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Abstract: Myasthenia gravis (MG) is a rare autoimmune disorder caused by specific autoantibodies at the neuromuscular junction.
MG is classified by the antigen specificity of these antibodies. Acetylcholine receptor (AChR) antibodies are the most common type
(74–88%), followed by anti-muscle specific kinase (MuSK) and other antibodies. While all these antibodies lead to neuromuscular
transmission failure, the immuno-pathogenic mechanisms are distinct. Complement activation is a primary driver of AChR antibody-
positive MG (AChR+ MG) pathogenesis. This leads to the formation of the membrane attack complex and destruction of AChR
receptors and the postsynaptic membrane resulting in impaired neurotransmission and muscle weakness characteristic of MG. Broad-
based immune-suppressants like corticosteroids are effective in controlling MG; however, their long-term use can be associated with
significant adverse effects. Advances in translational research have led to the development of more directed therapeutic agents that are
likely to alter the future of MG treatment. Eculizumab is a humanized monoclonal antibody that inhibits the cleavage of complement
protein C5 and is approved for use in generalized MG. In this review, we discuss the pathophysiology of MG; the therapeutic efficacy
and tolerability of eculizumab, as well as the practical guidelines for its use in MG; future studies exploring the role of eculizumab in
different stages and subtypes of MG subtypes; the optimal duration of therapy and its discontinuation; the characterization of non-
responder patients; and the use of biomarkers for monitoring therapy are highlighted. Based on the pathophysiologic mechanisms,
emerging therapies and new therapeutic targets are also reviewed.
Keywords: myasthenia gravis, pathophysiology, autoantibodies, complement, eculizumab

Introduction
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ), with an estimated prevalence
of 70–163 per million for acetylcholine receptor (AChR) MG (AChR+ MG), and 1.9–2.9 per million for muscle-specific
kinase (MuSK) MG (MuSK+ MG). Women are affected more frequently than men, with a female-to-male ratio of 3:1 for
AChR+ MG and 9:1 for MuSK+ MG.1

The characteristic feature of MG is fatigable skeletal muscle weakness, predominantly affecting the ocular muscles, with
a risk of progression to generalized weakness within 2 years after disease onset. Respiratory muscle involvement leading to
a myasthenic crisis happens in up to 20% of the cases of AChR+ MG. The diagnosis is based on the presence of known
autoantibodies, electrophysiological tests (single-fiber electromyography and repetitive nerve stimulation [RNS]), and
improvement of symptoms with the use of acetylcholinesterase (AChE) medications or after the ice pack test.2,3

The role of complement in MG (Figure 1) has been demonstrated in animal models and is further highlighted by the
recent approval of eculizumab, a humanized monoclonal antibody, which by targeting the C5 complement protein
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intercepts the formation of C5b-9 or the membrane attack complex (MAC). This systematic review focuses on the role of
complement in MG, describes the relevant clinical data, and provides practical recommendations for the use of
eculizumab in the management of MG. Moreover, we also describe the relevant pathophysiology of MG, which provides
a rationale for future therapies in MG.

Pathophysiology of MG (Figure 2)
MG is an antibody-mediated disease with T-cell-driven immune pathogenesis and complex interactions between CD4+
T-cells and B-cells. The pathogenic mechanisms can be subdivided based upon the type of underlying antibody present.

Anti-AChR Antibody-Associated MG
Role of Thymus
The thymus is affected in most patients with AChR+ MG; histologically or radiologically, approximately 70% of the patients
have thymic follicular hyperplasia, 10% have thymoma and the remainder have either a normal or an atrophic thymus.4

Normal Thymus Gland Anatomy and Immune Tolerance (Figure 2A)
T-cell maturation occurs in the thymus and involves collaborations between developing T-cells called thymocytes and
thymic epithelial cells (TECs), and other stromal cells such as dendritic cells and myoid cells. Myoid cells are
distinguished by striations, and are the only known cells, besides skeletal muscles, to express folded AChR subunits,
and may play a role in inducing central immune tolerance to muscle proteins.

Figure 1 Complement and its role in MG. This figure shows different pathways and associated regulatory proteins involved in the successful formation of MAC, including
factors B and D (FB, FD), properdin (P), and mannan-binding lectin serine protease 1 (MASP-1).
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Figure 2 Pathogenesis of MG – The potential cascade of events in AChR+ and MuSK+ MG: (A) Normal Immune tolerance in thymus. (B and C) Thymic pathology, including
thymic hyperplasia and thymoma in AChR+ MG. In thymic hyperplasia, a potential sequence of events leading to tertiary lymphoid genesis has been discovered which is
initiated by an inciting event, such as a viral infection in a susceptible environment, leading to the creation of a suitable environment for autoimmune pathology. Altered
properties of neoplastic epithelial cells in thymoma favor autoimmunity. (D) Sensitization to the AChR and germinal center formation. (E) Peripheral spread of the thymus-
initiated autoimmune process. (F and G) B-cell- and T-cell-mediated factors contributing to the pathogenesis of MG. (H) Mode of action of AChR-specific autoantibodies.
(I and J) Activation and physiologic functions of MuSK. (K) Safety factor and neuromuscular transmission failure. (L) Additional MG-associated antibodies. (M) FcRn
blockers. Red square – AIRE; Yellow oval– folded AChR; Blue oval – unfolded AChR.
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Multigene transcription factors, such as the autoimmune regulator (AIRE), which is expressed in the thymic medulla,
aid in the detection of self-antigens in the thymus. AIRE leads to the expression of unfolded AChR subunits on TECs.
T-cells that identify these proteins (or self-antigens) are targeted for negative selection and apoptosis, providing the basis
for central tolerance to the AChR. Self-reactive T-cells that escape central tolerance are suppressed in the periphery
(peripheral tolerance) by either apoptosis, anergy (functional unresponsiveness due to lack of co-stimulatory signal B7 on
antigen-presenting cells), or by a subset of CD4+ cells outsourced from the thymus gland called regulatory T-cells
(Tregs).4,5

Thymic Follicular Hyperplasia (Figure 2B)
Under physiological conditions, B-cells are nearly non-existent in the thymus. However, in the majority of AChR+ MG,
the thymus displays germinal centers (GCs) with a high number of B-cells (thymic hyperplasia). GCs are typically found
in B-cell-producing secondary lymphoid organs, like lymph nodes, and are responsible for the generation of the humoral
immune response resulting in the production of antibodies and durable memory B-cells. These findings not only support
the presence of thymic inflammation but also modification of its role from T-cell maturation to the development of an
adaptive immune response, ie, the thymus becomes a tertiary lymphoid structure.5,6

The sequence of events given below has been proposed as leading to the genesis of tertiary lymphoid structures in the
thymus of MG patients.

Cellular Recruitment (Figure 2C)
The mechanisms leading to the selective production of muscle autoantibodies in MG are unclear. This could begin with
an initiating event, such as a viral infection, which in the presence of a certain predisposing background (human
leukocyte antigen D-related genotype, estrogen, etc.) triggers the release of cytokines, particularly interferon-beta
(IFN- β), causing upregulation of thymic expression of alpha-AChR (the main immunogenic region [MIR] in MG)
and overproduction of ligands of the chemokine (CXCL) family. The latter contribute to neogenesis (CXCL 12 and
CXCL 21 for lymphatics and specialized blood vessels called high endothelial venules respectively) and chemoattractant
(CXCL13) upregulation, especially for B lymphocytes on TEC. The combination of neogenesis and chemoattractant
upregulation provides an extensive vascular network and optimal environment for peripheral antigen-presenting cells
(APCs), B-cells and T-cells to find their niche in the thymus.7

Sensitization to AChR and Germinal Center Formation (Figure 2D)
Sensitization to the AChR involves a two-step model: 1) hyperplastic major histocompatibility complex (MHC) class II
expressing TECs exhibit unfolded AChR subunits and activate autoreactive CD4 T-cells, leading to the production of
early AChR antibodies; and 2) thymic myoid cells expressing intact AChR affected by these antibodies release AChR-
immune complexes, which activate APCs, leading to further activation of autoreactive CD4 T-cells and B-cells. These
organize into GCs and contribute to the production of subsequent epitope diversification. Autoreactive B-cells and
T-cells, and anti-AChR antibodies, exit the thymus and attack the AChR on peripheral muscles, leading to damage to
NMJ and MG symptoms.4–6

Peripheral Spread of Thymus-Initiated Autoimmune Process (Figure 2E)
The thymus-initiated autoimmune process later spreads to peripheral secondary lymphoid organs. This accounts for the
continuous disease activity even after thymectomy, which is mediated by autoantibody-producing B-cells that have
emigrated from the thymus as well as functionally defective Treg cells.4

Role of Cytokines (Figure 2F and G)
Activated T-cells, B-cells, plasma cells, and related cytokines play central roles in the production of pathogenic
autoantibodies in MG. Collectively, the imbalance of cytokines from TH1 (IFN γ), TH17 (interleukin [IL] 17],
T follicular helper (Tfh) cells (IL-21 and IL-4), B-cell survival and differentiation promoters (B-cell-activating factor
[BAFF] and a proliferation-inducing ligand (APRIL) produced by activated immune cells and downregulation of Treg
cells may all contribute to the sustenance of the pathogenesis of MG.7 This is further discussed in the section on future
pathophysiologic target-based interventions.
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Thymoma (Figure 2B)
The altered properties of neoplastic epithelial cells in thymomas, including the defective expression of AIRE, reduced or
absent thymic myoid cells, variable expression of striational antigen epitopes (including titin and various AChR
subunits), and the defective generation of Tregs, all profoundly affect the selection of thymocytes and result in the
export of autoreactive T-cells that replace the more tolerant T-cells.4

AChR-Specific Autoantibodies (Figure 2H)
AChR-specific autoantibodies predominantly belong to the IgG1 and IgG3 subclasses and originate from long-lived
plasma cells. They mediate tissue damage at the NMJ by binding to AChR, which leads to focal endplate lysis through
complement activation and MAC formation, and cross-linking of adjacent AChRs, which leads to their internalization
and degradation, thereby directly blocking the acetylcholine (ACh) binding site.5

Anti-MuSK MG
Physiologic Function and Activation of MuSK (Figure 2I and J)
Anti–MuSK antibodies are detected in 1–10% of the patients with generalized MG. The MuSK activation process starts
with the binding of lipoprotein-receptor-related protein 4 (LRP4) to neural-derived Agrin. Pre-synaptically, through
a retrograde signal to the motor neuron, LRP4 contributes to an increase in the clustering of acetylcholine vesicles. Post-
synaptically, LRP4 interacts with MuSK leading to its dimerization and auto-phosphorylation. Activated MuSK,
stabilized by Docking Protein 7 (DOK7), triggers a series of additional intracellular signaling steps leading to phosphor-
ylation of AChR and the synaptic protein, rapsyn. Self-aggregation of rapsyn provides a scaffold required for anchoring
the AChR with the actin cytoskeleton via microtubule-actin cross-linking factor 1 (MACF1), thus leading to the
formation of mature AChR clusters. In addition, MuSK also interacts with acetylcholinesterase-associated collagen
(ColQ), which is the collagen-tail subunit of AChE found in the neuromuscular junction.8

The prevention of extra-synaptic AChR clustering, as well as overstimulation of muscles, is provided by negative
regulators of clustering pathways including AChE itself (which downregulates AChR expression), as well as MuSK-
activated Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2). SHP2 is hypothesized to have
a role during embryonic development by limiting the establishment of AChR clusters in non-motor nerve terminal extra-
synaptic locations.8

Features of Anti-MuSK Antibodies (Figure 2I and J)
The anti-MuSK antibodies have the following unique features8: 1) belong to the IgG4 subclass; 2) half antibody (Fab
arm) whereby they recombine after disassociating, resulting in antibodies with two distinct antigen-binding variable
regions (bispecific). As a result, IgG4 MuSK antibodies are monovalent for their antigen, rather than divalent, preventing
divalent-dependent cross-linking and antigen internalization, 3) Do not involve the thymus (hence, there is no role of
thymectomy in MuSK+ MG) and instead, the production of pathogenic antibodies occurs in the secondary lymphoid
tissues, predominantly by short-lived plasmablasts. They lead to NMJ failure through disruption of the Agrin-
MuSK–DOK7-rapsyn pathway required for AChR clustering and postsynaptic muscle membrane maintenance. Several
additional features are characteristic of IgG4 anti-MuSK antibodies. These include a) loss of retrograde signaling to
motor neurons leading to the absence of pre-synaptic increase of ACh vesicles. This is manifested by a progressive
decremental response pattern in RNS studies (compared to partial recovery giving a U-shaped appearance on RNS
studies in AChR+ MG)9, and could create an opportunity for presynaptic potentiation with the use of the potassium
channel blocker 3,4-diaminopyridine, as a symptomatic therapy for patients with MuSK + MG.10 (Figure 2K); and b)
blockage of ColQ-MuSK binding, leading to excessive ACh at the neuromuscular synapse from loss of AChE, which
contributes to the dispersal of AChR and hypersensitivity in MuSK+ MG to use of AChE inhibitors, manifested by
fasciculations, an unsatisfactory clinical response, and repetitive compound motor action potentials (after discharges)
during nerve conduction studies.11 Moreover, additional proposed mechanisms of disease production involving the less
common IgG1 and IgG3 anti-MuSK antibodies include complement-mediated damage, AChR cross-linkage, endocytosis
of MuSK and direct blockage of function. Additionally, divalent binding of commercial or cloned (monospecific) MuSK
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antibodies, irrespective of their original subclass, has been proposed as a mechanism of disease causation through agrin-
independent MuSK dimerization and auto-phosphorylation, which leads to the formation of ectopic, extra-synaptic AChR
clusters that fail to participate in neuromuscular transmission due to lack of interface with motor neuron terminals.8

Safety Factor and NMJ Transmission Failure (Figure 2K)
The activation of AChRs by the release of the quantal contents of presynaptic vesicles containing ACh leads to localized
depolarization of the postsynaptic membrane, causing the ultimate generation of the end plate potential (EPP). The
amplitude of the EPP usually exceeds the threshold required for the activation of voltage-gated sodium channels present
at the depths of the postsynaptic folds, resulting in the generation of the muscle fiber action potential. This excess of EPP
at the NMJ, called the safety factor, ensures consistent translation of the nerve action potential into a muscle action
potential. The reduction of the safety factor, due to the mechanisms interfering with nerve-to-muscle crosstalk mentioned
above, in AChR and MuSK-associated MG, results in neuromuscular transmission failure manifested clinically as
fatigable weakness affecting different body segments.

Other MG-Associated Antibodies (Figure 2L)
Additional antibodies identified through increased use of cell-based assays in MG include the following: anti-LRP4, anti-
agrin, ColQ, anti-titin, anti-ryanodine receptor (RyR), anti-contactin, anti-heat shock protein-70, anti-matrix metallopro-
teinases and anti-voltage-gated potassium channel (Kv1.4); their pathogenic significance remains unknown.5

Complement and Its Role in Myasthenia Gravis (Figure 1)
The Complement Cascade
The complement system consists of hepatically synthesized plasma proteins, which play a major role in the innate
immune system as well as in inflammation, more generally. Physiologically, the complement cascade is made up of three
distinct pathways – classical, lectin and alternative, all of which have unique triggers. The classical pathway is activated
by antigen–antibody complexes, the lectin pathway is activated by the interaction between sugar molecules in microbial
surfaces and mannose-binding lectin, and the alternative pathway is activated by microbe surface molecules. All three
pathways result in the cleavage of C3 into C3a and C3b. C3b acts as the body’s primary opsonin, enhancing phagocytosis
of bacteria and immune complexes. C3b leads to the formation of C5 convertase, which cleaves C5 into C5a and C5b,
which ultimately leads to the formation of MAC that is responsible for cell lysis and cytotoxicity. Physiologically, several
molecules, including decay-accelerating factor (CD55) and C1 esterase inhibitor, act to prevent inappropriate comple-
ment activation directed towards self cells.12,13

The Role of Complement in MG
Preclinical Data
The role of complement in the pathophysiology of MG was first identified in the 1970s when Engel and others visualized
anti-AChR antibody, C3, and MAC bound to the debris of the post-junctional membrane in MG patients.14 Much of the
evidence for the role of complement in MG comes from animal models of experimental autoimmune myasthenia gravis
(EAMG). Mice genetically deficient in the complement are resistant or less susceptible to EAMG.15 Inhibiting MAC
formation, using anti-complement antibodies, protects rats from developing muscle weakness, electrophysiological
abnormalities, and AChR loss typical of EAMG.16 Later, in-vivo studies found that MG patients have higher serum
levels of C5b-9 and that C5a levels are positively correlated with MG disease severity.17,18

Development of Eculizumab as a Complement Blocker
After complement was identified as an important player in the pathophysiology of MG, researchers endeavored to find
a therapeutic target within the complement pathway. C5 was identified as an optimal target, because its blockade effectively
terminates the complement cascade regardless of which upstream pathway is activated, and its blockade does not inhibit the
important upstream function of C3b-mediated opsonization. Eculizumab is a recombinant humanized monoclonal antibody
that binds to C5, preventing its cleavage and ultimately to the formation of the MAC.19 It has been studied in the treatment of
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other complement-mediated diseases, including paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic
syndrome (aHUS), and neuromyelitis optica spectrum disorder, and found to be generally safe and effective.20–23 Eculizumab
obtained FDA approval for the treatment of these conditions in 2007, 2011, and 2019, respectively.

Role of Eculizumab in MG
Study Populations
Eculizumab has been best studied in patients with severe, treatment-refractory, non-thymomatous, AChR+ generalized MG
(gMG). In these studies, treatment-refractory is operationally defined as patients who have received at least two immuno-
suppressant therapies (ISTs), or at least one IST in addition to intravenous immunoglobulin (IVIg) or plasma exchange
(PLEX), given at least four times per year for 12 months, without symptom control. Studies of eculizumab in this patient
population have shown it to be safe and effective, with particularly rapid and sustained control of disease manifestations.

Phase II Trial24

The study involved 14 subjects with AChR+ gMG who were randomized to either eculizumab or placebo for 16 weeks
(Period 1), with a 5-week washout period before switching to the other group (Period 2). Primary efficacy endpoint of
a ≥3-point reduction in quantitative MG (QMG) score was achieved in 86% of the eculizumab-treated patients, compared
to 57% of the placebo group, suggesting a therapeutic effect of the drug in gMG. The efficacy of eculizumab was rapid
and sustained; 57% of the patients in the eculizumab group achieved the primary endpoint by 1 week, 100% achieved it
by 3 weeks, and the clinical improvement was sustained throughout the remainder of the study period. Additionally,
patients in the eculizumab group from treatment period 1 did not return to a baseline QMG score after the 5-week
washout period, suggesting a “carryover” effect of eculizumab.

Phase III REGAIN Trial25

The phase III REGAIN trial was a 26-week multicenter, randomized, double-blind, placebo-controlled study in gMG
patients. Patients were randomized to either the eculizumab or placebo group. The primary efficacy endpoint was
a change in MG–Activities of Daily Living (MG-ADL) score from baseline to 26-weeks. Secondary efficacy endpoints
included changes from baseline in QMG, Myasthenia Gravis Composite (MGC) and Myasthenia Gravis Quality of Life
(MG-QOL15) scores. Safety endpoints included incidence of adverse events, serious adverse events, hospital admissions
and clinical deterioration (defined as MG crisis, substantial symptomatic worsening or health in jeopardy without rescue
therapy). The study narrowly missed its primary efficacy endpoint (p=0.0698), but the eculizumab group did achieve
statistically significant improvement in the QMG score compared to the placebo group (≥5-point improvement in the
QMG score, 45% versus 19%) and in the MG-QOL15 score, with the most treatment effect achieved by week 12 and
sustained through week 26.

The safety profile of eculizumab was also reaffirmed in the REGAIN trial. The most common adverse events were
headache, upper respiratory tract infection, nasopharyngitis, and gastrointestinal upset (nausea and diarrhea). The
incidence was similar across treatment groups. Serious adverse events occurred in 15% of the eculizumab group
compared to 29% of the placebo group. Serious adverse events included MG exacerbations and crises; infections
(upper respiratory tract infection, bacteremia, acute cholecystitis, diverticulitis, endocarditis, gastritis, gastroenteritis,
tonsillitis, bacterial urinary tract infection, and varicella); hematologic/oncologic effects (deep vein thrombosis, pulmon-
ary embolism, lymphopenia, bone metastases, and prostate cancer), surgical adverse events (intestinal perforation); and
constitutional/metabolic events (pyrexia, apnea, hyperglycemia, and general physical health deterioration). Of the serious
adverse events, infections were most common, occurring in 3% of the eculizumab group and 10% of the placebo group.
Additionally, the incidence of hospital admissions, MG exacerbations, and rescue therapy was less in the eculizumab
group. There were no deaths or meningococcal infections during the study period.

Open-Label-Extension (OLE) of REGAIN Trial26

After REGAIN, study participants were invited to enter into its 3-year OLE study, provided they entered within 2 weeks
of completing REGAIN. Patients in the eculizumab/eculizumab group did not experience significant changes in their MG
disease assessment scores, compared to the end of the REGAIN trial; their improvements compared to the pre-REGAIN
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baseline were sustained for the duration of the OLE. Patients in the placebo/eculizumab group achieved statistically
significant changes in MG disease assessment scores similar in magnitude to those of the REGAIN treatment group. The
efficacy of eculizumab was again shown to be rapid and sustained. Patients in the placebo/eculizumab group met the
efficacy endpoints as early as 1 week after initiating eculizumab; over half of the treatment effect was observed by 3
months, and treatment effects were sustained for the duration of the 3-year study period.

Furthermore, of all patients treated with eculizumab in the OLE, 55% experienced a clinically meaningful response in
ADLs, 39% experienced a clinically meaningful response in muscle strength, and perhaps most importantly, 56%
achieved either “minimal manifestations” or “pharmacologic remission” status. Evaluation of final data from REGAIN
and its OLE revealed that the proportion of patients who achieved “improved” or “minimal manifestations” Myasthenia
Gravis Foundation of America status increased with increased duration of eculizumab therapy. Of those patients who
received 130 weeks of treatment, 88% achieved “improved” status, 57% achieved “minimal manifestations” status, and 2
patients achieved “pharmacologic remission” status.27 Rates of MG exacerbation, rescue therapy administration, and
MG-related hospitalization were markedly reduced compared to the pre-REGAIN baseline (75%, 65%, and 83%
reductions, respectively).

The OLE also re-demonstrated the favorable safety profile of eculizumab, consistent with REGAIN data, and found
that the most common adverse events were headache and nasopharyngitis. There were higher rates of common adverse
events (30% compared to 15%) and serious adverse events (44% compared to 15%) in the OLE compared to REGAIN,
but no new safety signals emerged.28 Eighteen percent of all patients experienced an infectious adverse event of special
interest. Importantly, there were no cases of meningococcal infection during the data acquisition period. There was one
case of meningococcal meningitis that occurred after the interim data cut-off date despite appropriate vaccination, but it
resolved with antibiotic treatment. In total, three patients died during REGAIN and its OLE, but there was no identifiable
relationship between these deaths and eculizumab treatment.

Post Hoc Analysis of Eculizumab Studies in MG
Minimal Symptom Expression
A post-hoc analysis of the REGAIN and OLE data found that beyond statistically significant clinical improvement,
a significant proportion (17–25%) of patients treated with eculizumab across the two trials achieved “minimal symptom
expression” as defined by MG-ADL of 0–1 or MG-QOL15 of 0–3.29 These scores had previously been used to represent
disease remission.30 Moreover, the proportion of patients who achieved “minimal symptom expression” was sustained
throughout the 2.5 years of the OLE.

Efficacy of Eculizumab in Study Participants Previously Treated with Rituximab
A post-hoc subgroup analysis of REGAIN and its OLE examined the efficacy of eculizumab in study participants who
had previously been treated with rituximab, which has historically been used off-label with uncertain efficacy for the
treatment of severe, treatment-refractory, AChR+ gMG.31,32 This analysis found that eculizumab was no less effective in
patients previously treated with rituximab, which again speaks to its profound potential for those patients who previously
had severely limited treatment options.

Another retrospective observational study involving generalized, therapy-refractory anti-AChR-ab-mediated MG
compared rituximab (57 patients) vs eculizumab (20 patients), with otherwise similar clinical and demographic char-
acteristics. Eculizumab was associated with a better outcome compared to rituximab as measured by change in the QMG
score, and minimal disease manifestations after 12 and 24 months of treatment. However, the risk of myasthenic crisis
was not ameliorated in either group.33 A systematic review and meta-analysis by Feng et al explored the optimal
therapies for refractory MG. They found no significant difference between the efficacy, as well as the incident density of
MG exacerbation/crisis, between rituximaband eculizumab. Rituximab was found to have a better safety profile than
eculizumab, with a reduced rate of side effects.34

It is important to mention that rituximab, a monoclonal antibody against B-cell membrane marker CD20, has
historically been used off-label to treat severe, treatment-refractory MG. It appears to be particularly effective in patients
with MuSK+ MG, rather than in AChR + MG. MuSK+ MG patients often respond relatively poorly to first-line
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immuniosuppressive therapies. This preferential response could be explained by different pathogenesis of MG in these
antibody subtypes. Complement fixing IgG1 and IgG3 are the main antibody subclasses in AChR+MG, whereas in
MuSK+MG the prevalent subtype is IgG4, which acts by disrupting the function of the target or the interaction between
the target and partner protein, without the ability to fix complement or cross-link antibodies. The effectiveness of
rituximab has also been established in other IgG4-mediated disorders, such as chronic inflammatory demyelinating
polyneuropathy associated with nodal and paranodal antibodies. Other explanations for the difference in efficacy of
rituximab between AChR+ and MuSK+ MG include the involvement of different subsets of T-helper cells (T-helper 1
cells responsible for the generation of IgG1 and IgG3 vs T-helper 2 cells for the production of IgG4); and the preferential
production of IgG4 by short-lived plasma cells, which are depleted by rituximab, while having little or no effect on long-
lived plasma cells.35

Efficacy of Eculizumab in Treating Fatigue
Fatigue is known to be a problematic symptom for patients with gMG, as it contributes significantly to decreased quality
of life.36 A post-hoc analysis of REGAIN and its OLE examined the effect of eculizumab versus placebo on fatigue in
these patients with severe, treatment-refractory AChR+ gMG as measured by change from baseline in the Neuro-QOL
Fatigue subscale score. In the REGAIN trial, patients in the eculizumab group achieved a mean change of −16.3
compared to −7.7 in the placebo group. By week 4 of the OLE, patients in the placebo/eculizumab group achieved
a mean change of −17.4 compared to −17.8 in the eculizumab/eculizumab group. These improvements in fatigue were
maintained through week 52 of the OLE.37

Efficacy of Eculizumab in an Asian Cohort
Asian patients with MG have clinical (higher incidence of juvenile-onset and ocular MG) and genetic (HLA antigens)
differences compared to Caucasian patients. These differences may influence immune-pathogenesis, and therefore
a response to immune-mediated treatments, in this patient population. A post-hoc subgroup analysis of REGAIN and
its OLE evaluated the safety and efficacy of eculizumab in Japanese study participants compared to Caucasian study
participants and found that eculizumab was similarly well-tolerated and effective among these patient populations.38–41

Effect of Eculizumab on Concomitant Immunosuppressive Therapy
Study participants in the OLE were on a stable regimen of ISTs (including corticosteroids, azathioprine, mycophenolate
mofetil, methotrexate, cyclosporine, tacrolimus, and cyclophosphamide) at the time of enrollment. At the OLE baseline
visit, 98.3% of the participants were using at least one IST, and adjustment of ISTs was permitted throughout the course
of the trial. A post-hoc analysis of the OLE data found that a significant proportion of patients (48.7%) treated with
eculizumab were able to decrease or even discontinue concomitant ISTs. Notably, of the study participants using
corticosteroids at the OLE baseline visit, 47.9% were able to decrease the dose of corticosteroids, and 11.1% were
able to discontinue corticosteroids. Additionally, clinical improvement occurred independently of the type of IST or
change in IST, suggesting that this improvement was due to the treatment effect of eculizumab.42

Response to Eculizumab in Patients with gMG Recently Treated with Chronic IVIg
Similar to rituximab, IVIg has historically been used in the treatment of severe, treatment-refractory, AChR+ gMG.
A post hoc subgroup analysis of REGAIN and its OLE examined the efficacy of eculizumab in study participants who
had previously received IVIg at least four times per year. This analysis found that eculizumab was no less effective in
patients who previously required chronic IVIg treatment.43

Real-World Evidence for the Use of Eculizumab in MG
Real-world studies of eculizumab in MG have demonstrated efficacy and safety similar to that reported in the Phase II,
phase III, and OLE trials. A retrospective review of 15 patients with treatment-refractory AChR+ gMG treated with
eculizumab at the University of Missouri between 2016 and 2019, showed reductions in MG-ADL scores in all patients,
decreased number of MG exacerbations, an increase in single-breath count test score in all patients, achievement of QMG
classification of “none” or “mild” in all patients within 12 months of eculizumab initiation, and reductions in concomitant
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MG medications, including corticosteroids, in all patients. This retrospective review also demonstrated similar safety
data, with 10 mild adverse events reported.44

A post-marketing interim analysis of 40 patients with treatment-refractory AChR+ gMG treated with eculizumab in
Japan between 2017 and 2019 similarly showed reductions in mean MG-ADL and QMG scores, as well as reductions in
IVIg treatments. This study also demonstrated safety data at par with the phase II, phase III, and OLE trials, with 16
adverse events reported.45

The Future of Eculizumab in gMG
Eculizumab obtained FDA approval for the treatment of AChR+ gMG on October 23, 2017. In 2020, the American
Academy of Neurology published an updated version of the International Consensus Guidance on Management of
Myasthenia Gravis, which formally recommends the use of eculizumab for patients with severe, treatment-refractory,
AChR+ gMG.46 While the approval of eculizumab undoubtedly represents a huge step forward in the treatment of severe,
refractory MG, many unanswered questions about the use of this medication still remain.

Characterization of Eculizumab Non-Responders
Despite the marked efficacy of eculizumab demonstrated in REGAIN and its OLE, 25% of the patients with the
treatment-refractory disease did not respond to the medication. Details about these non-responders’ baseline character-
istics, MG history, and co-morbidities could be useful in determining positive predictors of treatment benefit or lack of
response. Studies have already evaluated the feasibility of using serologic measures of complement levels and activity to
monitor treatment response to anti-complement therapies.47 Further research into these serologic measures may provide
a reliable biomarker to monitor MG disease activity and accurately predict treatment response to eculizumab. Genetic
and epigenetic factors represent other avenues to predict treatment response to anti-complement therapies. Genetic
variants that lead to eculizumab resistance have already been identified in PNH patients,48 so it is reasonable to
hypothesize that similar genetic variants will impede eculizumab efficacy in MG patients. MicroRNAs (miRNAs)
have a lot of potential as epigenetic biomarkers to predict treatment response to anti-complement therapies. Several
miRNAs have already been found to play a role in the regulation of complement-dependent cytotoxicity.49,50

Optimal Dose, Timing and Treatment Duration with Eculizumab
The studies of eculizumab in severe, treatment-refractory AChR+ gMG all used the same dosing regimen; this is further
discussed in the section on dosing of eculizumab. Eculizumab is used at a lower dose in the treatment of PNH, so further
studies regarding optimal dose, timing and treatment duration in MG are required.20,21 According to some experts, after 6
months of successful treatment and confirmation of maximal responsiveness, eculizumab infusion intervals could be
lengthened.

Tapering and Discontinuation of Eculizumab
Similarly, there is a paucity of data regarding optimal tapering and discontinuation of eculizumab in MG. In REGAIN
and its OLE, most clinical benefits were observed within 3 months, so clinicians should consider discontinuation of
eculizumab if significant improvement is not observed in that period. Since eculizumab is unlikely to alter the antibody
production, tapering is suggested as sudden discontinuation may lead to the rapid return of weakness.51

Use of Eculizumab in Subtypes of MG Including Seronegative and Thymoma-Associated Disease
Eculizumab is currently only approved and recommended for treatment-refractory AChR+ gMG in the United States, but
there is a lot of potential, and in fact some early data, to suggest its efficacy in other MG subtypes. A retrospective
analysis of eculizumab in AChR-gMG resulted in clinically meaningful improvements in MG-ADL score, QMG score,
and respiratory function in all patients. Additionally, all patients experienced a statistically significant reduction in MG
exacerbations, and all were able to reduce steroid dose and discontinue at least one other MG medication.52 Greenwood
et al reported a case of a treatment-refractory seronegative gMG patient who after transitioning from thrice-weekly
plasma exchange to eculizumab showed significant and sustained decrease in MG-ADL scores.53 The phase II and phase
III trials of eculizumab excluded patients with a history of thymoma or thymic neoplasm, but a case report of a patient
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with severe, treatment-refractory, thymomatous AChR+ gMG found eculizumab to be a well-tolerated and effective
treatment. The patient experienced significant improvement in motor symptoms within 8 weeks of initiating eculizumab
therapy, as well as improvement in QMG and MG-ADL scores, and those improvements were maintained for 1 year.
Additionally, the patient experienced no further MG crises requiring admission, and was able to decrease the corticos-
teroid requirement, and increase the interval between IVIg treatments.54 Amano et al reported a case of treatment-
refractory thymomatous AChR+ and anti-striational antibody+ gMG who achieved minimal manifestations of disease
with the addition of eculizumab.55

Rigorous studies of eculizumab in the treatment of other MG subtypes are needed, and there is good reason to expect
that it will play a major role in the field moving forward.

Eculizumab Use in Different Stages of MG
Rapid improvement was seen during the induction phase in the REGAIN placebo group patients who were switched to
eculizumab in the OLE study; statistically significant benefits were observed as early as after the first infusion. Given this
rapid effect, the role of eculizumab during MG exacerbations or as a bridge to longer-acting treatments needs to be
determined. Several case reports and case series have also suggested eculizumab to be an effective rescue treatment for
myasthenic crisis.56,57 Similarly, its use as a single agent rather than add-on therapy needs to be studied.

Practical Considerations for the Use of Eculizumab in the Treatment of
Refractory, Non-Thymomatous, AChR + Generalized Myasthenia Gravis
Required Vaccinations (Figure 3)
Therapy with eculizumab raises the risk of life-threatening Neisserial infections, such as N. meningitidis, and has been
linked to a 1000- to 2000-fold increase in the incidence of meningococcal illness. Therefore, before treatment initiation
with eculizumab, patients must receive two types of meningococcal vaccinations, at least 2 weeks before their first
dose.

The first type is the quadrivalent meningococcal conjugate vaccine against several serotypes of N. meningitidis
(Men ACWY). The brand names of this vaccine in the United States are Menactra® (Sanofi Pasteur, Bridgewater, NJ,
USA), and Menveo® (GlaxoSmithKline LLC. Philadelphia, PA, USA).46,58 It is recommended to administer all doses
using the same vaccine, but quadrivalent vaccination can be interchangeable.59 Two doses need to be administered, 2
months apart. A booster dose of Men ACWY is recommended every 5 years for the duration of therapy with
Eculizumab.59,60

The second type of vaccine is for N. meningitidis serotype B (MenB). The brand names for type B vaccines in the
United States are Bexsero® (GlaxoSmithKline LLC. Philadelphia, PA, USA) and Trumenba® (Pfizer, New York, NY,
USA). The two brands are not interchangeable. Bexsero is a two-dose series, with vaccines given at least 1 month apart.
Trumenba is a three-dose series, where the second dose is 1– 2 months after the first dose and the third dose is due in the
sixth month.46,55 It is recommended that patients get a booster dose of MenB vaccine a year after the completion of the
series, and then every 2–3– years while on treatment with eculizumab.59,60

Neurologists should be vigilant that vaccination decreases, but does not eliminate, the risk of meningitis. Enrollment
and certification with the eculizumab REMS (Risk Evaluation and Mitigation Strategy) program is also required before
starting treatment. Patients must be counseled of the risk and symptoms of meningococcal meningitis, and the use of
a safety bracelet/information card is strongly encouraged.55

In situations when urgent start of treatment is warranted, and the patient has received vaccinations within 2 weeks
prior to starting eculizumab, then 2 weeks of antibacterial prophylaxis is recommended. The recommended antibiotic and
dosing is Penicillin VK 250–500 mg every 12 hours.46 If the patient has a penicillin allergy, a macrolide antibiotic is
recommended instead, such as azithromycin 500 mg daily or erythromycin 500 mg twice a day.46,61 Fluoroquinolone
antibiotics, such as ciprofloxacin 500 mg daily, can also be used as a penicillin alternative.46 Both macrolide and
fluoroquinolone antibiotics in patients with penicillin allergy should be prescribed with extreme caution under the
supervision of a neuromuscular physician, as these antibiotics have the potential of causing MG exacerbation.46
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COVID 19 Vaccination in Mg Patients
Safety of COVID-19 Vaccination in Patients Receiving Eculizumab Treatment for MG
In general, vaccination for MG patients including for COVID-19 is recommended, especially for those receiving
immunosuppressive agents.62 While the details of the individual immune therapy were not provided, a retrospective
Italian cohort study in MG patients compared the MG-ADL scores before and after the administration of COVID-19
vaccines; 90% received the BNT162b2 vaccine (Pfizer-BioNTech), 7.5% were given the mRNA-1273 vaccine
(Moderna), and one patient received the ChAdOx1 nCoV-19 vaccine (AZD1222, AstraZeneca). The study showed no
significant change in the MG-ADL scores, suggesting a favorable short-term safety profile, as well as the efficacy of
these vaccines in avoiding life-threatening complications, such as MG exacerbation and COVID-19 pneumonia.
Worsening of MG-ADL scores in only a few patients following vaccination was found to be either coincidental or
due to other contributing factors such as exacerbation of chronic obstructive pulmonary disease, radiculopathy, or refusal
of part of the treatment. In conclusion, the use of the COVID-19 vaccine was supported by data presented in the study,
even in the presence of active immunomodulating therapies.63 While COVID-19 vaccination appears to be safe in MG,
due to the possibility of potential flare-up of existing MG, it is reasonable to postpone vaccination in patients with
myasthenic crisis and severe bulbar symptoms.64 Future prospective trials are required to confirm these observations.

Efficacy of COVID Vaccination in Eculizumab-Treated MG Patients
There is a dearth of high-quality data regarding the efficacy of COVID-19 vaccination in Eculizumab-treated MG patients.
Currently, there are no protocols in place for COVID-19 vaccinations before beginning Eculizumab treatment. A case report
measuring the immunogenic response to a course of an mRNA COVID-19 vaccine in a patient treated with mycophenolate,
prednisone, and eculizumab found that an immune response was initially not achieved after BNT162b2 (Pfizer-BioNTech)

Figure 3 Vaccination for Neisseria meningitidis.
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vaccination. It was only after the discontinuation of eculizumab, and the administration of two doses of an alternative mRNA
vaccine (M1273, Moderna) that a specific IgG response to the SARS CoV-2 spike protein was seen. The authors concluded
that while eculizumab might have contributed to the lack of an immune response to the first vaccine, it was more likely
related to concomitant treatment with mycophenolate and prednisone.65 The risk of delaying vaccination, and thus failing to
mitigate COVID-19 risk, should be balanced against a possible blunted response to the vaccine. As part of a collaborative
decision-making process, this choice should be personalized. While there is a lack of scientific evidence in this instance, in
a patient with stable MG treatment with eculizumab could be held for 1–2 weeks before COVID-19 vaccination.

Use of Eculizumab in Patients with Active COVID-19 Infection
Increased susceptibility to COVID-19 infection in eculizumab-treated MG patients has been reported,66 however, owing
to the blockade of C5 complement, which is thought to be elevated in COVID-19 infection, eculizumab could
conceivably have a beneficial therapeutic effect in active COVID-19 infection.67,68 The use of Eculizumab in patients
actively infected with COVID-19 is also currently being studied in the SOLID-C19 trial.69 According to available
published research, eculizumab could be continued in MG patients with active COVID infection.

Pharmacokinetics of Eculizumab
The elimination half-life of eculizumab is approximately 270–375 hours and plays a role in the need for every 2-week
dosing.70 The clearance of eculizumab is increased almost to 250-fold, and elimination half-life is reduced to 1.26 hours,
in patients receiving fresh frozen plasma (FFP) or PLEX, thus necessitating supplemental doses in these circumstances.70

Eculizumab does not have known active metabolites.71

Dosing of Eculizumab
The medication is given intravenously, and dose during the Induction phase is 900 mg every week for 4 doses. For the
interim phase, week 5, patients receive a 1200 mg infusion. The maintenance phase starts from week 6 onwards, where
the dose is 1200 mg every 2 weeks.72 A hospital-designed medication order set that specifies the dose at each interval,
helps to reduce the chance for errors regarding the dose and corresponding intervals (Table 1).

Dose Adjustment of Eculizumab During Concomitant Treatment with PLEX
For patients who are receiving PLEX, additional doses are needed depending on the most recent dose. Extra doses of
eculizumab 600 or 300 mg are given within 60 minutes after PLEX, if the last doses given were equal to or greater than
600 or 300 mg, respectively.70

Dose Adjustment of Eculizumab During Treatment with FFP Infusion
For patients receiving an FFP infusion, an additional eculizumab dose of 300 mg is given within 60 minutes before the
infusion, if the last dose given was equal to or greater than 300 mg.70

Contraindications to Use of Eculizumab
Eculizumab use is contraindicated in patients who lack N. meningitidis vaccination unless the benefit of treatment
outweighs the risk of infection in patients who are unable to undergo vaccinations.70

Eculizumab in Pregnancy
A case report discussed the successful treatment of refractory gMG before, during, and after pregnancy.72 No adverse
events were reported in the mother or newborn, suggesting a favorable benefit versus risk profile for eculizumab
treatment during pregnancy.72 Treatment of MG during pregnancy with eculizumab may be beneficial, with
a reduction in maternal complications and high fetal survival.73 However, further studies are warranted to confirm this
finding, and benefit versus risk should be assessed in pregnant patients on a case-by-case basis.
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Table 1 Eculizumab Therapy Plan

Eculizumab (Soliris) for Myasthenia Gravis

Provider information

● Soliris Risk Evaluation and Mitigation Strategy (REMS) Program: providers must enroll in the program.
o 1–888-SOLIRIS (1–888-765-4747) or solirisrems.com

● Indications:
o Generalized myasthenia gravis (gMG, anti-acetylcholine receptor antibody-positive)

● Confirm vaccination status

Pre-medications

● Patients are pre-medicated at least 30 minutes before infusion but not longer than 1 hour before infusion:
o Acetaminophen (Tylenol) 650mg PO once
o Diphenhydramine (Benadryl) 50mg PO once or alterative medication if needed
o Methylprednisolone 40mg IV once

IV Line Care

● 0.9% sodium chloride infusion 250mL IV at 10 mL/hr run continuously to keep vein open
● Heparin 500 units intracatheter prn for IV line care per nursing policy

Dosage/Administration instructions

● Myasthenia Gravis Dosing
o Soliris must be given at the recommended regimen time points or within 2 days

Refractory gMG Adult (≥18 years of age) Dosing Schedule

Pretreatment Induction Phase Interim Phase Maintenance Phase

≥2 weeks before induction Week 1 2 3 4 5 6 7 8 9 q14d

Neisseria meningitidis vaccination Soliris Dose 900 mg 900 mg 900 mg 1200 mg 1200 mg – 1200 mg – 1200 mg

Supplemental dose required in case of plasmapheresis, plasma exchange or fresh frozen plasma infusion.
● Administration
o Do not administer as IV Push or Bolus
o Diluted to a final concentration of 5mg/mL
o Eculizumab (Soliris) 900mg in 0.9% sodium chloride 180mL IV infusion over 35 minutes
o Eculizumab (Soliris) 1200mg in 0.9% sodium chloride 240mL IV infusion over 35 minutes

o Pediatric Patients: Administration over 1–4 hours
o Infusion reactions: Infusion rate can be slowed but cannot exceed 2 hours total infusion time.

Monitoring Needs

● Complete vital signs (BP, pulse, temperature) prior to infusion and 1 hour after infusion.
o Repeat vital signs with infusion rate change if applicable.

● Monitor signs/symptoms of hypersensitivity during infusion and for 1 hour post-infusion
● If infusion reaction occurs, monitor patient for respiratory and cardiovascular reactions for 2 hours post infusion.

Common Side effects with corrective actions and emergency medications

● Nausea → Ondansetron (Zofran) 8mg IV once prn
● Pain/Headache/Fever → Acetaminophen 325–650mg oral prn
● Peripheral Edema
● Infusion Reactions
● Muscle/Back pain
● Sinusitis
● Cough
● Constipation

Emergency medications

● Diphenhydramine (Benadryl) 25–50mg PO or 50mg IV prn per nursing judgment for infusion reaction
● Epinephrine (Adrenalin) 0.3mg IM once prn for severe infusion reactions and anaphylaxis
● Acetaminophen (Tylenol) 325–650mg oral prn for infusion reaction, pain, headache, or fever
● Ondansetron (Zofran) 8mg IV once prn

(Continued)
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Eculizumab and Breastfeeding
Eculizumab was not detected in the breast milk of nursing women who were on treatment for PNH.73

Eculizumab and Renal/Hepatic Impairment
The pharmacokinetics of eculizumab is not affected by renal impairment; no adult studies to date have assessed the effect
of hepatic impairment on the pharmacokinetics of eculizumab.70

Cost of Treatment with Eculizumab
The current average cost of eculizumab (brand name Soliris®, Alexion Pharmaceuticals Inc. Boston, MA, USA)
per mL is $260.92. It has been reported that it is the most expensive drug to treat MG, with the cost being more
than $60,000/month in the United States. Putting this into perspective, the monthly cost of treatment with high-dose
prednisone is $15, and that of ISTs such as mycophenolate mofetil and azathioprine is in the hundreds of dollars.
The annual cost of treatment with rituximab ranges between $20,000 and $40,000. A course of treatment with 2g/kg
of IVIg in a 70kg patient, or treatment with 5 PLEX treatments, ranges between $20,000 and $35,000. It is still to
be determined if the cost of treatment with eculizumab can be offset by reducing other related healthcare costs in
MG patients.28

Future Complement Based Therapies (Figure 1)
Ravulizumab (Brand Name Ultomiris®, Alexion Pharmaceuticals Inc. Boston, MA,
USA)
Ravulizumab is another recombinant humanized monoclonal antibody that binds to and inhibits the C5 complement
protein. It differs from eculizumab by amino acid substitutions in the Fc region of eculizumab that provide high affinity
for C5, and an immediate and sustained reduction in C5.74,75 This amino acid sequence alteration also leads to a longer
half-life of the antibody, due to recycling through the neonatal Fc receptor (FcRn) pathway, thus reducing the frequency
of administration to every 8 weeks, compared to every 2 weeks for eculizumab. Treatment with ravulizumab requires
a weight-based loading dose, followed by weight-based maintenance doses 2 weeks later and then every 8 weeks
thereafter. It is currently approved for the treatment of aHUS and PNH. On the basis of a beneficial outcome in the phase
III clinical trial to investigate its efficacy and safety in MG, ravulizumab has now been FDA approved as of April 28,

Table 1 (Continued).

Acute infusion reactions and corrective measures

Mild
Hives, pruritus, throat itching, headache, nausea, dizziness (NO
hypotension), hyperemia, urticarial, GI upset

Moderate
Wheezing, rigors, dysphagia, mild
dyspnea (No hypotension), chest

discomfort, palpitation, elevated temp

Severe
Significant hypotension and chest
discomfort, significant shortness of

breath, bronchospasm,
angioedema, stridor, abdominal

cramping with nausea and
vomiting accompanied by

hypotension

1. Pause infusion
2. Send covering provider FYI page
3. Administer diphenhydramine, acetaminophen, or ondansetron if need
4. Check vital signs, and then monitor q 15 min till within normal limits
(WNL)
5. If the patient does not return to baseline then page on-call provider
6. If symptoms resolve and the patient returns to baseline then re-
challenge at half the rate

1. Stop infusion
2. Call on-call provider
3. Administer diphenhydramine,
acetaminophen, or ondansetron if need
4. Monitor VS q 5 min till WNL
5. Discuss with provider how to proceed: if
symptoms resolve can consider restarting at a
slower rate not to exceed a total infusion time
of 2 hours

1. Stop infusion
2. Have someone call code (111) then
the on-call provider
3. Administer epinephrine,
diphenhydramine, acetaminophen, or
ondansetron if need
4. Stabilize patient till code team arrives,
continue monitoring VS
5. Continue with code procedure
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2022.76 The cost of ravulizumab is estimated to be much higher than that of eculizumab per mL. The projected average
cost per mL of ravulizumab (Intravenous) is $2,561.60.

Zilucoplan
Zilucoplan is a synthetic macrocyclic peptide that inhibits MAC formation by a dual mechanism: 1) it binds to the C5
complement protein, thereby blocking the cleavage to C5a and C5b; and 2) it directly inhibits the first step of MAC assembly
(ie, C5b-C6 binding).74 The binding site for zilucoplan on C5 is different from that for eculizumab, as demonstrated by its
ability to bind C5 in blood samples of patients who are genetically resistant to eculizumab. The phase III RAISE trial was
recently concluded, showing favorable efficacy, safety and tolerability in gMG patients. The dose of zilucoplan used in the
12-week placebo-controlled RAISE trial was 0.3mg/kg daily by subcutaneous administration.77

Future Pathophysiologic Target-Based Interventions in MG
1. Traditional therapeutic interventions in MG include the use of pharmacological agents such as AChEs, corticos-

teroids and other immunosuppressants; thymectomy; and use of interventions for disease exacerbations, which
include PLEX and IVIg. These treatment approaches will not be discussed here but can be reviewed in previously
published articles.4,5

2. Therapies in MG employing disease-specific mechanistic approaches include the following:

Anti-IFN Therapies (Figure 2C)
Since thymic overexpression of Type–I interferon (IFN-I), especially IFN-β, seems to be the main orchestrator of thymic
changes, treatment with monoclonal antibodies against IFN-I (rontalizumab or sifalimumab) could be considered.
Further, there is an increasing recognition of the role of miRNAs in EAMG. miRNAs regulate post-transcriptional
gene expression by binding and degrading messenger RNA, leading to inhibition of translation and protein expression.
MiR-29 subtypes play a role in modulating the IFN-I signal in the thymus of mice with EAMG by favoring increased
expression of IFN-β and emergence of pro-inflammatory Th17 cells. This strategy could be considered not only for
monitoring but also for possible future therapy of MG.78

Therapy with Chemokine Antagonists (Figure 2C)
Since chemoattractant (CXCL13) upregulation on TEC is critical for cellular recruitment, the use of CXCL13 and other
chemokine targets could be another potential therapeutic strategy in MG.79

T-Cell Co-Stimulatory Pathway-Based Therapies (Figure 2F)
Following the initial T-cell receptor (TCR) and peptide–MHC interaction, co-stimulation enhances or inhibits T-cell
activation. Positive co-stimulatory pathways include B7–CD28, CD40 ligand (L)–CD40, inducible T-cell co-stimulator
protein (ICOS) ICOS–ICOS-L, and OX40–OX40L. Negative co-stimulatory pathways include B7–cytotoxic
T lymphocyte antigen-4 (CTLA-4) and programmed cell death (PD)-1–PD-L1. These interactions activate downstream
events, leading to increased release and binding of IL-2 to the IL-2 receptor (CD25), which through activation of the
Janus kinases (JAK) – Signal Transducer and Activator of Transcription system promote lymphocyte proliferation and
differentiation into T-helper cells. Potential therapeutic targets include monoclonal antibodies against CD80/86 (abatacept
[Orencia®, Bristol-Myers Squibb Company. Princeton, NJ, USA]), CD40 (iscalimab), ICOS, CD25 (daclizumab) and
JAK (tofacitinib [Xeljanz®, Pfizer Inc. New York, NY, USA]). Another treatment approach is the use of the chimeric
antigen receptor (CAR) T-cell therapy in which T-cells from patients are harvested and genetically modified to express
a CAR designed to recognize and bind to a target antigen, which allows CAR T-cells to identify and attack target
cells.80,81
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T-Cell-Associated Cytokines (Figure 2G)
Upregulation of Th17 and Tfh, along with their cytokines in MG can provide a basis for treatment with an IL-6 receptor
antagonist (tocilizumab [ACTEMRA®, Genentech, Inc. San Francisco, CA, USA]) or monoclonal antibodies against IL-
17 (brodalumab, inekizumab). The downregulation of Tregs can potentially be treated with vitamin D, rapamycin or
granulocyte-macrophage colony-stimulating factor.81

Agents Targeting B-Cells (Figure 2G)
This involves direct targeting with biologics, including inhibition of CD20 using a first-generation agent (rituximab) or
next-generation agents (ocrelizumab, ofatumumab). CD20 is present on all B-cells except for stem cells, pro-B-cells, and
plasma cells. Also targeted could be CD19 using inebilizumab (Uplizna®, Horizon Therapeutics Ireland DAC, Dublin,
Ireland), which depletes almost all B-cells, including plasmablasts, but not plasma cells and stem cells. Of potential
therapeutic benefit might also be the use of indirect B-cell inhibitors that target BAFF (belimumab [Benlysta®,
GlaxoSmithKline LLC. Philadelphia, PA, USA]) and the BAFF/APRIL receptor (atacicept) which block transmembrane
activator, calcium modulator and cyclophilin ligand interactor (TACI); and use of a proteasome inhibitor such as
bortezomib, which causes apoptosis of highly active plasma cells.82

Fc and Neonatal FcRn Receptor Modulation (Figure 2M)
Fc receptors are involved in antibody-mediated effector functions and complement activation. Engineered IVIg prepara-
tions with increased sialic acid levels (glycosylation) of Fc core IgG molecules lead to suppression of inflammation
through upregulation of inhibitory FcγRIIB receptors on different immune cells.83 Since the IgG recycling pathway
(Figure 2M) is mediated by the FcRn, treatment with FcRn blockers (eg, efgartigimod [Vyvgart®, Argenx BV.
Zwijnaarde, Belgium], rozanolixizumab, nipocalimab and batoclimab) prompts the degradation of IgG in lysosomes,
resulting in a decrease in IgG levels (chemical plasmapheresis).81

Modification of Motor Endplate-Related Specific Factors (Figure 2H–J)
The clustering of AChRs on the postjunctional membrane of the NMJ can potentially be strengthened by the use of
SHP2 inhibitors (which are negative regulators of the AChR clustering pathway) and β2–adrenergic agonists (via
stabilization of AChRs at the postsynaptic membrane, mediated through protein kinase A, a downstream effector of β2
receptors).84 Another approach is the potential use of antisense oligonucleotides (ASOs) against the AChE-R
isoform.85 Under physiological conditions, splicing of the AChE gene produces the predominantly AChE-S isoform.
However, acute AChE treatment shifts the splicing of the AChE pre-mRNA to the rare, AChE-R variant, which
through increased ACh hydrolysis restores the balance between the ACh and AChE levels. Targeting exon 2 of the
AChE mRNA, using the ASO “EN101”, results in excessive destruction of AChE-R mRNA and restores ACh levels in
the synaptic cleft.

Conclusions
The success of the eculizumab clinical trials is a paradigm shift in the management of MG and might alter the future of
MG treatment away from the current use of the generalized non-specific immunosuppressive therapies to pathophysio-
logical mechanism-based directed therapies. Infection, particularly meningococcal meningitis, is the most serious adverse
effect. While eculizumab has demonstrated its efficacy in the management of refractory gMG as the first complement
inhibitor, many unanswered questions need to be addressed about the use of this medication. Future use of pharmaco-
genetics, and the potential use of biomarkers, would be useful to tailor and monitor mechanistic-based targeted therapies
in the different subtypes of MG.
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