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Abstract: This paper suggests a new control design based on the concept of Synergetic Control theory
for controlling a one-link robot arm actuated by Pneumatic artificial muscles (PAMs) in opposing
bicep/tricep positions. The synergetic control design is first established based on known system
parameters. However, in real PAM-actuated systems, the uncertainties are inherited features in
their parameters and hence an adaptive synergetic control algorithm is proposed and synthesized for
a PAM-actuated robot arm subjected to perturbation in its parameters. The adaptive synergetic laws
are developed to estimate the uncertainties and to guarantee the asymptotic stability of the adaptive
synergetic controlled PAM-actuated system. The work has also presented an improvement in
the performance of proposed synergetic controllers (classical and adaptive) by applying a modern
optimization technique based on Particle Swarm Optimization (PSO) to tune their design parameters
towards optimal dynamic performance. The effectiveness of the proposed classical and adaptive
synergetic controllers has been verified via computer simulation and it has been shown that
the adaptive controller could cope with uncertainties and keep the controlled system stable.
The proposed optimal Adaptive Synergetic Controller (ASC) has been validated with a previous
adaptive controller with the same robot structure and actuation, and it has been shown that the optimal
ASC outperforms its opponent in terms of tracking speed and error.

Keywords: Pneumatic Artificial Muscles; synergetic control; adaptive control; particle swarming
optimization; single-link robot arm

1. Introduction

Pneumatic actuators such as cylinders, pneumatic stepper motors, bellows, and pneumatic engines
are commonly used to date. Pneumatic Artificial Muscles (PAMs) are one type of pneumatic actuator,
which are made mainly of inflatable and flexible membrane that works like inverse bellows; i.e.,
they contract on inflation. The force generated by PAM actuators does not depend only on pressure,
but also on the state of inflation, which adds another source of spring-like behavior. These PAMs,
which mimic the animal muscle, are characterized by their light weight, since the membrane forms
the core element of these actuators. However, they can transfer the same amount of power as cylinders
do, when both actuators have the same volume and pressure ranges [1,2].

PAMs are used in many applications due to their light weight, simple construction and high
force/weight ratio, direct connection, easy replacement and safe operation. The PAM actuators found
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their application in biomechanics, bio-robotics, robotics, artificial limb replacement Moreover, since
PAMs are noise-free devices, they are applicable in hospital treatments to patients who are sensitive
to noise. Compared to motor actuators, PAMs do not need a gear mechanism to increase power due
to their high power/volume ratios. Due to their elasticity, PAMs are useful for the natural frequency
of biped locomotion. Additionally, PAMs are useful for under-water applications due to their water
immunity [3,4]. Since the operation of PAM mimicks that of real muscle, PAM is effectively used to
implement the humanoid.

PAMs are characterized by many disadvantages. As compared to other actuators, one problem
which can be addressed in PAMs is their antagonistic structure. This structure does not permit one
PAM in the pair to contract and relax unless another PAM inflation causes the first PAM to deflate.
However, only one motor is sufficient to perform the desired movement in traditional actuators [5].
One other main problem in PAMs is the difficulty to control them, since they are highly time varying
and nonlinear and they involve uncertain parameters. This is due to the presence of various uncertain,
nonlinear, and unknown terms in the system dynamics that restricts designing an effective tracking
controller for the actuator. In addition, their high sensitivity to the working conditions of PAM systems
such as viscosity, temperature and supplied pressure has greatly limited their working regions [6,7].
Many researchers have presented different control strategies to address the control problems of
uncertain mechanical systems actuated by pneumatic muscles. The following literature addresses
the recent control strategies applied to PAM-actuated systems:

Scaff et al., in [8], proposed an optimal conventional Proportional-Integral-Derivative (PID)
controller for position control of one degree of freedom (DOF) system actuated by McKibben PAM.
The terms of the PID controller are tuned using Simulated Optimization Algorithm (SOA), so as to
obtain better dynamic performance of the PID-controlled system. One critical control problem is that
the optimization is achieved off-line and there is no online adaption or optimization against variation of
system parameters. Moreover, the PAM-actuated system is merely a hanging mass actuated by PAMs.

Choi et al., in [5], proposed a control technique for a PAM-actuated robot to replace a proportional
pressure regulator (PPR) by a controller composed of a set of small encoders and pressure switches to
solve the space problem due to the implementation of PPR. The results based on experimental tests
show that the new controller could save space, but at the price of precision degradation. It is evident
that the controller is based on an on-off technique and it did not address the uncertainty in system
parameters, but it is intended to only save space.

Wang et al., in [9], proposed an adaptive fuzzy backstepping controller for motion control
of a two-link anthropomorphic arm, which is subjected to frictions and model uncertainties.
The PAM-actuated manipulator has been applied in upper-limb rehabilitation training. However,
the high computation time, high memory storage and complex procedure of rule modification have been
reported as the main drawbacks of using fuzzy adaptive controllers. In addition, the approximation in
synthesizing a function-based model to represent the input–output mapping is another issue which
degrades the performance of the proposed controller

Al-Jodah and Khames, in [10], designed a first and second order sliding mode control (SMC) for
angular position control tracking of a single link robotic arm actuated by a pair of PAMs. A performance
comparison has been made between the proposed controllers in terms of robustness against uncertainty
in system parameters and in terms of their capability to suppress the chattering in their corresponding
control signals. However, the work focused mainly on the solution of the chattering problem that is
frequently attached to SMC design.

Medrano-Cerda et al., in [11], have designed an adaptive controller for the bi-muscular Pneumatic
Muscle Actuator System. The control of the PAM system has been developed based on adaptive
pole-placement control. In spite of the fact that the controller could give feasible accuracy and results
in high power/weight ratio, the proposed adaptive scheme is synthesized based on indirect control
methods, in which the mathematical model and system parameters is estimated according to online
input–output acquired data based on proposed model structure.
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Lilly and Yang, in [12], applied the sliding mode techniques for angle tracking of planar
PAM-actuated manipulators, which are arranged in an agonist/antagonist set-up, under load exertion.
The sliding mode controller is developed for the planar elbow manipulator so as to guarantee accuracy
in the presence of modeling errors. The work did not address the adaptation in the controller to
compensate the variation in system parameters. In addition, the presence of chattering behavior is
an inevitable in control signal due to the inclusion of the hard switching function in the design of
SMC methodology.

Jahanabadi, in [13], investigated the design of an integrated controller based on Active Force
Control and FL (AFCFL) for position control of a PAM-actuated two planar link manipulator. The fuzzy
logic is devoted to estimate the best value of the inertia matrix of the robot arm necessary for the AFC
mechanism, which has been supported by a PID controller at the outer loop. Unfortunately, the work has
applied a PID controller as the main tracking controller and the dynamic model has been approximated
by a static gain, which is far from representing the actual model.

Tarapong and Radom, in [14], have designed an adaptive controller for tracking control of
a one-link PAM-actuated robot arm under unknown physical system parameters. The work proved
that the actual joint angle trajectory of an adaptive controlled system can track the desired trajectory
within the prescribed tracking error in a finite time. The conducted results showed the robustness of
the proposed controller under changes in robot parameters. However, the adaptive controller has been
designed based on output tracking control with a different robot structure from the present work.

Repperger et al., in [15], presented a design of a gain-scheduled controller for regulating
the response of a large-scale pneumatic muscle actuator. The scheduled gains are determined
via many tests of transient and steady state responses. The design was primitive and has not taken
into account the compensation due to variation in parameters of the PAM actuator.

Lilly, in [16], presented an adaptive technique for control tracking of joint angles of PAM-actuated
limbs. The work conducted a comparison study between the proposed adaptive and PID controller.
The results based on simulation showed the superiority of the proposed controller to the conventional
one. However, the work has not addressed the design of an adaptive controller with both bicep
and tricep PAMs attached to the arm, but there was an individual adaptive control design for each
configuration; bicep or tricep PAMs attached to the arm.

Boudoua et al., in [17], proposed a neural network-based twisting sliding mode controller for
control of a PAM-actuated robot arm and for chattering reduction in the control signal. The work
used a two layer NN together with online adaptive learning law to approximate the unmodeled and
unknown robot dynamics. This study lacked the ability to eliminate the chattering in the control signal
and the use of NN structure for approximation could degrade the performance of the controller unless
a suitable number and type of activation function is used.

Robinson et al. [18] studied the performance of three nonlinear control schemes, represented by
sliding mode control, adaptive sliding mode control, and adaptive neural network (ANN) control for
tracking control of a planar PAM-actuated manipulator. It has been shown that ANN controller is
more robust against the variation in characteristics of the PAM actuator. The work concentrated on
which controller needs the knowledge of the model more than the other. It has been concluded that
the ANN controller is preferable since it does not need a model of the pneumatic system. However,
the manipulator structure consists of a parallel PAM group that pulls a sliding plate, which rotates
the link arm via tendon link about the pinned joint attached to the rigid body.

Shen [19] developed a sliding mode controller to cope with the uncertainties and disturbances
of servo systems actuated by PAMs. The dynamic model of controllable canonical form was firstly
developed based on flow, force, and pressure and load dynamics. One can report the appearance
of chattering in the actuating signals due to the necessity of using the discontinuous function in
design methodology.

Hosovsky et al. [20] presented a complete characterization of a dynamic model for a PAM-actuated
two-link arm, which can be used for different control designs. The Lagrangian mechanics approach
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is applied to develop the motion equation with massive links utilizing an experimental approach to
approximating the force function, determining the values of certain parameters based on the Adaptive
Neural Fuzzy Inference System (ANFIS). The work focused on the model characterization and no
control strategies have been addressed.

Enzevaee et al. [21] have presented an Active Force Control (AFC) strategy based on a Fuzzy Logic
(FL) controller for tracking control of a single-link robot arm. The simulated and experimental results
showed that the proposed control scheme could compensate the subjected disturbances effectively
and robustly. The main point which has been reported is that the dynamics of the robot arm were
approximated by input–output gain. Moreover, the use of a PID controller as the tracking controller
could not compensate the uncertainty in system parameters

Hiroki [22] presented a control method for a two joint leg driven by PAM. The control method is
based on adjusting the timing of cyclic input signal using a genetic algorithm (GA) according to simple
cost functions. It has been shown that the robustness of the Pam-driven leg is limited by adjustment of
input timing. Unfortunately, the work did not support a control design under uncertainties, but rather
it has addressed the problem of robustness improvement based on adjustment of cyclic input timing.

Caldwell et al. in [23] presented an indirect adaptive controller based on pole-placement control
technique for braided pneumatic muscle actuator (PMA). The model of PAM actuator has been
identified via input–output data according to the proposed model structure. The work reported
low bandwidth of the closed-loop system and hence low dynamic speed of response due to limited
structure of the polynomial model.

The works reviewed in the above literature either used intelligent control schemes, based on
fuzzy logic, neural networks, optimization-based control, nonlinear control based on sliding mode
control, adaptive backstepping control, or hybrid nonlinear control. Moreover, it is worthy to mention
that the structure of the PAM-actuated manipulator differs from one study to another. Different
from the previous studies, in this paper, an adaptive controller is developed for tracking control of
PAM-manipulator based on synergetic control strategy.

The Synergetic Control (SC) theory is based a state-space theory, which is utilized for the design
and control of highly complex and connected nonlinear systems. This control strategy could enable
the state variables of the system to evolve on invariant manifolds chosen by the designer and to achieve
the required performance in spite of the presence of uncertainties and disturbances [24,25]. The design
of nonlinear systems based on synergetic control can follow the following general procedure [26,27]:

1. Forming the extended system of differential equations, which reflects different operations such as
achieving the set values, coordinating observing, optimization, suppressing the disturbances etc.

2. Synthesizing “external” controls which ensure a reduction in the extra degrees of freedom of
the extended system with respect to the final manifold. The motion of the representing point is
described by the equations of the system’s “internal” dynamics.

3. Synthesizing the “internal” controls by means of forming the links between the “internal”
coordinates of the system. These links ensure the reaching of the control aim.

4. The synergetic controller directs the trajectories of the system to move onto the manifold from
any initial points to their corresponding equilibrium points.

It has been shown that the design parameters of different adaptive and non-adaptive controllers
have a direct impact on their performances. These design parameters are often selected based on
the trial-and-error procedure. This old technique could not find the optimal dynamic performance of
the controlled system based on the proposed controllers. Therefore, a modern optimization technique
is used to tune these design parameters to improve the dynamic performance of the controlled
system [28,29]. In the present work, the Particle Swarm Optimization (PSO) has been suggested to
adjust the design parameters of the controlled system. This modern optimization technique was first
proposed by Kennedy in 1995 and it was inspired by the behavior of organisms [30]. This optimization
tuner is characterized by fast convergence, the efficiency of computation and it has the capability to
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find local and global solutions [31,32]. Other modern and generalized optimization techniques can be
employed either to improve the optimization process or to make a comparison in performance among
each other [33–41].

The main problem with systems actuated by Pneumatic Artificial Muscles is that they suffer
from external disturbances, uncertainties (e.g., unknown parameters and unmodeled uncertainties,
etc.), high nonlinearities, hysteresis and time varying characteristics, which dramatically degrade
the performance of tracking control. To handle this important issue, an adaptive control method is
proposed for the PAM-actuated one-link robot arm, which can deal effectively with the influence
produced by parametric uncertainties in actuating muscles.

The contribution of this paper is to develop an adaptive control algorithm based on synergetic
control theory for tracking control of a single-link robot arm actuated by pneumatic artificial muscles
under uncertainties in muscle parameters. The proposed controller is continuous and able to prevent
chattering and it can simultaneously compensate the parametric uncertainties, and it yields bounded
adaptive gains. The improvement in performance of the proposed adaptive controller by PSO-tuning
of its design parameters is the second contribution, which can be added as well since it has never
been addressed in the literature for such PAM systems. The rfirst controller is based on known
parameters of PAM-actuated one-link robot arms named as classical synergetic controller (CSC), while
the other adaptive synergetic controller (ASC) solves the problem of unknown uncertainties in system
parameters. The stability of the controlled PAM robotic system is analyzed and proved based on
Lypunov stability analysis. In addition, the PSO technique is introduced for tuning the designed
parameters of proposed controllers to better enhance the performances of the proposed controllers.
Thus, the contribution of the present work can be embodied by pursuing the following steps of
objectives:
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where, m is the mass (kg), g is the gravitational acceleration (m/s2), B(Pb) is the bicep coefficient of
viscous friction, L is the length of the arm from the center of the mass to the joint, B(Pt) is the tricep
coefficient of viscous friction, K(Pb) represents the bicep spring coefficient (N/m), K(Pt) represents
the tricep spring coefficient (N/m). F(Pb) is the force exerted by PAM in the bicep case, F(Pt) is
the force exerted by PAM in the tricep case, a is the distance from the joint axis of rotation to the PMs
attached point (A), r is the pulley radius.

The amount of pneumatic muscle extension xt and muscle contraction xb can be expressed
respectively by [12,16],

xb = a (1− cos θ) (1)

xt = a (1 + cos θ) (2)

The forearm forms an angle α = sin−1(r/a) with the tricep cable. The forearm is permitted to
rotate within this angle. The angle θ = 0 corresponds to the case that the forearm is in a downward
position, while the angle θ = π represents the case that the forearm is in an extreme upward position.
The clockwise torque generated by the bicep muscle on the fore arm is given by:

τcw = Fb(.) a sinθ (3)

The counterclockwise torque applied by the tricep muscle is described by:

τccw = Ft(.) r (4)

where Ft(.) and Fb(.) are the developed forces from the tricep and bicep PAMs, respectively, r is
the pulley radius. The generated Ft(.) and Fb(.) can be described by the following dynamic PAM
model [12]:

Fb(.) = F(Pb) −K(Pb)xb − B(Pb)
.
xb (5)

Ft(.) = F(Pt) −K(Pt)xt − B(Pt)
.
xt (6)

where F(Pb), K(Pb) and B(Pb) are the bicep PAM force, spring and viscosity coefficients, respectively,
and they are expressed as follows:

F(Pb) = F0 + F1 Pb
K(Pb) = K0 + K1 Pb
B(Pt) = B0t + B1bPb

(7)

In addition, F(Pt), K(Pt) and B(Pt) represent the tricep PAM force, spring and viscosity coefficients,
respectively, and they are defined by the following expressions:

F(Pt) = F0 + F1 Pt

K(Pb) = K0 + K1 Pt

B(Pt) = B0t + B1tPt

(8)
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It is worthy to note that the coefficient B depends on wether the muscle is being deflated or
inflated; that is, one has to differentiate between the tricep and bicep coefficients B(Pt) and B(Pb).

The dynamic equation of motion can be found by summing the torques, described by Equations (3)
and (4), about the elbow

I
..
θ = Fb(.)asinθ− Ft(.)r−MgLsinθ (9)

where I = ML2 represents the moment of mass inertia about the elbow and the last term (MgLsinθ)
has been added to account for the counterclockwise torque exerted on the forearm due to the mass
gravity. Substituting Equations (5) and (6) into Equation (9), one can obtain:

I
..
θ =

(
F(Pb) −K(Pb)xb − (B0b + B1bPb)

.
xb

)
a sinθ

−

(
F(Pt) −K(Pt)xt − (B0t + B1t Pt)

.
xt
)

r−MgLsinθ
(10)

The time derivative of PM extension xt and contraction xb are given, respectively, as:

.
xb = a sinθ.

.
θ (11)

.
xt = −a sinθ.

.
θ (12)

Using Equations (10)–(12), one can get

I
..
θ =

(
F(Pb) −K(Pb) xb − a (B0b + B1b Pb) sin θ.

.
θ
)

a sinθ− (F(Pt) −K(Pt)xt

+a(B0t + B1tPt)sinθ.
.
θ)r−M g L sinθ

(13)

The pressure of tricep and bicep PAM is given

Pt = P0t − ∆P (14)

Pb = P0b + ∆P (15)

where P0t, P0b are the initial pressure of the tricep and bicep, respectively, ∆P is assigned as the control
input of the system and it describes the pressure difference between the tricep and bicep. Combining
Equations (14)–(16), to yield

I.
..
θ = [(F0 + F1 P0b) + F1 ∆P− a (K0 + K1P0b) (1− cos θ) − a K1(1− cos θ ) ∆

−a (B0b + B1b P0b) sin θ.
.
θ− a B1b sin θ.

.
θ ∆P ]a.sin[ (F0 + F1 P0t)

−F1∆P− a (K0 + K1 P0t) (1 + cos θ ) + a K1 (1 + cos θ) ∆P
+a (B0t + B1t P0t) sin θ.

.
θ− a B1t sin θ.

.
θ ∆P ]r−M gL sin θ

(16)

Equation (16) can be rewritten in the following compact form:

..
θ = f

(
θ,

.
θ
)
+ b

(
θ,

.
θ
)

∆P (17)

where

f
(
θ,

.
θ
)
=

6∑
1

fi Zi
(
θ,

.
θ
)
, b

(
θ,

.
θ
)
=

6∑
i=1

bi Zi
(
θ,

.
θ
)

where i = 1, 2, · · · , 6. The definitions of the elements of the coefficients fi, Zi and bi are listed in Table 1.
The variation in the pressure ∆P given in Equation (14) is considered as the control signal; that is

u = ∆P. In addition, if the state variable x1 is assigned to the angular position θ and the state variable
x2 represents the angular position velocity

.
θ, then state space representation can be described by

x1 = θ
.
x1 =

.
θ = x2

.
x2 =

..
θ = f (x1, x2) + b(x1, x2) u (18)
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Table 1. Definitions of the elements of coefficients fi , Zi and bi.

Zi fi bi

z1 = sinθ f1 = (aF0 + aF1 Pob −MgL)/I b1 = a F1/I
z2 = sinθ(cosθ− 1) f2 = a2(Ko + K1Pob)/I b2 = a2 K1/I

z3 = sin2θ.
.
θ f3 = −a2(B0b + B1bPob)/I b3 = −a2B1b/I

z4 = 1 + cosθ f4 = a r (Ko + K1P0t)/I b4 = −a r K1/I
z5 = sinθ.

.
θ f5 = −a r (B0t + B1tP0t)/I b5 = a rB1t/I

z6 = 1 f6 = (−r F0 − r F1P0t)/I b6 = r F1/I

3. Classical and Adaptive Synergetic Control Design for Single Arm PAM-Actuated Robot

In this section, two control schemes have been developed for tracking control design of angular
position for PAM robot arm. The first control design is established based on the classical synergetic
control method. The second control design presents the development of an adaptive synergetic control
algorithm for tracking control of the PAM robot arm subjected to uncertainties in system parameters.

3.1. Synergetic Control Design

Let e be the difference between the actual angle position x1 = θ and the desired trajectory x1d = θd
as follows:

e = x1 − x1d (19)

Using dynamic equation of the PAM robot arm, the first and second derivatives of error equations
are given by, respectively,

.
e =

.
x1 −

.
x1d = x2 −

.
x1d (20)

..
e =

.
x2 −

..
x1d = f + b u−

..
x1d (21)

where u is the control signal. For the system described by Equation (18), let the marco-variable ψ(e) be
defined as

ψ( e) = e + cc
.
e (22)

Taking the first-time derivative of Equation (22) gives

.
ψ(e) =

.
e + cc

..
e (23)

where cc is a scalar design parameter concerning CSC strategy.
In order to ensure the stability and to guarantee the convergence of the state trajectories to

their corresponding desired manifolds and remain on it for future time, the dynamic evolution of
the macro-variable towards the manifolds is defined as follows:

T
.
ψ(e) +ψ(e) = 0 (24)

where T > 0 represents the rate of convergence of the macro-variable to manifolds ψ(e) = 0.
Using Equations (23) and (24) becomes

T
( .
e + cc

..
e
)
+ψ(e) = 0 (25)

Using the dynamic equation of the PAM robot arm, Equation (25) becomes

T
.
e + T cc

..
e +ψ(e) = 0 (26)

Using Equation (21), one can have

T
.
e + T cc f + T cc b u− T c

..
x1d +ψ(e) = 0 (27)
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In order to ensure the dynamic T
.
ψ(x) +ψ( x) = 0, the control law u can be designed as

u =
1

T cc b

(
T c

..
x1d − T

.
e− T cc f −ψ(e)

)
(28)

Proof. The candidate Lypunov function is chosen in terms of micro-variables vector as follows:

V =
1
2
ψT(e) ψ(e) (29)

Taking The time derivative of Equation (29) gives

.
V = ψT(e)

.
ψ (e) (30)

Using Equations (24) and (30) becomes

.
V = −

1
T
ψ2(e) (31)

This indicates that the control law of Equation (28) guarantees the system stability of the PAM
robotic System. �

Theorem 1. For the dynamic equation of the PAM-actuated robot arm, the control signal u can be acquired by
Equation (28), which ensures the stability of system motion and stays in the desired manifold.

3.2. Design of Adaptive Synergetic Control for Single-Link Robot Arm

In order to address the problem of uncertainty, which is a characteristic feature in the physical
parameters of the PAMs system, and for suppressing the effects of undesired disturbances that may have
an effect on the tracking performance, the ASC has been introduced to develop the necessary adaptive
laws that can estimate these uncertain parameters such that the asymptotic stability of the adaptive
controlled system is guaranteed. In this case, the adaptive syngeneic controller could direct all
trajectories of micro-variables to the equilibrium or manifold asymptotically. When the trajectory
reaches the manifold, the synergetic controller will maintain it there thereafter.

Assumption 1. Two coefficients are permitted to be uncertain in their values; namely, the viscous friction
coefficient and spring coefficient.

Assumption 2. The variation in coefficients of bicep muscle has only been taken into account, that is,
the uncertainty in viscosity coefficient Bob and the uncertainty in spring coefficient Kob. However, since the spring
coefficient in the bicep and tricep muscles are the same, then Kob is assigned to the coefficient Ko.

Assumption 3. The inflation case will be only considered in developing the control law of the ASC algorithm.

Referring to Equations (8) and (10), there are three possible parameters of the system, which permit
variations in their values; namely, F(p), K(p) and B(p). The assumption 1 indicates that the present
work address only the uncertainty in K(p) and B(p), since they are highly subjected to variation during
the work of the actuating muscles. According to the above assumptions, the adaptive control law of
ASC for the PAM-actuated robot arm will be established based on Lypunov stability analysis. Let B̂0b
and K̂0 denote the estimated values of the viscous friction coefficient and spring coefficient, respectively,
which are given by

B̂0b = B0b + B̃0b (32)

K̂0 = K0 + K̃0 (33)
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where, B̂0b, K̂0 represent the estimated value of B0b and K0, B0b and K0 represent the nominal values
and B̃0b, K̃0 are the variation in B, K, respectively.

In order to derive the adaptation law, the candidate L.F. has been chosen in terms of estimation
errors as follows:

V =
1
2
ψ(e)2 +

1
2
γ1 B̃2

0b +
1
2
γ2 K̃2

0 (34)

where, γ1, γ2 are the adaptation gains. The first time derivative of Equation (34) is given by

.
V = ψ(e)

.
ψ(e) + γ1 B̃0b

.
B̂0b + γ2 K̃0

.
K̂0 (35)

Based on Equation (23), one can get

.
V = ψ( x)

( .
e + ca

..
e
)
+ γ1 B̃0b

.
B̂0b + γ2 K̃0

.
K̂0 (36)

where ca is a positive scalar constant concerning the design of the adaptive synergetic controller. Using
Equation (21) to have

.
V = ψ( x)

[ .
e + ca f + b ca u− ca

..
x1d

]
+ γ1 B̃0b

.
B̂0b + γ2 K̃0

.
K̂0 (37)

The ideal control law, given in Equation (28), is no longer applicable in the presence of uncertainty
and the actual control law is defined in terms of estimated function f̂ rather than its ideal one as follows;

u =
1

Tca b

(
−T

.
e−ψ(e) − T ca f̂ + T ca

..
x1d

)
(38)

Substituting Equation (38) in Equation (37) to become

.
V = −

1
T
ψ(e)2 + ca ψ(e) f − ca ψ(e) f̂ + γ1 B̃0b

.
B̂0b + γ2 K̃0

.
K̂0 (39)

or,
.

V = −
1
T
ψ2(e) + ca ψ(e)

(
f − f̂

)
+ γ1 B̃0b

.
B̂0b + γ2 K̃0

.
K̂0 (40)

Since,

f =
(

f1 z1 +
a2 K0

I
z2 +

a2 K1Pob
I

z2 −
a2 B0b

I
z3 −

a2 B1b Pob
I

z3 + f4 z4 − f5 z5 − f6 z6

)
and,

f̂ =
(

f1 z1 +
a2 K̂0

I
z2 +

a2 K1Pob
I

z2 −
a2B̂0b

I
z3 −

a2B1b Pob
I

z3 + f4 z4 − f5 z5 − f6 z6

)
By subtracting f − f̂ and substituting the result in Equation (37), one can have

.
V = −

1
T
ψ(e)2 + ca ψ(e)

(
K0 − k̂0

)( a2 z2

I

)
− ca ψ(e)

(
B0b − B̂0b

)( a2 z3

I

)
+ γ1 B̃0b

.
B̂0b + γ2 K̃0

.
K̂0 (41)

Since B̂0b = B0b + B̃0b and K̂0 = K0 + K̃0, then

.
V = −

1
T
ψ(e)2

− ca ψ(e) K̃0

(
a2 z2

I

)
+ ca ψ(e) B̃0b

(
a2 z3

I

)
+ γ1 B̃0b

.
B̂0b + γ2 K̃0

.
K̂0 (42)
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Equation (42) can be arranged in the form

.
V = −

1
T
ψ(e)2

− ca K̃0

[
ψ(e)

(
a2 z2

I

)
− γ2

.
K̂0

]
+ ca B̃0b

[
ψ(e)

(
a2 z3

I

)
+ γ1

.
B̂0b

]
(43)

In order to ensure
.

V ≤ 0, the following terms are enforced to be set to zero; that is,[
ca ψ(e)

(
a2 z3

I

)
+ γ1

.
B̂0b

]
= 0

[
ca ψ(e)

(
a2 z2

I

)
− γ2

.
K̂0

]
= 0

Accordingly, the following adaptation laws can be deduced

.
B̂0b = −ca ψ(e)

(
1
γ1I

)
a2 z3 (44)

.
K̂0 = ca ψ(e)

(
1
γ2 I

)
a2 z2 (45)

Using Equations (40)–(42) becomes

.
V = −

1
T
ψ(e)2

〈0 , T〉0 (46)

Since the time derivative of L.F (
.

V) is definitely negative, therefore, the proposed ABSMC can
guarantee the asymptotic stability of the system even with the presence of uncertainties in parameters
(B0b and K0) of the PAM-actuated robot arm.

Theorem 2. If the dynamic system of the PAM-actuated manipulator is subjected to uncertainty in viscosity
coefficient Bob and spring coefficient Kob, the developed adaptive laws based on synergetic control methodology
described by Equations (44) and (45) could estimate the uncertainties in parameters and ensure the stability of
the adaptive controlled robotic system.

Figure 2 shows the schematic diagram of the proposed adaptive synergetic control scheme.
The figure also includes the classical synergetic controller enclosed with a red dotted line. However,
care has to be taken when assigning some terms inside the control law of both versions of control,
where f̂ and ca belong to the control law of adaptive control, while f and cc are concerned with control
law of the classic synergetic controller.
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4. Improvement of Controllers’ Performances Based on PSO Technique

In order to improve the performances of the proposed controllers (CMC and ASC), the design
parameters of these controllers have to be tuned to towards better performance of the controlled
system. Trial-and-error procedure for finding or setting these design parameters is cumbersome and
it does not lead to an optimal solution in terms of better dynamic performance of controlled systems.
As such, the PSO technique has been suggested to find the optimal values of design parameters. It is
well-known that the PSO algorithm has the capability to guide the performance of controllers towards
optimality. In the case of CSC, the PSO technique is responsible for tuning the design parameter cc,
while it undertakes the tuning of constant ca in the case of ASC.

In PSO, each particle navigates around the search (solution) space by updating their velocity
according to its own and according to searching experience of other particles. Each particle must update
its velocity and position according to the number of iterations, which will be performed according
to some cost function to minimize or maximize in each case. In our design, the cost function has to
be minimized.

The velocity of each particle is updated according to the following equation [42,43]:

Vk+1
i = w. Vk

i + C1·rand·
(
pbest −Xk

i

)
+ C2·rand·

(
gbest −Xk

i

)
(47)

where, w represents the inertia coefficient, C1 represents the personal acceleration coefficient and
C2 represents the social acceleration coefficient. The position of each particle is updated by
the equation [43,44]:

Xk+1
i = Xk

i + Vk+1
i (48)

where Xk
i and Xk+1

i represents the current and updated vectors, respectively.
The cost function used to evaluate each particle during the search of the minimum is chosen to be

the Root Mean Square Error f (RMSE) function.
The performance of the PSO algorithm is sensitive to PSO parameters. The adjusting of inertia

value w strikes a better balance between global exploration and local exploitation. The population
size is set to compromise between convergence rate and computation time. Acceleration constants
C1 and C2 represent the particle stochastic acceleration weight toward the personal best (pbest) and
the global best (gbest). The effect of their setting is either inducing the particle wandering away
in the goal area or moving quickly to the goal area. The tuning of PSO parameters can also be
performed either using another overlaying optimizer, a concept known as meta-optimization, or even
fine-tuned during the optimization. The latter tuning procedure has been adopted in the present work,
where the parameters have been tuned for various optimization scenarios as indicated in Table 2.

Table 2. List of parameters assigned to the Particle Swarm Optimization (PSO) algorithm.

Parameters of PSO Technique Value

The inertia coefficient w 1.4
The personal acceleration coefficient C1 2

The social acceleration coefficient C2 2
The swarm size (population size) 30

The number of iteration 300

5. Computer Simulation

The numerical values of the pair of PAM-actuated robot arms in the bicep/tricep positions are
listed in Table 3. By using the MATLAB/SIMULINK software package, the PAM-actuated robot, based
on proposed controllers, has been modeled and coded in Matlab m-functions and Simulink library
blocks as shown in Figure 3.
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Table 3. Numerical values of system parameters.

Coefficient Description Value

Nominal force exerted by PAM F0 0.986× 102 N
Variation in force exerted by PAM F1 0.803 N
Bicep/nominal viscosity coefficient B0b 1.35(N.s/m)
Bicep/variation in viscosity coefficient B1b 4.66× 10−3 (N.s/m)
Tricep/nominal viscosity coefficient B0t 4.03× 10−1 (N.s/m)
Tricep/variation in viscosity coefficient B1t 12.0× 10−4 (N.s/m)
Nominal spring coefficient k0 6.51 (N/m)
Variation in spring coefficient k1 2.12× 10−2 (N/m)
Nominal bicep pressure Pob 510.4 kPa
Nominal tricep pressure Pot 400 kPa
Mass M 20 kg
The distance from mass center to the joint L 0.46 m
The distance from PAM attached point to the joint
axis a 0.0762 m

Pulley radius r 0.0508 m
Gravity Acceleration g 9.8 m/s2
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The simulink model of the adaptive synegetic controlled robotic system tries to mimick the block
diagram of Figure 2. The model consists of three blocks of matlab functions and two subsystems.
The blocks of matlab functions are assigned to the robotic system, adaptive law and control law.
The algorithms for control law and adaptive law are written in Matlab code and they are brought
to the Simulink environment by the matalb function blocks, which can be drawn by the simulink
library. The subsystems used in the simulink model are devoted either to generate trajectory signals
or to synthesize the micro-variables of the synergetic controller. The simulation parameters used in
the present work include a stop time (60 s), a solver type (ode45) with a variable step based on min
step size (1× 10−5 s) and max step size (1× 10−3 s). (One can visit the link cited by Reference [45] for
a detailed description of the program source to establish the next scenarios).

The design parameters for the CSC are cc and T, while those for the ASC are also ca and T. The value
of parameter T for CSC is set equal to unity, and that for ASC is assumed to be 0.1. The adaption gain
γ1 in the case of ASC based on bicep coefficient of viscosity B0b has been fixed at value γ1 = 1× 10−9,
while adaption gain γ2 in the case of uncertainty in spring coefficient K0 is set with value γ2 = 1× 10−10.
In order to reach an improved dynamic performance of the controlled PAM-actuated robot arm,
the PSO algorithm has been incorporated to tune the design parameters of CSC and ASC. Figure 4
shows the open-loop response for the PAM-actuated single-arm robot tested by sin-wave input of
unity amplitude and frequency (1 rad/s).
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The Root Mean Square Error (RMSE) is the fitness function that has been used to evaluate
the iterative particles within the PSO algorithm for all controllers. Figures 5 and 6 show the behavior of
cost function with respect to iteration for the controlled PAM single-arm robot based on CSC and ASC,
respectively. It is evident that the PSO could successfully guide the design parameters of the proposed
controllers to their best solution. However, the PSO algorithm for ASC shows faster convergence than
CSC. The convergence of cost function is reached after 15 iterations from the start of the algorithm in
the case of CSC, while the cost function finds its global minimum in less than 5 iterations in the case of
ASC. The optimal values of tuned parameters will be ready at the end of the algorithm. The controller
is termed as “optimal controller” when it is assigned their optimal tuned parameters.Entropy 2020, 22, x FOR PEER REVIEW 14 of 24 
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Table 4 gives the set of optimal design parameters based on the PSO technique for the PAM-actuated
robot system controlled by CSC and ASC. The other set of design parameters has been chosen on
a trial-and-error basis.

Table 4. The optimal setting of design parameters based on the PSO technique.

Controller
Optimal Values Trial and Error Values

Coefficient Value Coefficient Value

CSC cc 0.15 cc 1
ASC ca 3.6533× 10−7 ca 1× 10−5

Three scenarios are presented in the present work. In the first scenario, the uncertainty is not
taken into account, the second scenario considered the uncertainty condition, while the third scenario
has been devoted to the validation purpose. The desired angular positions for the first and second
scenarios are defined by

θdesired =
π
2
+ 0.5 (sin ( 2 π f1 t) + sin( 2 π f2 t) + sin(2 π f3 t))

where, f1 = 0.02 Hz, f2 = 0.05 Hz and f3 = 0.09 Hz.
Scenario I: PAM-actuated Robot Arm based on CSC
Figure 7 shows the tracking performance of the joint angle x1 to the desired trajectory based on

optimal and non-optimal CSC. According to the Figure 6, the response due to optimal controller shows
faster tracking control than that based on non-optimal controller, where the response of optimal CSC
reaches its steady-state at 4 s, while the response due to non-optimal CSC reaches its equilibrium
at steady state at 6.5 s. The tracking errors (e) for the PAM-actuated robot arm based on optimal
and non-optimal CSCs are shown in Figure 8. It is clear from the figure that the optimal CSC gives
better performance than the non-optimal version in terms of tracking errors However, to evaluate
this one can easily compute the variances of errors resulting from each controller. It has been shown
that the RMSE value based on the optimal controller is given by 0.1686 rad, while that based on
the non-optimal one is equal to 0.2563 rad. This indicates that the PSO grants the optimal CSC better
tracking error performance than its opponent. Figure 9 illustrates the behaviors of angular velocities
of the controlled system based on the PSO algorithm and trial-and-error procedure. The velocity
of non-optimal controller has higher peak response (1.62 rad/s) than that based on a trial-and-error
basis (1.1 rad/s). Therefore, one can conclude that the dynamic response obtained by optimal CSC
outperforms that based on a trial-and-error procedure in terms of transient characteristics.
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The corresponding control effects based on optimal and non-optimal CSC are depicted in Figure 10.
One can evaluate the energy or control signal exerted by both controllers by calculating the RMS of
the control signal over the entire simulation time. It has been shown that the RMS value of pressure
input (control signal) is equal to

(
1.1367× 105 Pa

)
for the optimal controller, while the value of RMS

of the control signal for the non-optimal controller is equal to (1.1095 × 105 Pa). This indicates that
the optimal controller takes more energy than that based on the non-optimal one. This is the price paid
by the optimal controller to have a better dynamic response.

Scenario II: PAM-actuated Robot Arm Based on ASC
In order to design an adaptive controller (ASC), the bicep coefficient of viscosity B0b and the spring

coefficient K have been considered as uncertainty factors. The designed ASC will develop adaptive
laws, which can estimate the uncertain coefficients (B0b,K). The linear angle position behavior based
on optimal and non-optimal ASC is shown Figure 11. It is clear from zoomed capture of the figure that
the optimal ASC has faster tracking performance than that based on non-optimal ASC. This can be
proved numerically, where the response due to the optimal controller concedes with the reverence
input after 0.6 s from start-up, while the response based on the non-optimal controller will reach
the reference trajectory in 1.3 s.
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Figure 12 shows the tracking error (e) between the optimal and non-optimal ASC controlled PAM
systems. In a numerical sense, the RMSE value resulting from optimal ASC is equal to 0.0483 rad, while
the RMSE given by non-optimal ASC is equal to 0.0530 rad. This indicates that the optimal ASC gives
better tracking performance and better error variance than that based on trial-and-error procedure.
Figure 13 illustrates the linear velocity behaviors for both optimal and trial-and-error procedure for
ASC. However, one can see that the peak of velocity response is slightly higher than that resulting
from its counterpart.

Figure 14 combines the effects of ASC control signals u due to optimal and trial-and-error
procedures. It is interesting to calculate the input pressure variances based on the proposed controllers
to evaluate the amount of pressure absorbed by the controlled system. The RMS values of control signals
over the entire time of simulation resulting from optimal ASC and non-optimal ASC are 7.5494× 106 and
1.2366× 106, respectively. It is clear that the input pressure taken by optimal ASC is higher than that
absorbed by non-optimal controller; this is the price which has to be paid by the optimal controller to
have better dynamic and tracking performance.
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Figure 15 combines the responses based on optimal ASC and optimal CSC. It is clear from
the figure that the optimal ASC has less error and hence better tracking performance than optimal
CSC. Tables 5 and 6 reports the numerical values for RMS values of errors and input pressures due
to including and excluding the PSO technique. Based on Table 5, one can conclude that the RMSE
value in the case of optimal ASC (0.0483 rad) is considerably smaller than that obtained by optimal
CSC (0.1686 rad). This indicates the dynamic and tracking performance of optimal ASC outperforms
that resulting from optimal CSC. However, this superiority in performance of optimal ASC will be at
the price of higher input pressure generated by optimal ASC (7.5494× 106 Pa) as opposed to lower
control signal (input pressure) produced by optimal CSC (1.1367× 105 Pa).Entropy 2020, 22, x FOR PEER REVIEW 19 of 24 
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Table 5. The RMSE values for optimal and non-optimal CSC and ASC.

Controller PSO Trial and Error Procedure

CSC 0.1686 0.2563
ASC 0.0483 0.0530

Table 6. The RMS value of input pressure for optimal and non-optimal CSC and ASC.

Controller PSO Trial and Error Procedure

CSC 1.1367× 105 1.1095× 105

ASC 7.5494× 106 1.2366× 106

Figures 16 and 17 show the actual and estimated values of viscosity coefficient B0b and spring
coefficient K for bicep muscle, respectively. The boundness of the estimation errors of uncertain
parameters is one of the essential issues in evaluating the performance of adaptive design for most
adaptive controllers. If the adaptive control lacks the ability to confine the estimation errors within
certain bounds, then the stability of controlled system may be violated. Based on the figures, one can
determine the bounds of B̃0b to be B̃0b ≤ 0.8 and K̃0 to be K̃0 ≤ 5.5 for 0 ≤ t ≤ 60 s. One can conclude
that ASC could successfully confine these coefficients within bounded values over the simulation time,
and hence the adaptive controller could avoid the instability problem which may arise due to the drift
of uncertainty in system parameters.
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Scenario III: Validation of Proposed Controller
Before proceeding in validation, it is worthwhile to note that the structure of the PAM-actuated

single-link robot arm differs from its counterparts with the same link and actuation. In the present
work, the cable attached to the pair of muscles that works to rotate the pulley is connected at the end of
the robot arm, as shown in Figure 1. Therefore, in order to conduct a fair performance comparison,
one has to direct the comparison study with the same robot structure controlled by an adaptive
controller. As such, reference [16] has been chosen. However, one problem of the compared work is
that it’s proposed adaptive controller has been verified based on a different reference trajectory and
different robot system parameters to those used in the present work. Therefore, to be consistent with
the compared work, the following desired trajectory is adopted in this scenario:

θd(t) =
[
60
◦

+ 62.5
◦

(sin2π f1t + 0.05sin2π f2t)
] π

180

where f1 = 0.01 Hz and f2 = 0.1 Hz. In addition, the following parameters are used for
the PAM-actuated robot arm based on proposed and compared controllers: L = 0.5 m, r = 0.05/π m,
M = 50 kg, a = 0.025 m. By this setting, the arm is allowed to travel between θ = 0

◦

(arm fully
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straightened) toθ = 180
◦

(arm fully bent). The initial joint angle is set to 42
◦

(0.733 rad) for the controlled
system based on both controllers.

Figure 18 shows the tracking performance of the controlled PAM-actuated robot arm based on
the optimal adaptive synergetic controller and the compared controller. Starting from the same initial
joint condition, it is clear that the joint angular response based on optimal ASC is faster than that based
on its counterpart. The angular position resulting from optimal ASC reaches the desired trajectory
in 0.65 s, while it coincides with the desired trajectory in 2.5 s in the case of the compared controller.
The calculation of RMSE is the other index of evaluation, which is used for comparison. It has been
found that the RMSE due to optimal ASC is equal to 0.0147 rad, while this value is equal to 0.0278 rad
in the case of the compared controller. This numeric report indicates that the proposed adaptive ASC
gives better tracking performance than that given in the previous work.Entropy 2020, 22, x FOR PEER REVIEW 21 of 24 
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6. Conclusions

This paper presents a new classical and adaptive control design based on a synergetic theory
for tracking control of a single-link robot arm actuated by a pair of artificial muscles. The adaptive
synergetic controller has been designed to cope with inherited uncertainties in muscle parameters.
The design of the proposed controllers has been developed to guarantee the stability of the controlled
robotic system.

According to the simulated results, one can conclude that the optimal CSC gives better tracking
performance in terms of transient and steady-state characteristics than that obtained by non-optimal
CSC. However, the energy drawn by the controlled system based on optimal CSC is higher than that
based on the non-optimal controller. In the presence of uncertainty in muscle parameters, the tracking
control performance of the adaptive controlled system based on optimal ASC is better than that
based on non-optimal ASC. This will be at the expense of higher required input pressure to actuate
the muscles in the case of optimal ASC. Moreover, the optimal ASC controller gives better tracking
control performance than optimal CSC. Again, this superiority in performance obtained by optimal
ASC was on account of higher absorbed energy needed to supply the actuating muscles. Moreover,
the optimal ASC could successfully confine the estimation errors of uncertain parameters within
certain bounds, which, in turn, will avoid the instability problem due to drifting in estimation errors.
Another conclusion that can be drawn is that the proposed adaptive controller generates continuous
and monotonic control signals. The proposed controller has been validated with previous work and it
has been shown that the proposed controller gives better tracking performance in terms of tracking
speed and error than the previous controller.
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The future work of the work will focus on real-time implementation and verification of the proposed
controller on an actual PAM-actuated robot arm. In addition, a comparison study can be conducted
with another adaptive control scheme for the same robot structure, or the PSO technique can be used
as a comparison format with other recent optimization techniques.
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