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Abstract: Cheyletus malaccensis Oudemans is a predatory mite inhabiting grain depots in China.
The relationship between temperature and the population growth rate of C. malaccensis is useful for
predicting its population dynamics. Age-stage, two-sex life tables of the predator, C. malaccensis,
reared on Acarus siro were constructed under laboratory conditions at 22, 24, 28, 30, and 32 ◦C,
75% relative humidity, and a 0:24 h (L:D) photoperiod. Increasing temperature shortened the
development time of the immature stages. The complete generation time of C. malaccensis ranged
from 11.10 d to 27.50 d. Life table parameters showed that 28 ◦C was the optimum temperature for
the growth and development of C. malaccensis; populations could increase rapidly at this temperature.
The highest net reproductive rate (R0 = 290.25) and highest fecundity (544.52) occurred at 28 ◦C.
Temperature significantly affected the intrinsic rate of increase (r), fecundity, and finite rate of increase
(λ). The values of age-specific fecundity (high to low) were 28 ◦C > 24 ◦C > 30 ◦C > 32 ◦C > 22 ◦C,
while the values of age-stage-specific fecundity had the same trend.

Keywords: Cheyletus malaccensis Oudemans; biological control; age-stage two-sex life table

1. Introduction

Cheyletus malaccensis Oudemans is a predator mite species in China. It preys on acarid grain mites
and small arthropods, such as the eggs and first-instar larvae of stored grain pests [1–3]. C. malaccensis
populations can be self-sustaining for limited time periods by cannibalism [4,5]. C. malaccensis is the
dominant predaceous mite species in grain depots [6–10] and provides biological control of common
pests in stored grain [11]. C. malaccensis development includes five stages: egg, larvae, protonymph,
deutonymph, and adult. The deutonymph is absent in males. Virgin females always produce males,
whereas fertilized females produce both male and female progeny [12,13].

Temperature is an important component of predator–prey interactions, as it influences pest and
natural enemy population dynamics such as developmental time [14], life span [15], reproductive
rate [16], and control efficiency [17–19]. Temperature affects the survival and development of mites [20],
and seasonal temperature variations also affect predator–prey interactions [12]. For C. malaccensis, the
female life span (egg to adult) is longer (20–23 d) than the male life span (15–17 d) at 25 ◦C [21]. Palyvos
and Emmanouel [12] studied the life history of C. malaccensis at six constant temperatures: 17.5, 20, 25,
30, 32.5, and 35 ◦C. The life span was 53.0 d at 17.5 ◦C, and 15.4 d at 35 ◦C. Toldi et al. [22] found that
fecundity was highest at 25 ◦C with the value of 415.62 ± 24.78 eggs/female, and lowest at 20 ◦C. Thus,
temperature has a significant influence on the development and reproduction of C. malaccensis [14,23].

Insects 2020, 11, 181; doi:10.3390/insects11030181 www.mdpi.com/journal/insects

http://www.mdpi.com/journal/insects
http://www.mdpi.com
http://dx.doi.org/10.3390/insects11030181
http://www.mdpi.com/journal/insects
https://www.mdpi.com/2075-4450/11/3/181?type=check_update&version=3


Insects 2020, 11, 181 2 of 13

Life tables can be used for predicting the population levels of pests and predators as well as the
efficiency of biological control [24]. Insect-related life table technology is a technical method used
to study population dynamics [16,25,26]. However, the traditional life table of C. malaccensis only
addresses the females, while ignoring the males, life stage differentiation, and variable developmental
rates. This is a limited practical application of the life table. The age-stage, two-sex life table is a
superior alternative since it considers males and different age individuals in the population [27,28]
and systematically studies the growth, development, survival rate, reproduction, and pesticide
susceptibility of males and females. To quantify the effect of temperature on the development of
C. malaccensis, life stages of C. malaccensis were held at constant temperatures and the life history
raw data were analyzed based on an age-stage, two-sex life table. The age-stage, two-sex life table
technology has also been used to predict the population growth and predation rate of other natural
enemies [29].

To understand the relationship between temperature and the population growth rate of
C. malaccensis, we constructed age-stage, two-sex life tables of C. malaccensis fed on Acarus siro
Linnaeus at different temperatures. Specifically, we studied (a) the life history of C. malaccensis at
22, 24, 28, 30, and 32 ◦C and 75% RH, and (b) the influence of temperature on the development and
reproduction of C. malaccensis. The results provided basic information for biological control programs
that use C. malaccensis.

2. Materials and Methods

2.1. Insect Rearing

C. malaccensis was initially collected from Haikou, Hainan Province, China and reared at the
Institute of Grain Storage & Logistics Academy of National Food and Strategic Reserves Administration
at 28 ◦C, 75% RH, and a photoperiod of 0:24 h (L:D). The mites were identified based on morphological
characteristics [1].

Acarus siro was provided by the Crop Research Institute, Prague, Czech Republic and was reared
on whole wheat flour, under constant conditions (28 ◦C, 75% RH, and 0:24 (L:D)).

2.2. Life Table Study of C. Malaccensis

Fifty female C. malaccensis adults were randomly selected and the mites were reared in plastic
micro rearing cells (20 × 20 × 2 mm) at 28 ◦C and 75% RH, with A. siro as prey food. In the center of
each block, a conical shaped hole was drilled. A piece of black filter paper (20 × 20 mm) was attached
to the lower surface of the cell and a suitable glass cover slip was placed on its upper surface (Figure 1).

After 24 h, 50 eggs were collected and designated as the F1 generation for further study.
To determine the optimum development temperature, experiments were conducted at five temperatures
(22, 24, 28, 30, and 32 ◦C), with 75% RH. The F1 generation eggs from each adult were randomly
selected as a cohort to construct the corresponding life table.

Eggs were individually placed inside blocks and subjected to different temperatures (22, 24, 28,
30, and 32 ◦C) at 75% RH. A. siro were used as food and 15–25 A. siro were added daily for each
C. malaccensis. Each block was checked daily for eggs. The egg incubation period, development times
of immature mites, survival rates of larvae and adults, and fecundity of females (number of eggs laid)
were recorded daily.
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2.3. Life Table Analysis

The raw data for C. malaccensis individuals were analyzed on the basis of the age-stage, two-sex
life table theory [27,28] using a TWOSEX-MSChart-2018.11.01 [30] (http://140.120.197.173/Ecology/

prod02.htm).
Because of the absence of male deutonymphs, all nymphal stages were referred to as “nymph”.

The four stages considered in the growth and development of C. malaccensis were egg, larva, nymph,
and adult. The age-stage-specific survival rate (Sxj) (probability that a newly laid egg will survive to
age x and stage j), the age-stage-specific fecundity ( fxj) (number of hatched eggs produced by female
adult at age x, and j is the life stage number (j = 4), the age-specific survival rate (lx) (probability that a
newly laid egg will survive to age x), the age-specific fecundity curve (mx) (the average fecundity of
the individuals), and the age-stage life expectancy (exj) (expected time that an individual of age x and
stage j is expected to live) were calculated as follows [31,32]:

lx =

β∑
j=1

Sxj (1)

mx =

∑β
j=1 Sxj fxj∑β

j=1 Sxj

(2)

exj =
∞∑

i=x

β∑
y= j

S′iy (3)

The net reproductive rate (R0), the mean generation time (T), the intrinsic rate of increase (rm),
and the finite rate of increase (λ) were also calculated as follows [27]:

R0 =
∑

lxmx (4)

T =
ln R0

rm
(5)

http://140.120.197.173/Ecology/prod02.htm
http://140.120.197.173/Ecology/prod02.htm
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∞∑
x=0

e−rm(x+1)lxmx = 1 (6)

λ = erm (7)

2.4. Statistical Analysis

The raw life history data for C. malaccensis obtained for each of the temperature regimes were
entered separately into a Microsoft Excel 2016 data sheet. One-way ANOVA was used to study the
effect of temperature on the development time of immature stages and the longevity of C. malaccensis.
The means, standard errors, and variances of the population parameters were estimated using the
bootstrap technique [33–35] (10,000 samples), which is contained in the TWOSEX-MSChart program.
Differences among different temperatures were compared using the Tukey–Kramer procedure. Excel
2016 was used to create Sxj, fx4, lx, mx, lxmx and exy curves.

3. Results

3.1. Life History Study

C. malaccensis females and males completed development from egg to adult emergence at constant
22 to 32 ◦C temperatures (Table 1). The egg incubation period of C. malaccensis ranged from 1.90 to
5.25 d for females, and from 1.80 to 5.43 d for males. The shortest developmental time for the egg stage
was at 32 ◦C and the longest was at 22 ◦C in both females and males. The egg incubation duration
and the larva duration of females were significantly longer at 22 ◦C than at the other temperatures
with similar results in males (p < 0.05). The nymph period was not significantly different (p < 0.05)
at the five different temperatures, with the shortest developmental time occurring at 32 ◦C and the
longest at 22 ◦C in both females and males. The life history, both in females and males, exhibited a
significant difference at 22 ◦C compared to the other temperatures (p < 0.05); it ranged from 11.10 to
27.50 d (females) and 8.80 to 22.71 d (males). The development time of male adults was shorter than
females within the experimental temperature range and the development duration decreased with
increased temperature.

Within the temperature range studied, the development time of females first increased and
then decreased (Figure 2). Development time was >50 d at 22–28 ◦C, and longest (66 d) at 28 ◦C.
The development time of males decreased gradually in the range of 22–32 ◦C, with a maximum
of 46.71 d at 22 ◦C. Based on the total duration, males developed more quickly than females at
all temperatures.

These results showed that increasing the temperature generally shortened the development time
of C. malaccensis. Considering the fecundity and adult period, 24–28 ◦C was the ideal temperature
range for reproduction and biological control use of C. malaccensis.
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Table 1. Development time of C. malaccensis reared at different temperatures under laboratory conditions (M ± SD) (d).

Temperature/◦C
Egg Larva Protonymph Deutonymph Life history Adult

Female Male Female Male Female Male Female Male Female Male Female Male

22 5.25 ± 0.25a 5.43 ± 0.20a 9.75 ± 0.48a 10.00 ± 1.02a 4.25 ± 0.95a 5.29 ± 0.61a 5.25 ± 0.95a — 27.50 ± 2.18a 22.71 ± 1.46a 54.00 ± 9.75a 46.71 ± 6.70a
24 3.00 ± 0.00b 2.40 ± 0.15b 4.30 ± 0.33b 6.00 ± 0.68b 4.70 ± 0.33a 5.10 ± 0.31a 5.30 ± 0.33a — 20.30 ± 0.33b 15.90 ± 0.73b 57.00 ± 21.59a 40.80 ± 5.69ab
28 2.30 ± 0.29b 1.80 ± 0.40b 4.30 ± 0.18b 4.20 ± 0.17bc 3.30 ± 0.18a 3.30 ± 0.21a 4.60 ± 0.30a — 17.50 ± 0.48b 11.30 ± 0.33c 66.00 ± 2.96a 21.80 ± 1.85c
30 2.40 ± 0.24b 2.00 ± 0.58b 3.40 ± 0.51b 3.00 ± 0.58c 2.80 ± 0.37a 3.33 ± 0.33a 3.00 ± 0.55a — 14.60 ± 0.40b 10.33 ± 1.20bc 16.00 ± 3.97b 16.00 ± 5.29bc
32 1.90 ± 0.20b 1.80 ± 0.15b 3.60 ± 0.34b 3.60 ± 0.18c 2.70 ± 0.24a 2.40 ± 0.18a 3.00 ± 0.29a — 11.10 ± 0.39b 8.80 ± 0.15c 17.60 ± 1.58b 13.20 ± 1.05c

Note: Data in the table are represented as mean ± SE. The means followed by different letters in the same columns are significantly different at the 0.05 level based on one-way ANOVA
and Tukey’s HSD multiple range test.
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3.2. Population Parameters

Table 2 shows the population parameters of C. malaccensis, based on the two-sex life table theory
and analysis technology, at 22, 24, 28, 30, and 32 ◦C with 75% RH. The mean generation time and life
expectancy of C. malaccensis decreased gradually with an increased temperature. The lowest values
at 32 ◦C were 12.49 d (mean generation time) and 22.15 d (life expectancy). The maximal R0 (290.25)
occurred at 28 ◦C. The rm of C. malaccensis increased with increasing temperature. The minimum was
0.12 at 22 ◦C, and the maximum was 1.4 at 32 ◦C. λ showed the same tendency and ranged from 1.12
to 1.40.

Table 2. Population parameters of C. malaccensis at different temperatures.

Temperature/◦C T R0 rm λ Fecundity Life
Expectancy

22 34.80 ± 2.83cd 77.42 ± 32.61ab 0.12 ± 0.02d 1.13 ± 0.02d 216.20 ± 54.03a 65.80 ± 5.75c
24 30.30 ± 1.97c 204.75 ± 60.33b 0.18 ± 0.02c 1.19 ± 0.02c 526.15 ± 6.85cd 59.51 ± 4.48c
28 24.51 ± 0.66b 290.25 ± 70.58b 0.23 ± 0.15b 1.26 ± 0.19b 544.52 ± 13.47c 56.91 ± 6.68c
30 14.37 ± 1.31a 50.28 ± 15.79a 0.27 ± 0.03ab 1.31 ± 0.04ab 93.41 ± 17.66b 27.55 ± 2.38b
32 12.49 ± 0.65a 67.03 ± 18.02a 0.33 ± 0.03a 1.40 ± 0.04a 148.96 ± 16.10a 22.15 ± 1.22a

Note: Data in the table are represented as mean ± SE. The means followed by different letters in the same columns
are significantly different at the 0.05 level based on one-way ANOVA and Tukey’s HSD multiple range test. R0 net
reproductive rate, T mean generation time, rm intrinsic rate of increase, λ the finite rate of increase.

3.3. Life Table Analysis

Because of the absence of deutonymphs in males, the nymphal stages were referred to as “nymph”.
Figure 3 shows age-stage-specific survival rates (Sxj), which indicate the rate of individuals surviving
to age x and stage j. The Sxj curves varied greatly at different temperatures and overlaps were observed
in the Sxj curves, which demonstrated the variable developmental rates among individuals. The eggs
of C. malaccensis hatched at all of the temperatures, and the incubation time decreased significantly with
an increased temperature. The mean generation time of C. malaccensis shortened with an increasing
temperature, from 100 d at 22 ◦C to 31 d at 32 ◦C. Mite survival was highest at 28 ◦C and lowest at
32 ◦C. The results showed that there were overlapping generations in the growth and development of
C. malaccensis. Excessively high temperature had adverse effects on the growth and development of
C. malaccensis.
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Figure 4 summarizes the age-specific survival rate (lx), the age-specific fecundity (mx), the
age-specific reproductive value (lxmx), and the age-stage-specific fecundity ( fx4) of C. malaccensis
at different temperatures. The age-specific survival rate (lx) simplified the survival of different
development periods and did not consider differences among individuals. At 22 ◦C, the age-specific
survival rate (lx) of C. malaccensis showed a trend from 0 to 56 d, and slowly decreased to 80%. After
56 d, the survival rate decreased rapidly from 80% to 0% (Figure 4A). At 24 ◦C, the survival rate of
C. malaccensis decreased slowly to 88% from 0 to 43 days and then rapidly decreased to 0% at the age of
95 d (Figure 4B). At 28 ◦C, the age-specific survival rate decreased from 100% at 21 d to 80% at 31 d. It
then rapidly decreased to 40% at 75 d and 0% at 88 d (Figure 4C). The age-specific survival rate curves
of 30 ◦C and 32 ◦C showed the same trend of steady decline during the early development stages and
then rapid decline near the end of development (Figure 4D,E).
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At the experimental temperatures, the mx curve had similar trends with the fx4 curve. At 22 ◦C,
the reproductive peaks of fx4 and mx occurred at the age of 30 d (Figure 4A), whereas the reproductive
peaks occurred at 63 d at 24 ◦C (Figure 4B). At 28 ◦C, the peak of fx4 occurred at 21 d, while the mx

curve reached a reproductive peak at 50 d (Figure 4C). The fx4 curves reached reproductive peaks early
in the oviposition periods (16 d under 30 ◦C and 11 d under 32 ◦C) (Figure 4D,E). The highest peak
values of the fx4 and mx curves were at 28 ◦C, whereas the lowest values were at 22 ◦C, with peak
values (high to low) at 28 ◦C > 24 ◦C > 30 ◦C > 32 ◦C > 22 ◦C. These results showed that the fecundity
of C. malaccensis was highest and the population growth was most rapid at 28 ◦C.

Figure 5 shows the age-stage specific life expectancy (the time that an individual of C. malaccensis
of age x and stage j is expected to live) (exj) of C. malaccensis at different temperatures. The (exj) of
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C. malaccensis gradually decreased to 0 as age increased. At 22, 24, 28, and 32 ◦C, the exj of female
adults of C. malaccensis was higher than male adults during the whole development stage. At 30 ◦C,
the exj of males was lower than females except for the ages of 18–26 d, but higher than females in
other development periods. The exj curve decreased synchronously in both males and females at
30 ◦C. The exj at 28 ◦C was slightly higher than the other temperatures. The exj values of the initial
reproducing C. malaccensis fed on A. siro were 65.79, 59.50, 56.93, 27.54, and 22.15 at 22, 24, 28, 30, and
32 ◦C, respectively, which was also the average life expectancy of the individuals. The life expectancies
of C. malaccensis at 30 and 32 ◦C were about 50% of those at 22, 24, and 28 ◦C. These results show that
temperatures from 22 to 28 ◦C were best for the growth and development of C. malaccensis.Insects 2020, 11, x 10 of 14 
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4. Discussion

4.1. Temperature

Temperature is the most important environmental factor determining the development and
reproduction of arthropods [12,36], and temperature affects the immature time, longevity, fecundity,
and survival rates of arthropods [37,38].

The immature period development time decreased with increased temperature, which is
consistent with other reports describing the effects of temperature on the growth and development of
C. malaccensis [13,15,21,22]. The immature period development was slower compared to the findings
of Palyvos and Emmanouel [15] at 25 ◦C and 30 ◦C, using Tyrophagus putrescentiae as prey. The life
history was shorter than that reported by Saleh [21] when the growth temperature was 25 ◦C and
Aleuroglyphus ovatus was the prey. These differences may be due to the different prey used and may
be related to prey quantity and nutrition quality provided by the prey. In addition, the efficiency of
detecting and accessing can also cause differences in the results. Thus, it would be useful to study
the effects of alternative prey for C. malaccensis. The predatory potential of cheyletidae mites has
been reported, and mass rearing of cheyletidae mites in the laboratory has been described [18,39].
Many studies on the predator Cheyletus eruditus (Schrank) have been published [39–41]. Compared to
C. eruditus, C. malaccensis is better adapted to higher temperatures, and therefore may have greater
potential for biological control in warmer grain storage environments. As temperature increases,
growth increases up to an optimum point after which higher temperatures begin to have negative
effects on development; this observation is consistent with this study. When the temperature exceeded
28 ◦C, the adult lifespan decreased rapidly in both males and females. High temperature also had
negative effects on the development of C. malaccensis. The environments of different ecological regions
vary greatly in China. In actual application, it is best to make changes in predator numbers according
to the different seasons and the different geographical area. To establish the predator population before
a pest outbreak, and to ensure it will be sufficient for successful biological control, predatory mites need
to be released prior to the development of the pest problem. In addition, it is advisable to make a safety
evaluation of different predatory mites and to establish an optimum ratio of predators to their prey.

The adult is the most predatory stage of C. malaccensis [14]. We found that an optimal feeding
temperature can shorten the development time of C. malaccensis. The development time was >50 d
during a temperature range of 22 to 28 ◦C, with the longest development time being 66 d at 28 ◦C.
Considering fecundity and duration of the adult period, 24–28 ◦C is an ideal temperature range for
reproduction and growth of C. malaccensis.

4.2. Life Table

The intrinsic rate of increase (rm) includes the population survival rate, duration of development,
and fecundity. It is an important life table parameter and reflects the population growth capability
at different temperatures [42]. Life table parameters can predict the future development trend of the
population. Based on the two-sex life table theory and analysis technology, age-stage two-sex life
tables of C. malaccensis fed on A. siro were constructed at temperatures ranging from 22 to 32 ◦C at 75%
RH. The biological parameters, including growth, development, and fecundity, of C. malaccensis at
different temperatures were compared and analyzed using the TWOSEX-MSChart.

The population growth ability of C. malaccensis was highest at temperatures ranging from 24
to 28 ◦C. All individuals were included in the analysis, including both females and males. The rm

of C. malaccensis increased with increasing temperature. This tendency is consistent with previous
studies [14,15,18]. The rm and λ of C. malaccensis were highest at 32 ◦C, while R0 and the single
female fecundity of C. malaccensis were highest at 28 ◦C. However, the fecundity of C. malaccensis fed
on T. putrescentiae was highest at 25 ◦C and 30 ◦C for virgin females, and the highest fecundity for
previously mated females was at 30 ◦C [15]. These differences may be related to different biotypes
in different regions of the world. Filipponi [43] reported that some mite species may have different
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reproductive patterns in different geographic regions. Other possible causes of variation include the
ambient temperatures and the prey species used to feed the mites. Before the 1980s, C. eruditus was
reported to be the dominant species in China [44]. However, C. malaccensis is now reported to be
the dominant predaceous mite species with the highest potential for biocontrol in grain depots in
China [6–10]. In contrast, C. malaccensis was reported as the mite species having the lowest potential
for biocontrol in the Czech Republic [5]. This discrepancy may be due to differences in climate,
geographical environments, and population replacement.

Our data indicate that C. malaccensis can develop and reproduce well at temperatures ranging
from 22 to 32 ◦C. However, in life table studies, we cannot measure the growth potential of a population
based on single parameters. It is thus necessary to conduct a comprehensive analysis of the growth
and development parameters of the entire population. To predict the times and the number of releases
for biological control, it is useful to understand the development rate, age differentiation, reproductive
rate, and survival rate of C. malaccensis. Life tables can help us understand the comprehensive effects
of various factors on the population growth of C. malaccensis. Traditional life tables have typically
focused on the female population and lacked the contribution of males to population growth. This has
limited their practical application. The stage differentiation and stage overlaps in development can
be accurately described by using the age-stage, two-sex life table, whereas the traditional life table
is incapable of accomplishing this. Under normal conditions, females make a higher contribution to
the population and have a higher life expectancy and survival rates at all stages compared to males.
Because of this, most current life table studies have focused on females [45,46].

Male adults also contribute to predation and there were many differences between females and
males. We found that the survival rate of male adults was higher than that of female adults at specific
temperatures and specific ages. This indicated that male adults may have a higher survival rate
than female adult mites at certain temperatures. More studies on males are needed to confirm these
findings. This will be helpful for the establishment of populations in biological control programs
and for high-temperature and low-temperature regimes in the artificial propagation of C. malaccensis.
It is necessary to determine the long-term effects in consideration of the age-stage, two-sex life table.
The comprehensive evaluation of a predatory natural enemy requires consideration of the basic
parameters affecting its growth and development, reproduction, and population dynamics. More
attention needs to be paid to predator–prey interactions under natural conditions. Increased knowledge
of C. malaccensis biology will increase its utility as a biological control agent.

5. Conclusions

Age-stage, two-sex life tables of C. malaccensis, reared on Acarus siro were constructed at 22,
24, 28, 30, and 32 ◦C, 75% relative humidity. Increasing temperature shortened the development
time. The complete generation time of C. malaccensis ranged from 11.10 d to 27.50 d. The optimum
temperature for the growth and development of C. malaccensis was 28 ◦C. Populations could increase
rapidly, occurred the highest net reproductive rate (R0 = 290.25) and highest fecundity (544.52) at this
temperature. The values of age-specific fecundity (high to low) were 28 ◦C > 24 ◦C > 30 ◦C > 32 ◦C >

22 ◦C. The result is useful for predicting its population dynamics, and guiding artificial breeding and
delivery C. malaccensis to control the stored-product pests.
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