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Abstract: The rs1801133 (C677T) polymorphism of the methylenetetrahydrofolate reductase
(MTHFR) gene has been linked to type 2 diabetes (T2D) risk. This study aimed to assess
the association between rs1801133 genotypes (CC, CT, TT) and T2D across multiethnic pop-
ulations and to identify genotype- and region-specific risks. A global meta-epidemiological
analysis was conducted using data from 19 studies comprising 6479 participants from Asia,
Africa, Europe, and America. Odds ratios (OR) and 95% confidence intervals (CIs) were
calculated using random-effects models. Subgroup analyses by region were also performed.
The results of the CC vs. CT dominant genetic model were OR 95% CI = 0.63 (0.46–0.87);
p = 0.005; the CC vs. TT genetic recessive model yielded OR 95% CI = 0.59 (0.38–0.91);
p = 0.02; and the CT vs. TT codominance genetic model yielded OR 95% CI = 0.95 (0.65–1.37);
p = 0.78. Based on the subgroup analysis, the CC genotype is predominantly associated
with an increased risk of T2D in both Africa and Europe. From this study, the CC genotype
was proven to be highly contributory to T2D risk compared to the CT and TT genotypes.
These findings highlight the need for ethnicity-informed genetic screening and targeted
prevention strategies in global diabetes management.

Keywords: type 2 diabetes; rs1801133; CC genotype; methylenetetrahydrofolate reductase;
multiethnic group; metabolic syndrome

1. Introduction
Type 2 diabetes (T2D) is one of the most prevalent metabolic syndromes on a global

scale. It is caused by a state of insulin resistance leading to high blood glucose levels.

Int. J. Mol. Sci. 2025, 26, 3987 https://doi.org/10.3390/ijms26093987

https://doi.org/10.3390/ijms26093987
https://doi.org/10.3390/ijms26093987
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2151-0854
https://orcid.org/0000-0003-1084-6301
https://orcid.org/0009-0009-1566-3900
https://orcid.org/0009-0005-4799-385X
https://orcid.org/0000-0003-2895-2735
https://orcid.org/0000-0003-1349-5367
https://orcid.org/0000-0003-0461-9874
https://doi.org/10.3390/ijms26093987
https://www.mdpi.com/article/10.3390/ijms26093987?type=check_update&version=1


Int. J. Mol. Sci. 2025, 26, 3987 2 of 17

According to the World Health Organization (WHO), approximately 830 million people
worldwide have diabetes, with the majority living in low- and middle-income countries.
In Asia, T2D is most prevalent in China (88.5 million individuals) and India (65.9 million
individuals) due to their large population sizes [1]. Together with its chronic progression,
T2D often manifests based on a complex interaction between its modifiable (such as diet,
tobacco use, and physical activity level) and non-modifiable (such as age, genetics, and
ethnicity) risk factors [2].

Several studies have highlighted alterations in genetic substances—such as nucleotide
sequences, which may lead to changes in protein—that directly influence signaling pro-
cess and lead to the development of diabetes. The methylenetetrahydrofolate reductase
(MTHFR) enzyme plays a role in the metabolism of homocysteine and folate by catalyzing
the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. It has been
established that a genomic polymorphism, specifically the MTHFR C677T (rs1801133)
transition mutation from C→T at exon 4; 677 nucleotide, plays a significant role in the
development of T2D. This transition mutation leads to a substitution of the amino acid
alanine with valine, resulting in an impaired and thermolabile form of the enzyme [3].

This genomic polymorphism has been found to have a stronger association with T2D
in the Asian population than in the Caucasian and African populations [4]. Environment
and genetics might contribute to such differences. Therefore, it is important to validate the
relationship between this genetic polymorphism and T2D across different areas and ethnic
groups in order to achieve a more effective therapeutic outcome [5]. This meta-analysis
was conducted to determine the significance of three rs1801133 genotypes (CT, CC, TT)
associated with the development of T2D in the global population. Moreover, considering
the interactions between genetic predisposition and modifiable lifestyle factors such as diet,
physical activity, and micronutrient intake, integrating a lifestyle medicine perspective may
enhance risk prediction and support targeted prevention strategies for T2D [6–8].

The primary objective of this study was to conduct a global-scale meta-epidemiological
analysis to investigate the associations between the rs1801133 polymorphism and the risk
of T2D across diverse multiethnic populations. The secondary objectives were to identify
genotype-specific risks, particularly the role of the CC genotype, previously considered
protective, and to explore regional variations that may inform population-specific genetic
screening and precision medicine approaches. The findings of this study aim to support
the development of targeted, genomics-informed prevention strategies, particularly in
low- and middle-income countries with a high diabetes burden and limited genetic in-
frastructure. Beyond its academic contributions, this study has substantial implications
for global health by advocating for population-specific genetic screening and precision
medicine approaches. It provides a critical foundation for policymakers and healthcare
systems to develop targeted, genomics-informed prevention strategies—especially in low-
and middle-income countries.

2. Result
2.1. Study Selection and Identification

A literature search across six databases identified 25,837 published articles. Several
articles were excluded due to ineligibility as determined by automation tools (n = 427). As a
result, 25,370 articles were excluded due to non-compliance with the specified study design
and inclusion criteria. Subsequently, numerous journals were excluded due to ineligible
data, including review articles, books, non-English articles, and articles inaccessible due to
subscription-based publication models (n = 28). Figure 1 illustrates the PRISMA flowchart.
Thus, fifteen articles were included in this systematic review and meta-analysis.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flowchart.
* Indicates the number of records identified from each database or register during the initial search
phase. ** Indicates the number of studies excluded during the screening process based on title and
abstract assessment, by inclusion criteria.

2.2. Risk of Bias Analysis

Figure 2 illustrates a comprehensive risk of bias evaluation across the nineteen studies
included in this meta-analysis using the ROBINS-I (Risk Of Bias In Non-randomised
Studies–of Interventions) tool. This visualization includes two components:

(a) Traffic Light Plot. This segment provides a detailed visual summary of the bias
assessment for each individual study across seven domains: bias due to confounding,
bias in the selection of participants, bias in the classification of interventions, bias due to
deviations from intended interventions, bias due to missing data, bias in the measurement
of outcomes, and bias in the selection of the reported results. Each domain is rated using
color-coded indicators as follows: green (low risk of bias), yellow (moderate risk of bias),
and red (serious risk of bias). Most studies exhibited a moderate risk (yellow) of bias across
the various domains, although five studies showed serious risk (red), predominantly due
to unclear reporting of confounding factors and selection processes.

(b) Summary Plot. This summary visualizes the proportion of studies across the entire
analysis for each domain of bias assessed. It clearly shows that the majority of the studies
demonstrated a moderate risk of bias in multiple domains, particularly concerning bias
due to confounding and measurement of outcomes. A small number of studies indicated
a serious risk, primarily related to unclear documentation and insufficient explanation
regarding participant selection and confounding factors. Overall, although there is some
variability in the level of bias, the studies were considered sufficiently reliable to be included
in the meta-analytic evaluation, with the acknowledgment of certain limitations in the
interpretation of aggregated results due to these biases.
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2.3. Summary of Included Studies

Table 1 provides a detailed summary of the characteristics of the 19 studies included
in this meta-epidemiological analysis, encompassing a total of 6479 participants from four
major regions: Asia, Europe, America, and Africa. The specifics of each study include the
author name, publication year, country of research origin, number of participants with
T2D, control groups (i.e., non-T2D participants), and the distribution of the three rs1801133
polymorphism genotypes (CC, CT, and TT) within each group.

Specifically, Asia is represented by nine studies from countries such as China, Bahrain,
India, Iran, and the United Arab Emirates, with T2D patient sample sizes ranging from
56 to 445 individuals and control group sizes ranging from 55 to 350 individuals. Europe
includes two studies from Russia and Bulgaria with relatively small sample sizes, consisting
of 40–45 T2D patients and 38–40 non-T2D individuals, respectively.

America contributes three studies from Brazil, with T2D patient sample sizes including
25–95 individuals and control groups comprising 16–107 individuals. Finally, Africa is
represented by five studies from Egypt and Tunisia, featuring T2D patient sample sizes of
51–67 individuals and control groups including 30–400 individuals.
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Table 1. Summary of the studies included.

Samples Genotypes
CC CT TT

No. Author Country
T2D Non-

T2D Diabetes Non-
Diabetes Diabetes Non-

Diabetes Diabetes Non-
Diabetes

Asia
1 Al-Harbi 2015 [9] Bahrain 171 188 116 135 43 47 12 6
2 Benrahma 2012 [10] Morocco 282 262 160 114 97 122 25 26
3 Chang 2010 [11] China 56 62 1 3 25 23 30 36

4 Chehadeh 2016 [12]
United
Arab

Emirates
209 169 155 132 49 27 5 10

5 Chen 2010 [13] China 158 55 57 34 74 17 27 4
6 Liu 2024 [5] China 445 272 156 110 222 135 67 27
7 Pathak 2022 [3] India 100 100 41 69 51 29 8 2
8 Poodineh 2019 [14] Iran 136 151 25 10 76 32 35 109
9 Xueyuan 2016 [15] China 180 350 28 76 86 172 66 102

Europe
10 Lapik 2021 [16] Russia 40 40 3 18 21 16 16 6
11 Nikolov 2022 [17] Bulgaria 45 38 21 30 20 5 4 3

America
12 Errera 2006 [18] Brazil 95 107 44 36 41 57 10 14
13 Pirozzi 2018 [19] Brazil 25 16 15 9 8 5 2 2
14 Soares 2008 [20] Brazil 47 77 17 30 22 38 8 9

Africa
15 Borai 2018 [21] Egypt 51 30 4 12 29 14 18 4
16 Fekih-Mrissa 2016 [22] Tunisia 160 200 56 124 102 68 104 76
17 Mehri 2009 [23] Tunisia 115 116 50 66 49 38 16 12
18 Mtiraoui 2007 [24] Tunisia 267 400 163 270 135 94 62 36
19 Settin 2015 [25] Egypt 203 311 111 156 65 135 27 20

T2D: type-2 diabetes. CC: homozygous for cytosine, i.e., the individual carries two copies of the C allele.
CT: heterozygous, i.e., the individual carries one C allele and one T allele. TT: homozygous for thymine, i.e., the
individual carries two copies of the T allele.

The distributions of the CC, CT, and TT genotypes are clearly presented, highlighting
variations in genotype frequencies across different populations and regions. This infor-
mation is crucial for subsequent analysis aimed at determining the contribution of each
genotype to the risk of T2D and comparing regional and global population risk differences.
These data form an essential foundation for understanding epidemiological patterns and
the interplay between genetic and environmental factors in the pathogenesis of T2D.

2.4. Analysis of rs1801133 Polymorphism

The total sample size included in this study was 6,479 participants. This study investi-
gated how the rs1801133 polymorphism gene is related to T2D risk on a global scale. The
results are shown in Figures 3–5. Based on this analysis, the CC genotype was shown to be
highly contributory to T2D risk relative to the CT and TT genotypes. The results of the CC
vs. CT dominant genetic model were OR 95% CI = 0.63 (0.46–0.87); p = 0.005; the CC vs. TT
genetic recessive model yielded OR 95% CI = 0.59 (0.38–0.91); p = 0.02; and the CT vs. TT
codominance genetic model gave OR 95% CI = 0.95 (0.65–1.37); p = 0.78.

Subgroup analysis revealed that the CC genotype is associated with an increased
risk of T2D across several ethnicities. The results of the CC vs. CT comparison for Africa
showed OR 95% CI = 0.49 (0.25–0.96); p = 0.04, and for Europe, OR 95% CI = 0.15 (0.06–0.37);
p < 0.0001. In the CC vs. TT comparison for Africa, OR 95% CI = 0.49 (0.25–0.96); p < 0.00001.
No statistically significant differences were observed in subgroup analysis for either the CT
or TT genotype.
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3. Discussion
The MTHFR gene plays a crucial role in folic acid metabolism, facilitating the conver-

sion of homocysteine to methionine, which is further processed into S-adenosylmethionine
(SAM), a key methyl donor in DNA methylation (Figure 6) [26]. It was found that the
rs1801133 polymorphism disrupts homocysteine metabolism, leading to elevated plasma
homocysteine levels, which are associated with an increased risk of T2D (Figure 6) [27].
Individuals carrying the T allele of rs1801133 also experience impaired folate metabolism,
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resulting in higher homocysteine and lower folate levels, which may contribute to metabolic
dysfunction and diabetes susceptibility [28,29].
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accumulation. Elevated homocysteine modifies insulin receptor processing and induces NETosis,
promoting insulin resistance and vascular inflammation.

It was found that the rs1801133 polymorphism, with the CC, CT, and TT genotypes, is
strongly associated with T2D. Specifically, the TT and CT genotypes are considered risk
factors for the disease, whereas the CC genotype is consistently linked to a normal, healthy
phenotype [4]. This occurs because individuals with the CT or TT genotypes have higher
levels of fasting plasma glucose, homocysteine, and tumor necrosis factor alpha (TNF-α)
relative to those with the CC genotype [5]. Surprisingly, our meta-analysis shows that the
CC genotype is a risk factor for T2D, whereas other research studies and meta-analyses
have indicated that either the CT or TT genotype is associated with an increased risk of
T2D [4,30].

TNF-α and fasting plasma glucose are widely recognized in the pathophysiology of
T2D, whereas the role of homocysteine is less well known. Homocysteine impacts the
insulin system by preventing the cleavage of the proinsulin receptor (pro-IR), resulting
in insulin resistance. This is achieved by modifying the cysteine-825 of pro-IR in the
endoplasmic reticulum (ER), disrupting disulfide bond formation. The homocysteine-
modified pro-IR (C-Hcy) then interferes with interactions with the Furin protease in the
Golgi apparatus, impairing the cleavage process required to activate pro-IR [31].

In addition to its effects on insulin signaling, elevated homocysteine levels (hyperho-
mocysteinemia) contribute to the formation of neutrophil extracellular traps (NETs). Under
hyperglycemic conditions, homocysteine further elevates calcium levels and mitochondrial
superoxides, accelerating the process of NETosis. This exacerbates vascular complications
by promoting inflammation and causing damage to blood vessel walls [32].
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3.1. SNP Correlation with Type 2 Diabetes

A Single-Nucleotide Polymorphism (SNP) is a genetic variation at a single nucleotide
position in DNA, arising from mutations that create base-pair differences. These variations
are orthologous, inherited from a common ancestor across generations [33]. Such variations
in SNPs can be found in different regions of genes, including promoters, exons, introns,
and untranslated regions (UTRs), each of which influences gene expression and function in
distinct ways. SNPs in promoter regions can modify transcription factor binding, DNA
methylation, and histone modifications, thereby regulating gene activity. Exonal SNPs are
categorized as synonymous, such that they do not change amino acid sequences but can
influence mRNA stability and translation, or non-synonymous, in which case they directly
alter protein structure and function. Intronal SNPs play a role in mRNA splicing, genomic
imprinting, and the regulation of long non-coding RNAs (lncRNAs), impacting gene
expression at the transcriptional level. SNPs in UTRs influence mRNA stability, translation
efficiency, and microRNA (miRNA) binding, further modulating gene expression. These
genetic variations contribute to individual differences in traits, disease susceptibility, drug
responses, and overall genetic diversity [34].

SNPs are widely studied due to their significant role in influencing genetic susceptibil-
ity to complex diseases, including T2D. Since T2D is a polygenic disorder influenced by
multiple genetic and environmental factors, SNPs play a crucial role in key biological path-
ways related to insulin secretion, insulin resistance, and glucose metabolism [35]. Several
SNPs have been associated with T2D susceptibility, particularly within the ADIPOQ gene,
which regulates adiponectin levels and insulin sensitivity. Notable SNPs, such as rs2241766
and rs1501299, influence adiponectin expression, whereas rs266729 and rs17300539 have
been extensively studied for their correlation with insulin resistance and an increased risk
of T2D [36].

3.2. Dominant Genotype

The results of our analysis indicate that the risk of developing T2D is most prevalent
in the Americas, followed by Asia. The rising prevalence of T2D across the Americas is
driven by a combination of obesity, poor dietary habits, sedentary lifestyles, socioeconomic
disparities, genetic predisposition, and environmental factors. The high obesity rates in
Latin America (over 60% of adults classified as overweight or obese) and North America
(40% of adults classified as overweight or obese) significantly contribute to insulin resistance.
The shift from traditional, nutrient-rich diets to processed, high-sugar foods, coupled with
a decline in physical activity due to increasing urbanization and the known increase in
desk jobs, has worsened metabolic health across the region [37].

3.3. Other Contributing Factors

Epigenetics is defined as a molecular process that modifies reversible gene expression
without associated changes in the DNA coding sequences, such as DNA methylation,
microRNA, and histone modification [38]. Several external factors (e.g., nutrition, stress,
and toxins) are also thought to play vital roles in regulating gene expression. These factors
serve as both risk factors and interventional options for gene expression.

It has been shown that bioactive dietary components influence the pathway of DNA
methylation by altering the substrates and cofactors necessary for this process, often through
modification of the enzyme activity controlling the one-carbon cycle or by transforming DNA
demethylation activity [39]. Abnormal methylation variants for controlling food intake are
associated with high fat and sugar intakes; this process is thought to be involved in the
development of obesity [40]. A mouse model study focusing on a choline-and-folate-deficient
(CFD) diet has demonstrated an alteration in hepatic miRNAome profiles. The mice showed
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pathophysiological and histopathological changes resembling features of human nonalcoholic
fatty liver disease. This diet induced the miRNAS expression of miR-134, miR-409-3p, miR-410,
and miR-495, together with the activation of hepatic progenitor cells and fibrogenesis in mice
with NAFLD-like injury [41]. On the other hand, epigenetic nutrition emerges as a novel
alternative to prevent chronic non-communicable diseases. For example, phenol-rich diets are
associated with preventing obesity. Another mouse model study assessed the methylation
profile of genes involved in adipose tissue triacylglycerol metabolism induced by obesogenic
diets versus pterostilbene (a phenol compound known as an antioxidant, commonly found
in berries). Obesogenic diets, such as a high-fat and high-sucrose diet, demonstrate an
up-regulation of fatty acid synthase (fasn), adipose tissue triglyceride lipase (pnpla2), and
peroxisome proliferator-activated receptor γ (pparg). In contrast, pterostilbene reverts the
changes induced by an obesogenic diet [42].

Additionally, emotional stress has been shown to correlate with the alteration of
certain epigenetic processes. A trial using zebrafish models has demonstrated how an un-
predictable chronic stressor (UCS) leads to the expression of the pro-inflammatory cytokine
genes IL-1β and TNF-α, the anti-inflammatory cytokine IL-10 (negative feedback from
the immune system), a reduction in cFOS gene expression, and neuro-inflammation [43].
Furthermore, a study using a xenograft model with transplanted gastric cancer tissue has
revealed that chronic stress stimulates the β-adrenergic receptor (ADRB), which leads to
the overexpression of VEGF, MMP-2, MMP-7, and MMP-9 in transplanted tumor tissue.
Subsequently, this overexpression correlated with tumor size, histological grade, and lymph
node metastasis in gastric cancer [44].

Epigenomic alterations are also linked to environmental factors, such as ultraviolet
(UV) radiation, γ rays, and genotoxic chemicals. UV radiation is able to modify DNA and
RNA methylation patterns. A systematic review on studies evaluates the effect of UV irra-
diation on HaCat cells (normal human keratinocyte cell line derived from human skin) for
the site-specific methylation of p16 and RASSF1 (tumor suppressor genes), demonstrating a
hypermethylated profile and decreased transcript levels of tumor suppressor genes, which
further contributes to the progression of cellular and tissue degeneration [45].

From both a clinical and public health perspective, the findings of this meta-
epidemiological analysis have direct implications for risk assessment and intervention
strategies in T2D management. Because rs1801133 polymorphisms interact with envi-
ronmental and lifestyle factors—such as diet quality, folate intake, physical activity, and
obesity—it becomes crucial to integrate them into a lifestyle medicine perspective [6–8].
Epidemiological data suggest that regions with a higher prevalence of T2D often exhibit
concurrent trends of sedentary behavior and low dietary folate intake [46–48], which
could exacerbate the functional consequences of MTHFR genetic variants. Consequently,
genotype-based risk stratification may inform personalized lifestyle interventions, particu-
larly those targeting homocysteine metabolism through folate-rich nutrition and physical
activity. Moreover, the promotion of nutrigenomics-informed prevention, especially in
populations with a high prevalence of the CC genotype, could help to mitigate the genetic
predisposition toward T2D in a cost-effective and sustainable manner.

The strengths of this study include its large, multiethnic sample size and compre-
hensive subgroup analysis, providing robust and generalizable findings. Additionally,
the detailed exploration of molecular pathways enhances the biological plausibility and
clinical relevance of the results obtained, supporting the advancement of precision medicine
strategies in diabetes prevention.
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3.4. Limitation

This study has several limitations that should be acknowledged in order to better inter-
pret its findings. First, although this meta-analysis included diverse populations, many of
the original studies lacked allele-level stratification, making it difficult to determine which
specific allele (C or T) plays the predominant role in conferring genetic susceptibility to
T2D. Second, a substantial proportion of the studies considered employed cross-sectional or
case–control designs, which are inherently prone to selection bias and may not adequately
account for temporal relationships or residual confounding. Third, differences in genotyp-
ing methods, the diagnostic criteria used for T2D, and sample sizes across studies could
contribute to heterogeneity and limit the comparability of results. Fourth, environmental
and lifestyle confounders—such as diet, folate intake, and physical activity—were rarely
adjusted for in the primary studies, although these are known to modify MTHFR function
and T2D risk. Finally, although subgroup analyses were conducted, the relatively small
number of studies per continent reduced the statistical power of the analyses, especially
for Europe and America. Despite these limitations, the overall risk of bias was assessed
as moderate, and the consistency of findings across multiple populations strengthens the
reliability and generalizability of the meta-epidemiological analysis performed.

4. Method
This systematic review and meta-analysis was meticulously conducted according to

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines, ensuring rigorous methodological quality and transparency throughout the review
process [49]. Additionally, the review protocol underwent external peer review and was
officially registered in the International Prospective Register of Systematic Reviews (PROS-
PERO), which is managed by the National Institute for Health Research (NIHR) under
registration number CRD420251009189, further emphasizing our adherence to international
standards for systematic review protocols.

4.1. Aims and Research Questions

The primary aim of this study was to investigate the associations between the rs1801133
genetic polymorphism and the risk of T2D across global multiethnic populations using a
meta-epidemiological approach. The secondary aims were to examine regional differences in
genotype distribution and diabetes risk, to evaluate which genotype (CC, CT, or TT) makes
the most significant contribution to T2D susceptibility, and to assess the implications of these
findings for personalized prevention strategies in different population groups. Based on these
objectives, this study was guided by the following research questions:

1. What is the overall association between the rs1801133 polymorphism and the risk of
T2D in the global population?

2. Does the contribution to T2D risk differ between the CC, CT, and TT genotypes?
3. How does the strength of association vary across different continents (Asia, Africa,

Europe, and America)?
4. What are the potential implications of these genetic findings for population-specific

screening and lifestyle-based prevention strategies?

4.2. Eligibility Criteria

The inclusion and exclusion criteria were defined prior to the literature search in order
to improve the specificity of this review. The inclusion criteria were met by randomized
controlled trials and non-randomized studies. The PICO framework underpins the inclu-
sion criteria, which are as follows: (1) population: adults ≥ 18 years old, at risk of T2D
(including any specific factors corresponding to the risk, such as high glucose intake, obe-



Int. J. Mol. Sci. 2025, 26, 3987 13 of 17

sity, and metabolic syndrome); (2) intervention: all rs1801133 genotype variants (dominant,
recessive, co-dominant); (3) comparison: patients with no risk of T2D and healthy patients;
and (4) outcome: T2D. The following were among the exclusion criteria: (1) patients with
comorbidities such as gestational diabetes; (2) investigations and trials conducted on non-
human subjects; (3) clinical trials using a crossover design; (4) non-English publications;
and (5) gray literature.

4.3. Search Strategy and Screening

The literature search was performed independently by five researchers (N.A., Y.Y.P.T.,
A.F.A., A.N., and M.R.A.) until 2 March 2025 using the PubMed, ScienceDirect, Springer-
Link, Taylor & Francis, ProQuest, and Sage Journal databases. The primary keywords
used in this study were (“Diabetes Mellitus” OR “DM” OR “DM Type 2” OR “Type 2
Diabetes”) AND (“rs1801133” OR “C677T” OR “MTHFR” OR “Methylenetetrahydrofolate
Reductase”); these were modified based on the features of each database.

The article screening process was performed systematically in two distinct stages to
ensure accuracy and comprehensiveness in the selection of relevant studies. The initial
stage involved a preliminary review of abstracts and titles to efficiently exclude studies that
did not align with the predefined inclusion criteria. This was followed by an exhaustive
and detailed assessment of the full texts of the remaining articles to rigorously confirm their
eligibility. Two independent reviewers (N.A. and Y.Y.P.T.) conducted this evaluation to min-
imize bias. In instances where discrepancies or ambiguities arose, a third set of reviewers
(F.N., R.R.T., and F.M.H.) served as arbiters, collaboratively resolving any disagreements
through consensus discussions, thereby guaranteeing a transparent, unbiased, and rigorous
research selection process.

4.4. Data Extraction and Analysis

Five authors (Y.Y.P.T., N.A., F.N., A.F.A. and A.N.) independently extracted data from
the chosen studies into a pre-formatted Google Sheet. This page was prepared to capture
crucial study characteristics, including authors, publication year, study design, sample
size, patient demographics, risk factor for diabetes, and the type of genotype leading to
T2D. The extracted data were then cross-checked by the authors to guarantee accuracy and
consistency. Discrepancies in data extraction were resolved by consensus and discussion.
The authors of original studies were consulted for clarification or supplemental information
as required.

4.5. Risk of Bias Assessment

A risk of bias assessment was conducted on the selected studies utilizing the “Risk
Of Bias In Non-randomised Studies–of Interventions” ROBINS-I [50]. The other authors
supervised this process. This instrument encompasses seven domains, namely bias due to
confounding, bias arising from the measurement of the exposure, bias in the selection of
participants for the study (or for the analysis), bias in the classification of the exposure, bias
due to missing data, bias in the measurement of outcomes, and bias in the selection of the
reported results. The domains were categorized into three groups according to the quality
of the study: low, moderate, and serious risk of bias.

4.6. Quantitative Analysis

Using Review Manager 5.4, this meta-analysis assessed data using the odds ratio,
which includes dichotomous data with a 95% CI (0.05). According to the analysis of these
results, random-effects models were used to account for significant heterogeneity and
variances in the length of the research. The inverse variance model was used as a statistical
technique. Furthermore, I2 was used to measure the proportion of total variance attributable
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to heterogeneity as opposed to chance, and this was applied to quantify heterogeneity. High
heterogeneity in the included studies is indicated by an I2 value larger than 50%. To evaluate
each group’s effect measure and determine the most successful intervention, subgroup
analysis was performed on several types of interventions (CC, CT, or TT genotype). To
assess the significance of the subgroup analysis results, a significance test was performed
among the subgroups; a p-value of less than 0.05 was considered significant.

4.7. Intervention of Interest

In recent years, researchers have increasingly focused on elucidating the relationship
between genetic polymorphisms and T2D, with particular attention paid to the rs1801133
variant. This review aims to provide a comprehensive analysis of the rs1801133 poly-
morphism in individuals diagnosed with T2D, explicitly examining the distribution and
potential implications of the CC, CT, and TT genotypes.

5. Conclusions
The conclusions of this comprehensive meta-epidemiological study reveal that the

rs1801133 genotype (MTHFR C677T) significantly influences the risk of developing type 2
diabetes mellitus (T2D) globally. This analysis of 19 studies, comprising 6479 participants
from diverse ethnic groups across Asia, Africa, Europe, and America, demonstrates that,
unexpectedly, the CC genotype is associated with a higher risk of developing T2D relative
to the CT and TT genotypes. Subgroup analysis confirms that the CC vs. CT genotype
is associated with an increased risk of T2D in both Africa and Europe. In the CC vs. TT
comparison, an increased risk was observed in Africa, while no increased risk was found
for the CT and TT genotypes

This study also elucidates the molecular mechanisms underlying these associations,
notably through disruptions in homocysteine metabolism leading to insulin resistance and
vascular inflammation. Furthermore, epigenetic factors, environmental influences, and
lifestyle behavior add further complexity to the interactions between genetic predisposition
and diabetes risk. These findings emphasize the importance of population-specific genetic
screening and the necessity of implementing precision medicine strategies to achieve a
more effective preventive intervention for T2D. Further research is recommended to explore
diabetes risk based on specific alleles of the rs1801133 genotype, taking into consideration
environmental and epigenetic factors and their interactions with genetic predispositions.
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