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Abstract

Background and Objective: Genes encoding RNA-binding proteins, including FUS and TDP43, play a central role in different
neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Recently, a
mutation located in the nuclear export signal (NES) of the FUS gene has been reported to cause an autosomal dominant
form of familial Essential tremor.

Material and Methods: We sequenced the exons coding the NES domains of five RNA-binding proteins (TARDBP,
hnRNPA2B1, hnRNPA1, TAF15 and EWSRI) that have been previously implicated in neurodegeneration in a series of 257
essential tremor (ET) cases and 376 healthy controls. We genotyped 404 additional ET subjects and 510 healthy controls to
assess the frequency of the EWSR1 p.R471C substitution.

Results: We identified a rare EWSR1 p.R471C substitution, which is highly conserved, in a single subject with familial ET. The
pathogenicity of this substitution remains equivocal, as DNA samples from relatives were not available and the genotyping
of 404 additional ET subjects did not reveal any further carriers. No other variants were observed with significant allele
frequency differences compared to controls in the NES coding regions.

Conclusions: The present study demonstrates that the NES domains of RNA-binding proteins are highly conserved. The role
of the EWSR1 p.R471C substitution needs to be further evaluated in future studies.
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Introduction diseases. For example, mutations in TAR DNA binding protein
(TARDBP; OMIM*605078) and FUS cause familial amyotrophic
lateral sclerosis (ALS) [5-10]. Moreover, mutations in heteroge-
of the elderly and is characterized by a postural or motion tremor neous nuclear ribonucleoprotein A1 (mRNPAI; OMIM*164017)
[1]. Recently, exome sequencing in a large pedigree with an  ,nq 42/B1 (hmRNPA2B1; OMIM#*600124) have been described
autosomal dominant form of familial ET proposed a rare mutation in families with multisystem proteinopathy and ALS [11], TATA
in the nuclear exporting signal region (NES; p.Q290X) of Fused in box-binding protein-associated — factor N (TAF15;
Sarcoma gene (FUS; OMIM*137070) as pathogenic [2-4]. FUS is OMIM*601574) and Ewing sarcoma breakpoint region 1
a RNA-binding protein carrying a canonical RNA recognition (EWRSI1; OMIM*133450) have been implicated both in ALS

motif (RRM), an NES and a putative prion-like domain (Figure 1). and frontotemporal lobar degeneration with ubiquitin-positive
Several RNA-binding proteins harboring these domains have inclusions (FTDL-U) [12-14].

been implicated in the development of different neurodegenerative

Essential tremor (ET) is the most common movement disorder
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Figure 1. Nuclear export signal (NES) prediction of candidate proteins based on the NetNES 1.1 prediction tool [16]. NN =neural
network algorithm; HMM = hidden Markov Model algorithm; NES score = combination of NN and HMM algorithms; QGSY-rich = glutamine, glycine,
sering, tyrosine rich region; G-rich = glycine rich region; RRM =RNA recognition motif; RGG = Arg-Gly-Gly rich domain; Zn =zinc finger domain; The ?
denotes that the NES predicted location does not surpass the NetNES established threshold. The thin black line denotes the prion-like domain
location and the thick black line represents the highest score core region according to the Alberti algorithm [20].

doi:10.1371/journal.pone.0111989.g001
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Figure 2. Conservation of EWSR1 p.R471 amino acid. Species alignment of EWSR1 p.R471 amino acid showing its highly preservation across
evolution and the exact location of p.R471C substitution (rs138287627). Picture extracted from the UCSC Genome Browser (http://genome.ucsc.edu/

cgi-bin/hgGateway).
doi:10.1371/journal.pone.0111989.g002

Our previous sequencing studies of the entire coding region of
FUS gene in ET did not identify any additional pathogenic
variants within the NES domain [3,4]. In the present study we
have sequenced the predicted NES locations of these additional
RNA-binding proteins in a cohort of E'T subjects and controls, in
order to identify novel mutations in those regions that may be
responsible for disease.

Materials and Methods

All individuals gave their written informed consent and the
study was approved by the Mayo Clinic Institutional Review
Board, Jacksonville, Florida and the respective local Ethical
Committees.

The Mayo Clinic ET series includes 257 patients, 151
individuals with familial ET and 106 sporadic ET subjects
(Table 1). A diagnosis of ET was established according to the
Consensus Statement of the Movement Disorder Society on
Tremor [15] by an experienced neurologist specialized on
movement disorders (JAvG, RJU and ZKW). A series of 376
healthy subjects from Mayo Clinic, Jacksonville, was sequenced to
establish the minor allele frequency (MAF) of identified mutations
in a control population. All participants in the study are unrelated,
non-Hispanic Caucasians recruited at Mayo Clinic, Jacksonville.
In order to replicate the results of our study, we further genotyped
two additional E'T series and matched healthy controls to establish
the frequency of the EWSRI1 p.R471C substitution which is
located in a highly conserved region of the protein (Figure 2). We
genotyped 291 Canadian ET patients and 328 matched healthy
subjects and 113 Spanish ET patients and 182 matched healthy
subjects (Table 1).

The NetNES prediction server (http://www.cbs.dtu.dk/
services/NetNES/) [16] was used to identify potential NES signals
in the candidate genes. This online tool works with amino acid
sequences and combines both neural networks (NN) and hidden
Markov models (hMM) in its prediction algorithm. The integra-
tion of both models allows us to combine the superior observed
specificity of the hMM with the observed superior sensitivity of the
NN [16]. Once the NES amino acid signals were identified
(Figure 1), we performed bidirectional sequencing of the exons of
cach gene coding for these specific regions (see Table Sl for
specific primers).

PLOS ONE | www.plosone.org

Variants were numbered according to standard nomenclature
based on RefSeq mRNA and peptide accession numbers for each
gene (TARDBP: NM_007375.3, NP_031401.1; hnRNPAI:
NM_002136.2, NP_002127.1; hnRNPA2B1: NM_031243.2,
NP_112533.1; TAF15: NM_139215.2, NP_631961.1; EWSRI:
NM_005243.3, NP_005234.1). PolyPhen-2 (http://genetics.bwh.
harvard.edu/pph2/index.shtml) and SIFT (http://sift.bii.a-star.
edu.sg/) algorithms were used to assess the impact of the amino
acid substitutions on the protein structure. The virtual effect of
intronic variants on splicing was assessed using the Human
Splicing Finder (HSF) algorithm (http://www.umd.be/SSF/)
[17]. Allelic association analysis and Bonferroni correction for
multiple testing were performed with PLINK v.1.07 software
(http://pngu.mgh.harvard.edu/purcell/plink/) [18].

Results

Our sequencing analysis of 257 patients with ET did not
identify any novel variants in the predicted NES coding regions of
the candidate genes. We identified two previously described
missense variants in the EWSRI gene (rs41311143, p.G465S and
rs138287627, p.R471C; Table 2), which are predicted to be
probably damaging and benign by the Polyphen-2 algorithm,
respectively. The minor allele frequency (MAF) of the EWSRI1
p-G465S variant was the same in ET cases and controls (MAF
1.5%) whereas the p.R471C substitution was observed in only one
patient with autosomal dominant familial ET. Unfortunately,
DNA from the rest of the family members was not available to
asses for co-segregation of this variant with disease. The
genotyping of 404 additional E'T patients and 510 healthy controls
did not reveal any additional EWSR1 p.R471C carriers.

Across the candidate genes we observed a known synonymous
variant in the TARDBP gene (rs147795017, p.Y374Y; Table 2)
and eight intronic variants, two of which were novel
(ImRNPA2B1 c42+17T>C and EWSRI c.1417+68_1417+
71delGATT; Table 2). The snRNPA2B1 ¢.42+17T>C mutation
was present in a single sporadic case and was absent in a series of
376 healthy controls. The HSF algorithm predicts this mutation to
change the exon 2 splicing site including 15 intronic nucleotides
between exons two and three, which would cause an in-frame
msertion of five amino acids (VLCQQ), but RNA from the
mutation carrier was not available for examination. The EWSRI
c.1417+68_1417+71delGATT variant was present in three ET

November 2014 | Volume 9 | Issue 11 | e111989
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subjects, two familial ET cases and one sporadic subject
(MAF =0.006), but was also present in 8 out of 376 healthy
controls (MAF =0.011) excluding a possible role in ET pathology.
The frequency of TAFI15 ¢.1006+34A>G intronic variant was
significantly different between cases and controls (p=0.007),
however this level of significance would not remain after
Bonferroni correction for multiple testing.

Discussion

The involvement of mutated RINA-binding proteins in several
neurodegenerative disorders suggests that this family of proteins
may be relevant across heterogeneous disease phenotypes. The
identification of a nonsense mutation in the NES domain of the
FUS protein (p.Q290X) in a large kindred with autosomal
dominant ET has raised interest in the role of these genes in this
common movement disorder. In the present study we screened the
predicted NES regions of other RNA-binding proteins that have
been associated with neurodegeneration but did not identify any
novel variants related to the ET phenotype.

FUS mutations have been proposed to be involved both in ALS
[5,7] and in ET [2]. However, the described mutations in both
diseases are located in different domains of the protein. While the
ALS mutations affect the RGG domain [7], the mutation causing
ET results in a premature stop codon located in the NES region of
the protein [2]. Additionally, functional analyses have shown that
the pathogenic effect of the ET-specific FUS mutation, whose
mRNA is degraded by the nonsense-mediated decay (NMD)
pathway, differ from those of the ALS mutations, whose mRNAs
do not undergo this kind of degradation [2]. This fact suggests that
the affected domain of the protein and type of mutation plays a
critical role in determining the disease phenotype developed by
mutation carriers.

A recent study has shown that ~1% of human protein-coding
genes contain a potential prion-like domain and of this 1%, there
is a 12-fold enrichment from proteins containing also a canonical
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RRM [19]. Thus, ~11.7% of human protein-coding genes
containing a candidate prion domain also harbors an RRM.
The high percentage of RRM proteins among prion-like
candidates suggests that human RNA-binding proteins could have
a greater trend towards aggregation and therefore play a role in
neurodegeneration [19]. Therefore, although we sequenced only
the NES domain of these candidate genes, further investigation of
other domains such as the RRM may be warranted. However,
whether ET is a neurodegenerative disorder remains controversial
and there is no clear evidence of protein aggregation in the disease
pathology. Thus, further understanding of the genetic determi-
nants underlying ET risk will hopefully clarify the pathogenic
processes and provide a clearer picture of disease etiology.
Although we could not establish the cosegregation of the
EWSRI1 p.R471C substitution in the index family due to the lack
of DNA samples from affected relatives, nor its presence in other
ET populations, the EWSR1 p.R471C substitution is a candidate
variant that needs to be further screened in future E'T studies.
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