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Abstract

Background: The Coloboma mouse carries a ,2 cM deletion encompassing the SNAP25 gene and has a hyperactive
phenotype similar to that of ADHD. Such mice are 3 fold more active compared to their control littermates. Genetic
association studies support a role for allelic variants of the human SNAP25 gene in predisposing to ADHD.

Methods/Principal Findings: We performed association analysis across the SNAP25 gene in 1,107 individuals (339 ADHD
trios). To assess the functional relevance of the SNAP25-ADHD associated allele, we performed quantitative PCR on post-
mortem tissue derived from the inferior frontal gyrus of 89 unaffected adults. Significant associations with the A allele of
SNP rs362990 (x2 = 10, p-corrected = 0.019, OR = 1.5) and three marker haplotypes (rs6108461, rs362990 and rs362998) were
observed. Furthermore, a significant additive decrease in the expression of the SNAP25 transcript as a function of the risk
allele was also observed. This effect was detected at the haplotype level, where increasing copies of the ADHD-associated
haplotype reduced the expression of the transcript.

Conclusions: Our data show that DNA variation at SNAP25 confers risk to ADHD and reduces the expression of the transcript
in a region of the brain that is critical for the regulation of attention and inhibition.
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Introduction

Attention deficit hyperactivity disorder (ADHD) is a highly

heritable disorder of childhood with significant functional impair-

ment and negative lifetime outcomes across all developmental

stages. The disorder is marked by disruption of catecholamine

signaling, with mainstay treatments for the disorder targeting the

dopamine and noradrenaline transporters and the alpha 2a

adrenoreceptor [1]. Although a focus on these molecular targets

has proven informative for genetic association, identifying the

molecular machinery driving neurotransmitter release may

provide critical insights into the biology of ADHD.

Synaptosomal-associated protein (SNAP-25) is a presynaptic

plasma membrane protein that is specifically and highly expressed

in nerve cells. The gene encodes a protein component, which

interacts with the membrane associated protein syntaxin, and

vesicle-associated membrane protein (VAMP) to form the SNARE

complex. This complex interacts with membrane proteins known

as synaptotagmin to make up a core complex essential for docking

and holding synaptic vesicles at the presynaptic membrane in

preparation for Ca2+-triggered neurotransmitter exocytosis [2].

The Coloboma mouse bears a semi-dominant mutation (cm/+)

in which the heterozygous form results in the mutant type while

the homozygous is lethal. The mutation is a ,2 Cm deletion

encompassing genes including SNAP25 and the gene encoding

phospholipase C beta (PLCB-1) [3,4], mapping to human

chromosome 20 [5]. The Coloboma mouse is considered an

animal model of ADHD as it displays a hyperactive phenotype

that is reduced by stimulant drugs such as dextroamphetmaine [6].

An increase of up to 40% in noradrenaline within the striatum and

the nucleus accumbens of the Coloboma mouse has been reported

[7]. Furthermore, mRNA expression of Tyrosine Hydroxylase (a

rate limiting enzyme in the synthesis of dopamine and noradren-

aline) was significantly increased in the cells of the noradrenergic

locus coeruleus, indicating that a perturbed level of noradrenaline

(presumably caused by the lack of SNAP25 copy) may contribute to

the hyperactive behavior of the coloboma. Similarly, NA depletion

using DSP-4(N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine hy-
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drochloride) significantly reduced hyperactivity in the Coloboma

mouse, supporting the noradrenaline hypothesis [8].

Genetic association studies suggest that allelic variations in the

SNAP25 gene might confer susceptibility to ADHD. An initial

analysis [9] on two single nucleotide polymorphisms (SNPs)

(rs3746544 and rs1051312) located at the 39untranslated (39UTR)

region of the gene found a trend toward excess transmission of the

C allele of rs1051312. Significant association of the above 2-SNP

haplotype was reported [10,11]. Brophy et al. [11] reported

preferential transmission of allele T of rs1051312 to Irish ADHD

cases. Two other studies have shown association with ADHD

using a microsatellite marker in intron 1 and marker rs363006

mapped to intron 7 of the gene [12,13]. Other SNPs within the

gene have also been reported to associate with ADHD in more

recent studies. Feng et al. [14] observed association with SNPs

rs6039806, rs362549, rs362987 and rs362988, mapped to introns

3, 4, 5 and 7 respectively, while Kim et al. [15] reported

association with SNP rs3787283 (intron 7), which is in strong

linkage disequilibrium (LD) with the 39UTR SNPs rs3746544 and

rs1051312 (D9 = 0.89–0.94). Association with rs3746544 has also

been reported in Korean [16] and Eastern Indian ADHD samples

(17]. Other studies however failed to observe significant associa-

tion between SNAP-25 variants and ADHD [18,19]. A recent

meta-analysis demonstrates that there is considerable evidence to

support an association between ADHD and DNA variation in the

SNAP25 gene [20]. Together, these findings provide promising

evidence that SNAP-25 is likely to contribute to the development

of ADHD and that the region between intron 3 and the 39UTR

may contain a variant(s) affecting gene’s expression.

Here we sought to provide additional evidence for a role of

SNAP-25 in ADHD by performing dense SNP mapping across the

gene in nuclear families with ADHD. To assess the functional

relevance of ADHD-associated variants, we performed quantita-

tive PCR (qPCR) of the SNAP-25 transcript in a large sample

(N = 89) of post-mortem brains from non-clinical individuals. Our

qPCR work focused on expression of the transcript in human

inferior frontal gyrus (IFG), an area of the cortex that has

consistently been implicated in ADHD from both structural and

functional imaging analyses [21,22]. We show that ADHD-

associated variants of SNAP25 influence expression within the IFG,

with decreased SNAP-25 expression (as expected from the

Coloboma mouse) associated with the ADHD risk variants.

Materials and Methods

ADHD participants
A total sample of 1,017 individuals, comprising 339 Caucasian

ADHD probands and their parents (full trios) across three similar

sub-samples was investigated. The first cohort comprised 185 full

trios recruited throughout Ireland from child psychiatric clinics

and schools in West County Dublin and from the Hyperactive and

Attention Deficit Children’s Support Group of Ireland. Consensus

diagnoses were made according to DSM-IV ADHD either with or

without comorbidity. These diagnoses were based on all available

clinical information and the Child Behaviour Checklist (CBCL),

the Conners’ Parents and Teachers Rating Scales, and the

Comprehensive Teachers Rating Scale (ACTeRS) [23]. The

second sample comprised 68 Australian nuclear families with

ADHD recruited from the Royal Children’s Hospital Melbourne

and the Queensland Brain Institute, Brisbane. This sample shared

diagnostic, inclusion and exclusion criteria with the Irish sample

[24]. The third sample was ascertained from several child

psychiatric clinics in the United Kingdom. It comprised 86 trios

where the child met DSM-IV diagnostic criteria for ADHD, as

assessed using the same instruments as for the Irish cases [25].

Across all three cohorts, the mean age of the participants was

10.53 years (SD = 3.67) and were predominantly male (87%). All

probands fulfilled DSM-IV diagnostic criteria for ADHD. Of

these, N = 44 (13%) had the inattentive subtype, and N = 19 (5.6%)

had the hyperactive impulsive subtype; the remainder had the

combined subtype (81.4%). One hundred and seventy-nine

probands (52.8%) had a comorbid diagnosis of oppositional

defiant disorder (ODD) and 34 (10%) fulfilled criteria for

comorbid conduct disorder (CD). Frequencies of ADHD subtypes

Table 1. TDT analysis of SNAP25 polymorphisms in ADHD nuclear families.

SNP Allele T NT x2 p-value Ep-value* OR SNP position

rs3787303 T 74 73 0.007 0.9343 1.0 1.01 intron 1

rs363012 A 132 128 0.062 0.8041 1.0 1.03 intron 1

rs363039 G 153 151 0.013 0.9087 1.0 1.01 intron 1

rs12626080 G 148 145 0.031 0.8609 1.0 1.02 intron 1

rs363052 G 100 97 0.046 0.8307 1.0 1.03 intron 1

rs363020 T 75 66 0.574 0.4485 0.99 1.13 intron 1

rs362562 G 172 138 3.72 0.0535 0.41 1.25 intron 1

rs6108461 A 186 136 7.764 0.0053 0.06 1.37 intron 3

rs362990 A 150 100 10 0.0016 0.02 1.5 intron 4

rs362998 C 40 32 0.889 0.3458 0.99 1.25 exon 6

rs6039820 C 152 136 0.889 0.3458 1.0 1.11 intron 6

rs6108464 T 165 159 0.111 0.7389 1.0 1.04 intron 6

rs3787283 A 146 136 0.355 0.5515 1.0 1.07 intron 6

rs3746544 C 162 143 1.184 0.2766 0.97 1.13 39UTR

rs8636 T 174 149 1.935 0.1642 0.86 1.18 39UTR

T = Transmitted, NT = Not Transmitted, * = Empirical P-value from HAPLOVIEW assessed the gene-wide significance value estimated on the basis of 10000
permutations.
doi:10.1371/journal.pone.0060274.t001
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and comorbidities were similar across the recruitment sites. We

obtained a written consent from the next of kin, caretakers, or

guardians on the behalf of the minors/children participants

involved in our study. The consent was in accordance with the

declaration of Helsinki and the ethical approvals from the

University of Queensland, Australia, Trinity College Dublin,

Ireland, and the University of Birmingham, UK’’

Non-pathological brain samples
In addition to the ADHD samples, 89 unaffected Caucasian

brain samples (inferior frontal gyrus; IFG) were obtained from the

Australian Brain Bank. Of these, 63 (71%) were from male

subjects. None of these individuals were diagnosed with ADHD or

other psychiatric condition. The mean age of the sample was

51.6 years (SD = 12.2), PH ranged from 5.8–7 and the post-

mortem interval (PMI) was 28.2 hours (SD = 14).

SNP selection and genotyping
Fifteen SNPs were included in the current investigation

(Table 1). SNPs were selected using Haploview default SNP

tagging criteria. In addition, some SNPs that had been implicated

in ADHD from previous studies (rs363020, rs3746544 and rs8636)

were also included. Genotyping was commercially performed at

the Australian Genome Research Facility (AGRF) using iPLEX

Figure 1. Linkage disequilibrium relation (expressed as D9 values) of snap25 examined SNPs.
doi:10.1371/journal.pone.0060274.g001

Table 2. Haplotype analysis of SNAP25 SNPs in ADHD nuclear
families.

Haplotype Freq. T UT x2 p value
Empirical p
value*

Block 1

AG 0.455 168 145 1.681 0.1947 0.865

AA 0.411 146 180 3.602 0.0577 0.317

TG 0.135 82 70 0.842 0.359 0.953

Block 2

AAC 0.543 193 140 8.372 0.0038 0.0198

GTC 0.258 104 160 11.99 5.00E204 0.0019

GAC 0.139 87 80 0.597 0.4395 0.986

GAT 0.056 33 40 0.78 0.3771 0.961

Block 3

AC 0.624 151 169 1.002 0.3169 0.94

CT 0.358 172 149 1.682 0.1947 0.865

Freq = Haplotype frequency, T = Transmitted, UT = Untransmitted, * = 10000
permutation.
doi:10.1371/journal.pone.0060274.t002
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GOLD chemistry with a Sequenom MassArray on an Autoflex

Spectrometer (Sequenom, San Diego, CA). The genotyping

success rate for all SNPs ranged between 96.7–98.9%. Genotyping

of SNAP-25 SNPs rs362562 and rs362990 of the non-clinical

brain samples was conducted using TaqMan assays C_11682_10

and C_2488333_10 respectively. SNP rs6108461 was genotyped

using a standard PCR-RFLP assay. This was conducted using the

forward primer 59 CTTGAAGCATCCCAGGAAGA and the

reverse 59 GAAGGAAAAATGTTGGGGTTT 39. The PCR

product (214 bp) was then restricted with the enzyme Cac81 and

the DNA fragments were fractionated on a 3% agarose gel. The G

allele was characterized by 164 bp and 51 bp fragments while the

A allele was characterized by 215 bp fragment.

qPCR and SNAP-25 expression
Approximately 100–200 mg of inferior frontal gyrus (IFG) tissue

of each sample was used to extract RNA and DNA using TRIZOL

reagent as recommended by the manufacturers (Invitrogen). As

PH is considered a good indicator of RNA purity and integrity,

this was measured and found to range from 5.8–7. The optical

density (OD) at 260/280 of RNA preparations ranged from 2–2.1

indicating good quality of the RNA preparation.

Figure 2. Relative expression of SNAP25 in non- pathological samples. A and B show decreased expression with ADHD associated alleles; C
and D show the level of expression relative to ADHD risk and protective haplotypes respectively. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0060274.g002
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To minimize RNA contamination with the DNA, samples were

treated with DNASE-I and cleaned using RNeasy Mini Kit as

recommended by manufacturers (Qiagen, Doncaster, Victoria,

Australia). Furthermore, to prevent any possible interference by

DNA contamination when conducting qPCR, the target (SNAP25)

and the reference genes b2micoglobulin (b2M) and beta actin

Table 3. Linkage disequilibrium relation of previously associated ADHD-SNAP25 variants with SNPs of this investigation.

Previous Study
Associated
SNPS position

Current
investigation D9 r2

Barr et al. [9]; Kustanovich rs3746544 39UTR rs6108461 0.40 0.11

et al. [10] and Brophy et al. [11] rs1051312 39UTR rs6108461 ND ND

Mill et al. [13] rs363006 Intron 7 rs6108461 1.0 0.27

Feng et al. [14] rs6039806 Intron 3 rs6108461 1.00 1.00

rs362549 Intron 4 rs6108461 1.00 1.00

rs362987 Intron 5 rs6108461 1.00 1.00

rs362988 intron 7 rs6108461 1.00 0.10

Brookes et al. [35] rs363020 Intron 1 rs6108461 1.00 0.18

Kim et al. [15] rs3787283 Intron 7 rs6108461 0.19 0.01

Guan et al. [36] rs8636 39UTR rs6108461 0.40 0.11

Elia et al. [19] rs363032 Intron 1 rs6108461 0.26 0.04

rs6133852 Downstream rs6108461 1.00 0.05

Mick et al. [31] rs362562 Intron 1 rs6108461 0.91 0.74

rs362569 Intron 1 rs6108461 0.92 0.78

rs362564 Intron 1 rs6108461 0.93 0.37

Sarkar et al. [17] rs362569 Intron 1 rs6108461 0.92 0.78

rs362988 Intron 7 rs6108461 0.54 0.20

Lasky-Su et al. [30] rs363012 Intron 1 rs6108461 0.58 0.09

rs363043 Intron 1 rs6108461 0.8 0.31

rs362547 Intron 1 rs6108461 0.92 0.79

rs1984830 Down stream rs6108461 0.20 0.016

rs6032846 Down stream rs6108461 0.018 0.0

Barr et al. [9]; Kustanovich rs3746544 39UTR rs362990 0.63 0.08

et al. [10] and Brophy et al. [11] rs1051312 39UTR rs362990 ND ND

Mill et al. [13] rs363006 Intron 7 rs362990 1.00 0.06

Feng et al. [14] rs6039806 Intron 3 rs362990 1.00 0.27

rs362549 Intron 4 rs362990 1.00 0.27

rs362987 Intron 5 rs362990 1.00 0.27

rs362988 Intron 7 rs362990 0.51 0.11

Brookes et al. [35] rs363020 Intron 1 rs362990 1.00 0.04

Kim et al. [15] rs3787283 Intron 7 rs362990 0.39 0.09

Guan et al. [36] rs8636 39UTR rs362990 0.63 0.08

Elia et al. [19] rs363032 Intron 1 rs362990 0.01 0.00

rs6133852 Downstream rs362990 0.31 0.01

Mick et al. [31] rs362562 Intron 1 rs362990 0.89 0.25

rs362569 Intron 1 rs362990 1.00 0.30

rs362564 Intron 1 rs362990 1.00 0.12

Sarkar et al. [17] rs362569 Intron 1 rs362990 1.00 0.30

rs362988 Intron 7 rs362990 0.51 0.11

Lasky-Su et al. [30] rs363012 Intron 1 rs362990 0.49 0.017

rs363043 Intron 1 rs362990 0.04 0.001

rs362547 Intron 1 rs362990 1.00 0.30

rs1984830 Downstream rs362990 0.43 0.023

rs6032846 Down stream rs362990 0.27 0.14

ND = LD Not defined.
doi:10.1371/journal.pone.0060274.t003
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(ACTB) gene primers were designed to amplify DNA regions

involving exon 7 and 8 of SNAP25, exons 1 and 2 in b2M and exon

3 and 4 of ACTB. The qPCR primers were designed using the

INTEGRATED DNA TECHNOLOGIES Oligo Design Tool,

which is freely available at http://www.idtdna.com/scitools/

scitools.aspx. The SNAP-25-qPCR forward primer sequence was

59ATGGATGAAAACCTAGAGCAGG 39 and the reverse was

59ACACTTAAC CACTTCCCAGC 39. The b2M forward

primer sequence was 59 GGCATTCCTG AAGCTGACAG 39

whereas the reverse was 59TGGATGAAACCCAGACACATAG

39. The ACTB qPCR forward primer was 59ACCACACCTTC-

TACAATGAGC 39 and the reverse was 59 GCGTACAGGGA-

TAGCACAG39. In this context, b2M and ACTB were used as

reference genes as they have stable gene expression in various

tissues including brain. A standard Invitrogen procedure was used

to synthesize first cDNA strands of the samples. Relative

quantification was performed using SNAP25 (target gene) com-

pared to b2M and ACTB (reference genes). PCR cycling was

performed on a Roche LightCycler-480. Cycling conditions were

95uC for 5 min followed by 45 cycles at 95uC for 10 sec, 60uC for

10 sec and 72uC for 20 sec. This was followed by a melting curve

cycle at 95uC for 5 sec and 1 min at 65uC. mRNA relative was

expression quantified using normalized threshold cycles (Ct) of

target relative to reference genes.

Statistical analysis
Assessment of Hardy Weinberg Equilibrium for all SNPs was

undertaken using parental DNA of the ADHD participants. All

genotypes were in Hardy Weinberg equilibrium. Genetic associ-

ation across a 15 SNP array was performed using the transmission

disequilibrium test (TDT). Haplotype analysis to test for the

transmission of multi locus haplotypes was performed by applying

the default block definition in HAPLOVIEW (http://www.broad.

mit.edu/mpg/haploview) using the method of Gabriel et al. [26].

A SNP block is formed if 95% of informative comparisons are in

strong LD. Associations between ADHD risk variants and SNAP-

25 expression in post-mortem IFG tissue was tested using linear

regressions with an additive model (0 vs. 1 vs. 2 copies of the risk

variant). In addition, possession (0 vs. 1 vs. 2 copies) of the risk or

protective haplotypes was also assessed using linear regression.

Results

Genetic association
Fifteen SNPs were examined at the SNAP25 gene covering a

region of 88,6 kbp. TDT analyses of all individual SNPs are

presented in Table 1. Two SNPs rs6108461 and rs362990, showed

significant nominal association with ADHD (rs6108461: x2 = 7.76,

p = 0.0053, OR = 1.37; and rs362990: x2 = 10, p = 0.0016,

OR = 1.5). Permutation testing (10,000 permutations) revealed

that only rs362990 (x2 = 10, p-corrected = 0.019, OR = 1.5) was

associated with ADHD, with a trend towards association for

rs6108461 (p-corrected = 0.059).

Although strong LD is apparent across the gene (Figure 1), three

distinct blocks of LD were evident, with SNPs rs363020 and

rs362562 form the first block and SNPs rs6108461, rs362990,

rs362998 forming the second. The third block comprises the SNPs

rs3746544 and rs8636. Haplotype analysis (Table 2) within these

blocks showed significant association of a predisposing haplotype

made of alleles AAC of the second block (x2 = 8.37, p-corrected

= 0.019, OR = 1.4). An exploratory haplotype analysis using

sliding window of 8 SNPs (,20 kbp) extending from intron 3

(rs6108461) to the 3UTR (rs8636) enhanced the risk association

signal (x2 = 12.7, p = 0.0004, p-corrected = 0.003, OR = 1.62).

Finally, a haplotype comprised of the alleles GTC in the second

haplotype block (see Figure 1) was less transmitted to ADHD cases

than expected by chance (x2 = 11.99, p-corrected = 0.0019,

OR = 0. 65). This implies that this haplotype may confer

protection against the development of ADHD.

Functional analysis (qPCR)
A significant association between rs362990 and relative

expression of the SNAP-25 transcript was observed (Figure 2).

Specifically, increasing copies of the ADHD-associated A allele

were associated with decreased SNAP-25 expression [F(1,84)

= 5.5, p = 0.02; R2 change = 5.6.2%]. Similar results were found

for rs6108461 [F(1,84) = 8.9, p = 0.004; R2 change = 8.7%]. The

strong LD between these SNPs meant that controlling for one

removed the effect of the other in the above analyses. Possession of

the ADHD risk haplotype (AAC) was also significantly associated

with expression of SNAP-25 in the IFG tissue [Figure 2C; F(1,84)

= 6.3, p = 0.01; R2 change = 6.3%]. As expected, increasing

possession (0 vs. 1 vs. 2 copies) of the risk haplotype was associated

with decreased expression. Conversely, increasing possession of the

protective haplotype was associated with increased SNAP-25

expression [Figure 2D; F(1,84) = 7.8, p = 0.007 R2

change = 7.7%].

Discussion

The results of the current study show that DNA variants of the

SNAP25 gene that associate with ADHD are also associated with

functional changes in the expression level of the transcript in a

region of the brain that is an established pathological locus for

ADHD. The current investigation provides further support for the

notion that SNAP25 is a genetic risk factor for ADHD. Although

nominal associations with two SNAP25 SNPs (rs6108461and

rs362990) were observed, only the association with rs362990

survived permutation testing. Haplotype analysis enhanced the

association (OR = 1.62), suggesting that the region between intron

3 and the 39UTR of SNAP25 may harbor an important

susceptibility variant for ADHD.

SNAP-25 is important for axonal growth and synaptic plasticity,

which are essential steps for wiring the nervous system. Selective

inhibition of SNAP-25 expression prevents neurite elongation of

cortical neurons [27]. In addition, a high level of SNAP-25

expression in the adult brain was found to contribute to nerve

terminal plasticity [28]. Furthermore, SNAP-25 functions in

docking and fusion of synaptic vesicles in presynaptic neurons,

which are essential for the regulation of neurotransmitter release.

These functions make SNAP25 an important candidate gene for

ADHD.

Our results are consistent with some but not all previous

association/linkage studies. Apart from the current investigation, a

number of studies have tested for association between SNAP25

gene variants and ADHD. All these studies have examined

multiple SNPs and tested for association of single SNPs and

haplotypes. The associated SNPs and their position within the

SNAP25 gene are presented in Table 3. Careful inspection of the

data shows that ADHD-associated SNPs are clustered into two

main regions. The first region, supported by eight studies,

encompasses a region of 29 kbp extending from rs6039806 to

rs8636 and maps between intron 3 and the 39UTR of the gene.

The second region, supported by five studies, extends from

rs363032 to rs362569 spanning a region of 28 kbp and is mapped

to intron 1. The associated SNPs in the current study

(rs6108461and rs362990) map to introns 3 and 4. Interestingly,

there are strong LD relations between these SNPs and those

DNA Variations in SNAP25 Gene Confer Risk to ADHD
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reported to associate with ADHD (except those mapped down-

stream of SNAP25; see Table 3). Furthermore, extended haplotype

analysis comprising eight SNPs located between intron 3

(rs6108461) and the 3UTR (rs8636) enhanced the association

(x2 = 12.7, p-corrected = 0.003, OR = 1.62) indicating that this

region may harbor a risk/functional variant for ADHD.

Furthermore, it is important to emphasize that the quartile–

quartile (QQ) plot for ADHD genome wide association (GWAS)

for SNPs in or near candidate genes [29] showed mild inflation in

the p-value distribution, providing evidence for association

(although not significant at GWAS level). For SNAP25, several

SNPs showed evidence of association with the symptoms of

ADHD in a quantitative GWAS [30]. Three of these SNPS

(rs363012, rs363043 and rs362547) are mapped to intron 1 of the

gene. Interestingly, rs363043 and rs362547 (associated with total

ADHD symptoms and with inattentive symptoms, respectively)

(Lasky-su; personal communication) have strong LD with the

ADHD-associated SNPs of the current study (Table 3) which

further emphasises the importance of our findings. In addition, a

recently published ADHD-GWAS reported evidence of associa-

tion with 4 SNAP25 markers including rs362562 [31]. The latter

SNP is in strong LD with our SNPs (rs6108461: D9 = 0.91;

rs362990: D9 = 0.89) and showed a trend toward association in our

sample (Table 1) further confirming the importance of SNAP25

variations in ADHD.

Computer simulation [32] suggests that the 39UTR SNPs

rs3746544 and rs1051312 (map within the associated region of this

study) may alter the binding site of microRNAs (miR-510- miR-

641) and consequently influence the level of SNAP-25 expression.

Indeed, the post-mortem work reported herein hints at a potential

pathophysiological mechanism by which SNAP25 variants may

increase risk to ADHD. Specifically, the lowered expression of

SNAP-25 in regions of the cortex that are critical for attention and

inhibition, such as the IFG, may ultimately decrease the efficiency

of neurotransmitter release and synaptic function, impairing

behavior and cognition and conferring risk to ADHD. It should

be noted however that the above hypothesis must be viewed with

some caution since the current study did not test the expression of

SNAP25 in post-mortem samples derived from individuals with

ADHD.

Recent biochemical analyses have shown that SNAP-25 amino

acids (AA) 7–83 and 141–204 are essential motifs that are

spontaneously assembled into helical SNARE complexes with

Syntaxin1 and synaptobrevin 2 motifs [33]. SNAP25 mutations

introduced to the C terminal of the protein at AA positions 78, 81

and 202 resulted in a near elimination of exocytosis [34].

Furthermore, two alternative transcripts have been observed

encoding two SNAP-25 protein isoforms. Variant 1 has 8 exons

whereas variant 2 contains an alternative exon 5 as compared to

variant 1, with the resulting isoform being of the same length but

differing by 9 amino acids. Although we do not know which

SNAP-25 isoforms are associated with ADHD, it is important to

note that the SNAP-25 motif (AA 7–83 and 141–204) that is

critical to SNARE formation and the exon 5 splice variant

described above, all lie within the ADHD-associated region

described herein. These observations further emphasize the

importance of this region for the integrity of SNAP-25 and

SNARE function and consequently for the development of

ADHD.

In summary, this study provides support for the involvement of

SNAP25 as a susceptibility locus for ADHD. We hypothesize that

the region between intron 3 and the 3UTR of SNAP25 may harbor

functional variants that confer risk to ADHD. Finally, we stress the

importance of independent replication of our findings preferably

in different ethnic samples.
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