL-6 and IL-8, MIG, and uPAR are shown in comparison 
with respective controls. Depicted are the fluorescence intensity of 
different proteins measured, n = 3–5 petri dish/group

Fig. 6  Western blot analyses of the key target proteins. Supernatants 
from human primary umbilical vein endothelial cells (HUVEC) at 6- 
and 24-h post treatment using the control (CTL), SP (spike protein), 
SP-Poly (spike protein and poly I:C), and Poly (poly I:C). The pri-
mary antibodies used were Interleukin-6 (IL-6), CD147 (EMPERIN), 
and uPAR and protein bands were normalized with GAPDH. The 
expression levels of each protein were also quantified as shown by 
the bar charts, n = 3–5 petri dish/group, ns not significant, *p < 0.01, 
****p < 0.0001. Similarly, supernatants from human primary coro-

nary artery endothelial cells (HCAEC) at 6- and 24-h post treatment 
were performed using the control (CTL), SP (spike protein), SP-
Poly (spike protein and poly I:C), and Poly (poly I:C). The primary 
antibodies used were Interleukin-6 (IL-6), CD147 (EMPERIN), and 
uPAR, and the protein bands were normalized with GAPDH. The 
expression levels of each protein were also quantified as shown by 
the bar charts. n = 3–5 petri dish/group, ns not significant, *p < 0.01, 
****p < 0.0001
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as potential biomarkers in COVID-19 patients and probably 
for COVID-19 disease prognosis also.

Visceral organ observation, and histopathological 
investigation

When mice visceral organs were collected, and observed for 
their appearance, it became abundantly clear that there was 
significant change in their appearance most likely because of 
the blood clots that have been often shown in patients suffering 
from COVID-19. More importantly, thrombi in the vasculature 

have also been reported in patients. The vital organs in our SP 
treated mice looked very dark in color (Fig. 8). In addition to 
gross observation of the organs, histological study on these 
vital organs employing hematoxylin and eosin (H&E) stain-
ing revealed a significant inflammatory phenotype more in 
the lung, and kidney than heart signifying extensive infiltra-
tions of immune cells, e.g., neutrophils in the SP treated mice 
in comparison to the untreated control mice. Kidney, in fact, 
exhibited extensive tissue damage in the SP treated mice than 
the non-treated control mice (Fig. 9).

Fig. 7  Western blot analysis of the key target proteins employing 
the immuno-precipitate. Immunoprecipitants from the human pri-
mary coronary artery endothelial cells (HCAEC) and human primary 
umbilical vein endothelial cells (HUVEC) post 24 h treatment were 
used from the samples: control (CTL), SP (spike protein), SP-Poly 

(spike protein and poly I:C), and Poly (poly I:C). The primary anti-
bodies used were for Interleukin-8 (IL-8), and MIG (cxcl9). Expres-
sion levels of the proteins are shown in the bar charts after the bands 
were normalized with GAPDH, n = 3–5 petri dish/group, ns not sig-
nificant, *p < 0.01, ****p < 0.0001
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Discussion

In this study we show that upon SARS-CoV-2 virion spike 
protein (SP) treatment of the genetically engineered mice 
expressing the human ACE-2 receptor, and human cells 
led to the hyper-inflammatory state/phenotype relative to 

the untreated/control mice or human cells. The SP elic-
ited secretome from inflamed targets (organs/cells), that is, 
from the in vivo (mice) or in vitro (human cells) systems 
causing an increased expression of the important proteins/
targets such as cytokines/chemokines most likely mimick-
ing the “cytokine storm” that is commonly observed in 
COVID-19 humans. It is well documented that excessive 

Fig. 8  Representative pictures of the mice heart, lung, and internal visceral organs. Heart, and intestine show most likely the evidence of blood 
clots, and thrombi formation. The vital organs look very dark in color indeed, n = 3–5 mice/group

Fig. 9  Hematoxylin and eosin (H&E) staining of the lung, heart, and 
kidney samples from the humanized ACE-2 (B6. Cp-Tg) and ACE2 
(B6.Cp-Tg) + Spike protein. Black circle clearly depicts a cluster of 
infiltrated immune cell populations while heart Sect.  (5  μm thick-
ness) shows diffused inflammatory cells throughout the parenchyma, 
magnification × 20, scale bar—50  μm n = 3–5 mice/group. Kidney 
Sects.  (5  μm thickness) showing representative image of control 

kidney and spike protein (SP) treated mice. Pictures depict loss of 
glomerular tuft and hyaline deposit (green arrows), desquamation 
of tubular epithelium and necrosis (red arrow heads), inflammatory 
cell infiltration (yellow arrows), and tubular necrosis (purple arrow). 
Magnification × 60, scale bar—50  μm. The control mice received 
saline/PBS, n = 3–5 mice/group
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production of pro-inflammatory cytokines/chemokines is 
a severe clinical syndrome known to develop as a seri-
ous complication of infectious or inflammatory diseases 
such as during SARS-CoV-2 infection responsible for 
COVID-19. Evidence from clinical cases suggests that the 
occurrence of cytokine storm in severe acute respiratory 
syndrome secondary to SARS-CoV-2 infection is closely 
associated with a rapid deterioration of human health and 
high mortality in severe cases [86]. In our work, a sig-
nificant increase in the levels of cytokines/chemokines 
or alterations in mice organs relative to untreated/control 
cells or mice confirm our hypothesis that biding of the SP 
to host cell is associated with downstream cellular pro-
cesses/events that are highly detriment to host or its cells/
organs. Such pathological events/processes are akin to 
the observations in the COVID-19 patients during SARS-
CoV-2 viral pathogen replication in the target host cells.
[87–90]. In people who recover from acute COVID-19 
disease the pathology is still characterized and associated 
with mild form of cytokine storm that may or may not 

lead to long-term endothelial inflammation, microvascular 
thrombosis, and organ dysfunction but post COVID-19 
related implications may still haunt some susceptible indi-
viduals for a foreseeable future [91–94].

Our findings support the hypothesis and corrobo-
rates some of the clinical observations of targeting SP as 
a COVID-19 preventing strategy for safeguarding human 
health against this deadly disease in susceptible human 
population. The same is true for the fact that therapeutically 
targeting the SP via specific monoclonal antibodies in the 
initial phase of the COVID-19 can prevent serious organ 
damage, and related health issues in the COVID-19 patients 
with alleviation of both the morbidity and mortality. Our 
results from the preclinical mouse model also suggest that 
creatinine kinase-based assays, and other blood biomarkers 
may be developed, and employed to not only protect other 
individuals who are vulnerable to adverse COVID-19 out-
comes in whom there are increased chances of occurring 
serious COVID-19 symptoms but also in obese or numer-
ous chronic diseases that affect individuals. In short, animal 

Fig. 10  Schematics of plausible hypothesis regarding SARS-CoV-2 
induced visceral organ damage. The binding of SARS-CoV-2 spike 
protein (SP) with ACE-2 receptor mimics SARS-CoV-2 infection, 
and causes the accumulation of Ang1-8, activation of inflammasome, 
and M1Q macrophages via the “TLR4/NLRP3/CD147/Nox4/iNOS/
neopterin” axis in the heart. This cascade of events leads to endothe-
lial blood-heart barrier (BHB) leakage; however, the iNOSKO/
Nox4KO and iNOS antagonists may help mitigate the inflammasome/
NLRP3/M1Q mediated endothelial BHB leakage (A), as reported 
earlier by Tyagi and Singh, Multi-organ damage by COVID-19: 
Congestive (cardio-pulmonary) heart failure, and blood-heart barrier 
leakage, Mol Cell Biochem.  2021;476 (4):1891–1895). Similarly, 

biding of the SARS-CoV-2 spike protein (SP) to ACE-2/CD147 on 
macrophages can cause M1Q activation by IFN-γ toward generat-
ing the neopterin, and thus stimulating the iNOS, Nox4, and NLRP3 
inflammasome pathway in the kidney that in turn can trigger apop-
tosis which may lead to CD4+ and CD8+ cell lymphopenia. These 
alterations might inflict the proximal tubular epithelial cell/podocyte 
damage, and the resultant parenchymal leakage. In that case, the 
iNOSKO/Nox4KO, and Fas/FasL antagonists (Kp7-6)/IFN-λ treat-
ment could help mitigate the cytokine storm, and T cell lymphope-
nia thus protecting the proximal tubular epithelial/podocyte function 
(B). M1; inflammatory macrophage (M1Q), iNOS; inducible of nitric 
oxide synthase, BH4; tetrahydrobiopterin, FH4; tetrahydrofolate
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models such as genetically engineered ones may play impor-
tant role(s) in studying “in-depth” disease mechanism(s) 
toward developing lifesaving therapeutics, and effective 
preventative measures. Finally, we hypothesize about the 
most plausible mechanisms(s) by which SARS-CoV-2 most 
likely induce the visceral organ damage in the infected host. 
Post internalization of the SARS-CoV-2 virions via the 
human angiotensin converting enzyme 2 (ACE-2) receptor, 
it causes a robust surge of inflammatory markers, epithelial 
barrier dysfunction, and multi-organ damage and congestive 
(cardio-pulmonary) heart failure (CHF) [36, 95]. Interest-
ingly, the ACE-2 receptor is highly expressed in the renal 
tubular epithelial cells and podocytes. Studies have shown 
robust increase of neopterin (NPT) in COVID-19 patients. 
Interestingly, NPT is generated by IFN-γ-induced inflam-
matory macrophage (M1Q) in response to viral infection 
(Fig. 10). COVID-19 infection causes recruitment of inflam-
matory cells and a further robust surge of the inflamma-
tory cytokines, epithelial barrier dysfunction, podocyte, and 
endothelial damage leading to acute kidney injury (AKI).

We strongly believe that pro-inflammatory macrophage 
(M1Q) activation leads to oxidative stress, and peroxyni-
trite/nitrosylation in cells/organs during COVID-19. Further, 
the resultant NLRP3 inflammasome formation may poten-
tially activate the apoptosis pathway(s) leading to T cell 
lymphopenia (that is decrease in CD4+, and CD8+ cells) 
thus inciting the proximal tubular epithelial cell/podocyte 
injury and leakage (Fig. 10). It is known that the COVID-19 
activates innate immune system causing AKI as reported in 
27–40% of the ICU admissions [95–109]. More importantly, 
the humanized ACE-2 engineered mouse model can also 
be used to identify potential safety issues that may be asso-
ciated with COVID-19 inhibitors that are being developed 
by pharmaceutical industry. We further hypothesize that 
newer version(s) of the modified approaches such as deliv-
ering beneficial molecules to the engineered mouse models 
or even to the cultured host cells via employing the protein 
transduction technology might reveal new disease target(s) 
in the coming future [110]. In the light of new emerging 
SARS-CoV-2 variants/sub-variants, it is somewhat difficult 
to predict whether we are going to have a peaceful future, 
COVID-wise, but it is certain that only the robust ‘cutting-
edge’ tools, and technology might navigate us out of this 
deadly pandemic.

Limitation regarding extrapolation of mice experimental 
findings to human clinical observations: We do recognize 
that our work has limitations such as: (1) we did not use the 
actual infectious virus particles (virions) in our experiments, 
and (2) although we did use human cells in conducting 
in vitro experiments with SP alone or in combination with 
poly I:C, and a genetically engineered mouse model express-
ing the human angiotensin converting enzyme 2 (ACE-2) 
receptor to obtain the experimental data; however, despite 

above shortcomings, we were able to demonstrate many 
important features that seem to be similar, if not identical, 
to that of human COVID-19 as seen in real clinical settings.

In conclusion, we present a set of interesting evidence 
that interaction between the SARS-CoV-2 virion’s spike 
protein (SP) with that of the human angiotensin convert-
ing enzyme 2 (ACE-2) receptor leads to a robust cellular 
signaling cascade of events. If further research can validate 
or extend our findings then certainly such small, engineered 
animal models could serve as important tools in fighting, 
and winning this ongoing COVID-19 pandemic, and other 
related infectious diseases. As shown by others that a height-
ened pathological response in the form of increased cytokine 
storm, and multi-organ damage can lead to vital organ fail-
ure, and ultimately death in some COVID-19 patients as 
already revealed during the last > than ~ 2 years since the 
start of the pandemic [79, 111–122]. To dissect out fur-
ther the physiological, and pathological implications of the 
SARS-CoV-2 induced changes, we carried out this important 
study to capture some of the initial/beginning phase of the 
intimate interaction(s) between the host cell receptor with 
the SARS-CoV-2 spike protein (SP) employing a genetically 
engineered mouse model expressing the human angiotensin 
converting enzyme 2 (ACE-2) receptor and the recombinant 
SARS-CoV-2 spike protein (SP) that was delivered via the 
intranasal route [123]. The SARS-CoV-2 spike protein (SP) 
binding to ACE-2 receptor did seem to amplify the suscepti-
bility to COVID-19 virion-induced inflammation in various 
mice organs along with occurrence of the cytokine storm as 
elaborated in this study.
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