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Abstract: To date, in the literature, there has been no study on the comparison of hybrid (timber
and concrete) buildings with counterparts made of timber and concrete as the most common con-
struction materials, in terms of the life cycle assessment (LCA) and the carbon footprint. This paper
examines the environmental impacts of a five-story hybrid apartment building compared to timber
and reinforced concrete counterparts in whole-building life-cycle assessment using the software tool,
One Click LCA, for the estimation of environmental impacts from building materials of assemblies,
construction, and building end-of-life treatment of 50 years in Finland. Following EN 15978, stages of
product and construction (A1–A5), use (B1–B6), end-of-life (C1–C4), and beyond the building life
cycle (D) were assessed. The main findings highlighted are as following: (1) for A1–A3, the timber
apartment had the smallest carbon footprint (28% less than the hybrid apartment); (2) in A4, the
timber apartment had a much smaller carbon footprint (55% less than the hybrid apartment), and the
hybrid apartment had a smaller carbon footprint (19%) than the concrete apartment; (3) for B1–B5,
the carbon footprint of the timber apartment was larger (>20%); (4) in C1–C4, the carbon footprint of
the concrete apartment had the lowest emissions (35,061 kg CO2-e), and the timber apartment had
the highest (44,627 kg CO2-e), but in D, timber became the most advantageous material; (5) the share
of life-cycle emissions from building services was very significant. Considering the environmental
performance of hybrid construction as well as its other advantages over timber, wood-based hybrid
solutions can lead to more rational use of wood, encouraging the development of more efficient
buildings. In the long run, this will result in a higher proportion of wood in buildings, which will be
beneficial for living conditions, the environment, and the society in general.

Keywords: comparative study; life-cycle assessment (LCA); carbon footprint; hybrid; concrete;
timber; apartment building; Finland

1. Introduction

The construction industry is one of the leading producers of greenhouse gas (GHG)
emissions [1], contributing to more than 35% of global energy use and about 40% of energy-
related CO2 emissions [2–5]. Additionally, in the European Union, building construction
consumes 40% of materials and 40% of primary energy and produces 40% of annual
waste [6]. Therefore, the construction industry represents a significant potential for reducing
CO2 emissions and tackling climate change [7,8].

There are currently two main approaches adopted in the construction industry to
reduce environmental impacts: (1) appropriate material selection; and (2) the optimization
of energy use throughout the building’s service life [9–12]. GHG emissions from buildings
can be significantly affected by the choice of building materials. In this regard, according to
the calculation made by Hafner [13] on the life-cycle assessment (LCA), depending on the
building construction standard, the operation stage accounts for 45% to 80% of the total
CO2 emissions, in which the materials used account for 20% to 55% of total CO2 emissions.
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On the other hand, it was reported that the application of alternative additives/materials
or techniques/systems can reduce CO2 by up to 90% [14].

Environmental effects should also be taken into account when applying conventional
building materials such as steel and concrete, which are used in large quantities. While
the steel industry accounts for about 9% of the direct emissions from global fossil fuel
use [15], concrete production accounts for about 8% of the world’s CO2 emissions [16,17].
Recent research has focused on the development of materials with low CO2 emissions
that can mitigate climate change by reducing these emissions or storing carbon in the long
term [18,19]. In this sense, wood buildings are characterized by the concept of lower-carbon
construction than non-wood buildings [20–24], and wooden construction represents a lower
embodied energy consumption compared to steel and concrete production [25]. Wooden
structures provide significant advantages of tackling climate change, because wood not
only can be used as an alternative to other materials to reduce GHG emissions, but also
has distinctive features such as storing large amounts of carbon in the structure [26,27].
Besides being used as a building material during the construction of a building, wood can
be reused as a raw material for other structures after the building’s service life or, as a last
resort, burned instead of fossil fuels [28–30].

Engineered wood products (EWPs) such as cross-laminated timber (CLT) are used in
increasingly demanding applications to meet sustainable construction challenges [31,32].
Besides the many advantages of CLT, such as high strength-to-weight ratios, low carbon,
and high thermal insulation, it also allows residential, commercial, and institutional mul-
tistory building construction in a cost-effective way [33–35]. Additionally, CLT is mainly
structural but can also be used as a facade material and a secondary building material, e.g.,
floor and non-structural walls [19]. In the literature, many studies focus on the technolog-
ical aspects of EWPs, their use in construction, and different building solutions [36–50].
Several studies address wood as a structural material in buildings from the perspectives of
key professionals (e.g., [51–59]) and consumers or residents (e.g., [60–65]).

In the last decade, the LCA for EWPs has become an important research focus [7,66,67].
Among them, the results of Robertson’s cradle-to-grave LCA analysis [68] showed that
maximizing the use of wood in buildings is over 70% more advantageous than using
concrete in mitigating the impact of global warming. Darby [69] reported that CLT has
remarkable effects on the reduction of GHG emissions, regardless of whether the building
is disposed of after reaching the end of its service life. Skullestad [70] found that replacing
steel and concrete with wood (CLT and glulam) results in GHG reductions ranging from
34% to 84% for all four types of building construction. Similarly, the results of the study by
Milaj [71] on six examples of commercial buildings using cradle-to-grave LCA showed that
the use of wood, instead of steel and concrete, results in an average of a 60% reduction in
GHG emissions. Gu and Bergman [72] conducted an entire building LCA in a four-story
educational building using large amounts of CLT roofs, floors, and staircase wall panels to
develop the first Environmental Building Declaration (EBD) in the USA, and the building
eventually earned LEED (Leadership in Energy and Environmental Design) credits to
mitigate the LCA impact. Chen et al. [7] compared the results of a cradle-to-grave LCA for
a 12-story building made of CLT and a functionally equivalent reinforced-concrete (RC)
building following the EN 15978 framework. For the material resource efficiency, they
found that the total mass of the CLT building was 33.2% less than that of the alternative RC
building, there was a 20.6% reduction in concrete carbon achieved for the CLT building
compared to for the RC building, and the emissions from the CLT building were 70% lower
than the RC building. Oladazim et al. [18] conducted a case study to analyze the life cycle
environmental impacts of two multi-story residential buildings, one with an RC and the
other with a steel frame, in Iran. The results showed the total amount of pollution by the RC
building at various stages was 38% higher than by the steel building, and the steel frame
selection in RC buildings was more environmentally friendly than the building industry
concrete frame. Liang et al. [73] made a comparative LCA of a 12-story mixed–use building
constructed predominantly from solid timber (CLT and glulam) and a similar concrete
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building. The results indicated that the solid timber building had reductions of 18%, 1%,
and 47% in the global warming, ozone depletion, and eutrophication impact categories,
respectively, and the use of solid timber significantly reduced the carbon footprint of the
building. Ryberg et al. [74] performed an LCA on four buildings in Greenland, namely
an RC building, a CLT building, a timber-frame building, and a renovation of an existing
concrete building, to assess environmental impacts in the midpoint indicator and the overall
damage to human health, the ecosystem quality, and resources. The results highlighted
that the refurbishment of existing buildings had the lowest environmental impact on all
impact categories, and the difference in environmental impacts between new building
types was generally small, while the CLT and wood-frame buildings still had the best
environmental performance. Liang et al. [75] examined a high-rise mass-timber building
in the Pacific Northwest using LCA and life-cycle cost analysis approaches to assess the
life-cycle environmental and economic performances and compared these results to for
a concrete building of the same design. Cradle-to-grave (modules A–C) LCA results,
which have been in operation for over 60 years, showed that the mass-timber building
outperformed the concrete building in terms of global warming (1.6% lower) and other
environmental impacts.

In Finland, the use of timber in buildings is most common in single-family homes
(80% of buildings made with wooden frames) and row houses (60% of buildings made
with wooden frames) [76]. Despite this strong timber building culture and the vast forest
resources in Finland, the use of timber in multi-story buildings such as apartments is still
under development, and its market shares are still low [77–79]. However, the acceler-
ation of wooden multi-story buildings as a set of innovative building technologies has
gained political support and public attention in Finland as well as in other forest-rich
European countries [80]. Since the 1990s, strong emphasis has been placed on increasing
the development of the wood construction business, removing regulatory barriers and
increasing the business development of wood construction companies [79,81]. On the other
hand, the Finnish concrete industry, which has led the building construction market for
many years, due to its routine, strong presence, and networking in both public and private
organizations [82,83], has faced new challenges such as eco-friendly standards, people’s
perception of sustainability, and the coziness of the building as in wooden multi-story
apartment buildings [84,85].

As noted above, EWPs, e.g., CLT, could have excellent opportunities to emerge as
a potential competitor for concrete multi-story buildings, but the Finnish construction
industry also puts great trust in hybrid structures, which includes the selection of the best
components and materials to achieve sustainable construction principles [86]. From this
point of view, the encounter of wood with other materials, especially concrete, may not be
seen as a positive phenomenon [87]. After all, competition does not benefit the continued
development of new construction technologies and materials, and cooperation between
industries will bear more fruit [88]. In this sense, hybrid structures should be encouraged,
thus maximizing the advantages of different materials [89]. In addition, concerning the
changing trends in timber construction affecting the entire business, as part of the rise of
the green building concept, the contemporary tendency in timber construction increasingly
includes the use of hybrid structures (e.g., wood and concrete or steel combinations) [25].

It is worth noting here that there is a growing interest in measuring and reducing
environmental burdens with climate change and other adverse environmental impacts. At
this point, the problem of how to measure and reduce environmental loads comes to the
fore [90]. Recently, academics, organizations, and others have sought to develop concepts
and procedures that measure environmental sustainability, where the environmental foot-
print, which is one of the important topics discussed at the Habitat Conferences [91,92], is
becoming increasingly popular and playing an important role in sustainability assessment
and research [93,94]. Environmental footprints are quantitative measures of human use
of natural resources [95]. Footprints are divided into environmental, economic, and social
footprints and combined environmental, social, and/or economic footprints [96]. The
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concept of footprint is derived from the ecological footprint idea introduced by Rees [97]
and Fang et al. [98]. In recent years, the carbon footprint has been used almost exclusively
as an environmental protection indicator (e.g., [99–102]).

As seen in the literature review above, there are many LCA- and carbon footprint-
based studies comparing timber to traditional building materials such as concrete. However,
no study has been found in the literature on the comparison of timber buildings with both
concrete as the most common construction material and a hybrid construction material
(timber and concrete) in terms of LCA and carbon footprint. With this study, it was aimed
to fill this gap in the literature.

Overall, this paper examined the environmental impacts of a five-story hybrid apart-
ment building compared to those of timber and a more traditional reinforced concrete
counterpart in whole-building LCA using the software tool, One Click LCA, for the estima-
tion of environmental impacts (i.e., carbon footprint) from building materials of assemblies,
construction, and building end-of-life treatment of 50 years in Finland. In this paper,
the (wood-based) “hybrid building” refers to the building with predominantly reinforced
concrete load-bearing structures, except for the top floor (timber-framed), and with a timber-
framed and -clad exterior facade. The results are believed to provide critical stakeholders
with a roadmap in their pursuit of a better material selection for multi-story construction
to minimize environmental burdens and mitigate climate change while considering the
potentials of hybrid construction.

In this research, wood or timber refers to EWPs [103,104] such as CLT (a prefabricated
multi-layer EWP, manufactured from at least three layers of boards by gluing their surfaces
together with an adhesive under pressure), laminated veneer lumber (LVL; made by bond-
ing together thin vertical softwood veneers with their grains parallel to the longitudinal axis
of the section, under heat and pressure), and glue-laminated timber (glulam) (abbreviated
as GL; made by gluing together several graded timber laminations with their grains parallel
to the longitudinal axis of the section).

The remainder of this paper was structured as follows: First, the explanations of the
materials and methods used in the study were provided. This was followed by the results
and discussion. Finally, the conclusions of the study were presented with suggestions for
future research.

2. Materials and Methods
2.1. Hybrid Building Design

Although wood is an excellent building material in many ways and it is currently the
best material in building construction toward diminishing CO2eq emission compared to the
alternative building materials such as concrete or brick, wood is a nature-created material
and, like other building materials, requires engineering to adapt to construction conditions.
It, therefore, makes sense that there is room to improve some of the weaker properties
of wood as a building material, thereby making it more competitive against other less
climate-friendly materials. Craftsmen, engineers, and architects from past to present have
always combined different materials, often to take advantage of their best properties. This
approach enables the creation of an end product with better properties than the materials
of which it is composed. In this sense, smart timber-based hybrid solutions can lead to
the more rational use of wood, fostering the development of more efficient buildings and
reinforcing wood’s weak properties, e.g., sagging, vibration, and acoustic considerations.

Considering the facts mentioned above, in this paper, a hybrid building was designed
as a case study on a plot of the land at Laurinmäenkuja 3 in Lassila, Helsinki, Finland
(Figure 1). On this plot was a four-story brick-clad office building that was to be demolished
from a new construction road (Figure 2).
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Figure 2. Four-story brick-clad office building to be demolished.

A necessary site planning was made according to a legally binding zoning plan. Three
apartments that would replace the office building in the city plan and an indoor parking
lot were zoned under the entire courtyard deck. Some critical city planning regulations for
the site were as following: (i) the building right of the plot is 7250 m2; (ii) the residential
building in Laurinmäenkuja must have a maximum of 5-story, and two more remote houses
can have a maximum of 8 stories; (iii) on the Laurinmäenkuja side of the building (roadside),
2/3 of the apartments and all apartments in other buildings must have a balcony or terrace;
(iv) there must be an external staircase between the yard deck and the street; and (v) the
site should produce renewable energy, e.g., solar energy.
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In the architectural design, the starting point of the plan was to make a P1 fire class
apartment using as much wood as possible within the framework of fire regulations, which
meant that the load-bearing structures must be concrete, except for the top floor. It is worth
mentioning here that there is an exception in the Finnish fire code that allows the top floor
of a building of class P1 to have timber load-bearing structures if the building has no more
than 8 stories. Additionally, an apartment building in Finland can be built in three fire
classes: P0, P1, and P2 [105]. The categories P1 and P2 are based on the reference values
in the fire code. P1 load-bearing structures in the fire class must be a non–combustible
material, mostly concrete. For this reason, wooden flats fall into the P2 category. The P0
category is for buildings calculated based on the default fire development. Fire class P0 is
used when it is desired to deviate from the table values.

The five-story hybrid building, which was designed in detail and stretched along the
street, is shown in Figure 3. All interiors of the apartments were designed following the
regulations and standards issued for housing design in Finland [106]. The building that ran
along the street was chosen for a closer look, as it was more diverse in its starting points
(Figure 4). It had a ground floor that opened to both the street and the car park. Balconies
that opened to the street side should also be cantilevered balconies, which were structurally
more difficult than implementing a floor-to-ceiling balcony zone. In addition, plenty of
wood was used on the interior surfaces, and the P1 fire class limits the use of wood on these
surfaces, especially for escape routes. In addition, rooftop solar panels were employed to
comply with the renewable energy requirements of the city planning regulation, as seen in
Figure 3b.
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Figure 3. The designed five-story hybrid building in three dimensions (3D): (a) standalone view;
(b) the site plan.

The building was also designed in more detail in terms of structural engineering. In
the structural design, the main load-bearing system (e.g., shear walls, columns, and floor
slabs) of the building was designed as reinforced concrete, except for the top floor, as seen in
Figure 5. CLT was used as an exterior cladding to maximize the use of wood on the facade,
and P1 class in accordance with the fire regulations was provided because it was desired
to be left exposed due to aesthetic concerns. On the other hand, the protruding balconies
were structurally supported by a load-bearing concrete inner shell (Figure 6). Additionally,
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outer walls had delta beams connected to concrete shear walls or columns. The hollow-core
slabs were supported at one end by a load-bearing concrete wall, and at the other end,
a supporting surface acted as a delta beam flange (Figure 7). Double-sided delta beams
were used for cantilevered balconies (Figure 8), flanged and perforated on both sides. The
supporting steel brackets for the cantilever balcony were threaded through holes in the
delta beam and attached to the building’s frame. It is worth noting here that as already
mentioned, the facades were completely fire-retardant. In any case, the facades of the
balconies had fire protection under the fire code, which complicated the construction of the
facade and reduced the order quantity of a single material size. The use of non-combustible
materials also necessitated the use of fire curtains and eaves in facade structures.
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Figure 4. Architectural floor plans: (a) general site plan; (b) typical floor plan of the hybrid building.
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2.2. Goal and Scope

This study aimed to examine the environmental impacts of a 5-story hybrid apart-
ment building compared to those of timber and reinforced concrete counterparts with



Int. J. Environ. Res. Public Health 2022, 19, 774 9 of 24

the whole-building LCA using the software tool ‘One Click LCA’ (Helsinki, Finland), for
the estimation of environmental impacts (carbon footprint) from building materials of
assemblies, construction, and building end-of-life treatment of 50 years in Finland.

Only a more specially designed five-story apartment building (Figure 3a) was consid-
ered in this comparison. The courtyard decks from other buildings were not included. The
impact of the demolition of an existing building or earthworks on the plot on emissions as
well as the effect of fixed furniture, furniture, or other equipment was also not taken into
account.

The comparison was made by taking a replica of the hybrid apartment building and
switching to different building types. It was assumed that the U values of the building types
did not change. A summary of the features of the reference apartment and the changes
made were listed below:

Concrete apartment

• The outer walls were load-bearing concrete sandwich elements. The intermediate floor
structure was the same as in that of the hybrid apartment.

• Concrete tiles were used instead of CLT volume elements on the balconies.
• The street facade had a brick tile surface, making zoning requirements more flexible

as in the hybrid apartment. The courtyard facade was made of lightweight concrete.

Timber apartment

• The framework was designed based on the CLT element technology. LVL-ribbed tiles
were used on the mid floors.

• It was the entire ground layer of the concrete structure to prevent the building from
settlement differently.

• A sprinkler system was added.
• Balconies were the same CLT volume elements as in the hybrid apartment.

As seen in Figure 9, the system boundary was defined as a cradle-to-grave boundary,
which included the product stages (A1–A3), the construction stages (A4–A5), the use stages
(B1–B6), and the end–of–life stages (C1–C4) [106]. System expansion was used to account
for the net benefits associated with energy recovery from materials such as wood burning,
as well as the net benefits associated with reuse, recycling, and recovery potential (D).
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For this study, B7—operational water use—was excluded from the comparative LCA.
Although the global warming impact from the whole-building LCA comes mainly from
operational energy, such as electricity and natural gas used during the building’s lifetime,
three comparison buildings were designed as functionally equivalent. This analysis mainly
focused on the impacts resulting from materials and other activities.

It is also worth noting here that the results for A1–A5, B1–B5, and C1–C4 were pro-
duced by combining the quantity and material data from Autodesk Revit with One Click
LCA’s Environmental Product Declarations database. On the other hand, the results for B6
were generated by combining results from the E-value calculator [107] for different energy
forms in Finland provided by the Finnish Ministry of Environment with the emission
coefficients [108].

2.3. Software Tool

According to the EN 15t978 standard [109], carbon footprint calculation was made
using One Click LCA software, a web and cloud-based computing tool. This is automated
LCA software that helps calculate and reduce the environmental impact of building and
infrastructure projects, products, and portfolios [110]. One Click LCA provides a plug-in for
Autodesk Revit that allows importing quantity and material information directly from the
Revit model. The buildings examined in this study were designed and modeled in Autodesk
Revit. The program uploads the material information to the cloud service and retrieves
the materials corresponding to the environmental notifications from its database. Most
materials information is stored in software that can automatically retrieve an appropriate
environmental statement, but for some materials, the user needs to search the database for
an appropriate environmental statement.

One Click LCA is currently one of the most advanced tools available on the market for a
simplified LCA approach [111]. It allows the use of international green building certificates
and databases as well as building information modeling (BIM)-based workflows for all
evaluated certificates. One Click LCA complies with EN/ISO standards and more than
40 certifications such as EN 15978, which covers impacts from production, transportation,
construction, use, and demolition as well as operational energy and water use, EN 15804, EN
15942, ISO 21931–1, ISO 21929–1, ISO 21930, BREEAM, LEED, HQE, and C+E–. Moreover,
it integrates with building information models in the IFC2x3, IFC4, Revit, ArchiCAD, and
Tekla Structures formats (see Table 1). Additionally, it integrates with all energy modeling
software supporting the gbXML format (including DesignBuilder and IES-VE), Microsoft
Excel, and other data formats. There is also a direct integration into the IES-VE software [110].
In this study and many other studies (e.g., [112–117]), One Click LCA was used because of
the abovementioned features, ease of use, and fast and accurate results.

Table 1. Integration options based on software and formats provided by One Click LCA.

Integration Notes

Industry foundation classes (IFCs) ISO 16739/IFC 2 × 3 & IFC4

Autodesk Revit
Architectural/Structural Model v.2016, 2017, 2018 as native plug-ins

IES-VE v.2017 Feature Pack 4 or higher

Graphisoft ArchiCAD v.18, 19 as native plug-ins

Tekla Structures v.2016 as a native plug-in

Simplebim and Naviate Simple BIM 5.0 BIM v.5.0 or higher

DesignBuilder 5.1 v.5.1 or higher

Excel and CSV formats quantity take-off or costing import

gbXML Supported, e.g., by IES-VE

Custom integrations from XML, JSON, web services,
and other sources
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3. Results
3.1. Initial Values and Assumptions

Initially, the energy consumption of each building was calculated using the E-value
calculator [107]. On the counter, the building class was defined as an at least three-story
apartment building. Using the net heated area of the building, the number of floors,
the data of the structures, and the architectural model taken from Autodesk Revit, the
outer walls, upper and lower floors, and exterior door areas were provided. In addition,
thermotechnical values were provided, and interface counter defaults were used to evaluate
the cold bridge effect.

Mostly default counter values were used for ventilation. Mechanical “normal efficiency
ventilation” was chosen as the ventilation type. It was determined that the ventilation
post-heating battery was connected to the heating system. The q50 value of the air leakage
number was determined as 1.5. District heating and heat distribution systems were chosen
as the heating system with water circulation underfloor heating. The building was assumed
to be a 300 L hot water storage tank, and hot water circulation and transmission lines
rotating in a protective tube were chosen as the type.

Self-sufficient electricity generation from solar panels on the building’s roof was
provided. The roof of the building had 84 solar panels with a size of 1.6 m2 facing south
and at an angle of 30 degrees with respect to the horizontal. The rated power of a single
solar panel was 300 Wp. The south is the best weather direction for solar panels, and 99%
of the electricity was produced by the solar panel at the optimum angle of 30 degrees. With
a peak power of 3 kW, the solar panel system produced around 2500 kWh of electricity per
year in Finland. With this information, the peak power of the photovoltaic system of the
building was calculated as 25,200 Wp, and the annual electricity production was calculated
as 21,000 kWh. This had a significant impact on reducing the use of purchased electricity.

All buildings to be compared were identical for their initial values. Only the solidity of
the building envelope was changed. The results on the energy use were reported in Table 2.
These numbers were entered into One Click LCA software. In comparison, electricity
consumptions were the same in all apartments.

Table 2. Energy calculation results (with the difference compared with those of the hybrid apartment).

Form of Energy Hybrid Concrete Timber

District heating (kWh/a) 178,200 175,680 (−1.4%) 181,440 (+1.8%)

Electricity (kWh/a) 52,590 52,590 52,590

On the One Click LCA side, the lifetime of a building was defined as 50 years. The
Scandinavian average was chosen for transport distance, which affected the module A4
result. Material emissions were adjusted to meet Finnish production conditions. The
production emissions from different materials may vary by country, for example, based
on the carbon footprint of electricity available in the country, where emission values were
adapted to Finnish conditions and the Finnish electricity generation carbon footprint. The
densities of concrete and reinforced concrete were taken as 2400 kg/m3 and 2500 kg/m3,
respectively. The carbon footprint calculation for the construction work A5 was also based
on square meters relative to the Scandinavian average. The influence of building materials
was not reflected in the calculation result of module A5.

3.2. Results of Comparison

The results of carbon footprint calculation are presented in Table 3 and Figure 10.
Energy use contributed most to the carbon footprint of every building followed by product
stages A1–A3. The timber apartment building had the lowest life-cycle emissions. The
hybrid and concrete apartment buildings were similar, but the concrete apartment building
had a slightly smaller carbon footprint. However, the building life-cycle value (module D)
of the hybrid apartment was greater but not included in carbon footprint.
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Table 3. Results of carbon footprint comparison (kg CO2 e) (the percentages in parentheses show the
difference from those of the hybrid apartment).

Module Hybrid Concrete Timber

A1–A3 Product stage 403,951 409,932 (+1.5%) 292,901 (–27.5%)

A4 Transport 11,529 13,736 (+19.1%) 5140 (–55.4%)

A5 Construction work 37,103 37,103 37,103

B1–B5 Use of products and Refurbishment 51,457 51,341 (–0.2%) 62,261 (+21.0%)

B6 Operational energy use 761,472 752,501 (–1.2%) 773,006 (+1.5%)

C1–C4 End-of-life stage 35,061 28,732 (–18.1%) 44,627 (+27.3%)

In total 1,300,573 1,293,345 (–0.6%) 1,215,038 (−6.6%)

D Beyond the building life cycle –167,572 –121,058 (–27.8%) –245,590 (+47.2%)
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4. Discussion

As highlighted in Table 3 and Figure 10, at the product stage, the timber building
had the smallest carbon footprint (28% less than the hybrid building). The hybrid and
concrete apartments were close together, but the carbon footprint of the hybrid apartment
was slightly smaller in modules A1–A3. Replacing concrete structures under construction
with timber helped reduce the carbon footprint of the hybrid apartment. However, the
composite frame required extra concrete pillars, and especially delta beams increased the
carbon footprint of the product stage, which showed a very small difference from that of
the concrete apartment. The photovoltaic system also increased the carbon footprint of this
module for all reference buildings, but this system then appeared as a reduction in carbon
footprint at B6, i.e., operational energy use.

For A4 transport, the timber apartment’s carbon footprint was by far the smallest
(55% less than that of the hybrid case). The carbon footprint of the hybrid apartment was
also smaller than that of the concrete building, due to the lighter materials. However, the
transport stage had a smaller impact on the life-cycle carbon footprint. On the other hand,
as the carbon footprint of construction work in module A5 was based on the floor area
value, this calculation was not different in this module.
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In B1–B5, i.e., the use of products and the refurbishment module, the hybrid and
concrete apartments had very close values. The carbon footprint of the timber apartment
was larger (>20%). The most important factor in the increase was the increased use of
gypsum boards, which had to be replaced from time to time.

As seen in Table 3 and Figure 10, in the results for B6—operational energy use, due to
the reduced heat absorption capacity of the building, lighter building materials and the
consequent increase in district heating consumption increased the carbon footprint of the
hybrid and timber apartments. However, the differences were so small that the impact of
the life cycle on the overall carbon footprint remained small.

The biggest surprise in the calculation results for the factor was carbon footprint of
the end-of-life stages C1–C4, where the concrete apartment had by far the lowest emissions
and timber apartment had the highest emissions. In this module, the concrete apartment
building yielded less than half the value of that of the timber apartment building. Similarly,
as shown in Figure 11, in end-of-life stages C1–C4, the carbon footprint of the timber
apartment was much higher than that of the concrete and hybrid apartments.
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In module D, beyond the building life cycle, the values of timber completely reversed,
and it became the most advantageous building material compared to in modules C1–C4.
Timber had a life cycle, and concrete had a greater potential to reduce emissions, resulting
in the hybrid apartment performing much better than the concrete apartment (Figure 12).
However, module D was not included in carbon footprint, unlike modules C1–C4. Thus,
the carbon footprint of the concrete apartment building was slightly lower than that of the
hybrid one.

More details about the different distributions of carbon footprint for resource types
and materials in all three buildings are shown in Figures 13–15. The share of life-cycle
emissions from building services was very significant in all building types, about one-third.
In the hybrid apartment case, it was interesting to observe how much delta beams affected
the carbon footprint of the building. Structural steel accounted for more than 9% of the
carbon footprints of all cases. In product stages A1–A3, most of the carbon footprint came
from horizontal structural members, including delta beams. After all, the share of timber
in the carbon footprint of the hybrid apartment was quite small. The distribution of the
concrete apartment was not particularly surprising. Most of the materials’ carbon footprints
came from concrete. In the timber apartment, gypsum boards accounted for the bulk of
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material emissions. However, the volume of gypsum boards in a building was only a small
fraction compared to that of timber or concrete.
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Reducing Carbon Footprint

The delta beams of the composite frame had a major impact the on carbon footprint of
the hybrid apartment building, where approximately 9% of the materials’ carbon footprint
originated from these beams. Thus, the carbon footprint of the hybrid case can be reduced
by reducing the number of delta beams. Two variations of the building that would make
this possible are as follows.

The carbon footprints of these variations were not calculated, so the effect was not
fully known. The main purpose of delta beams was to act as a load-bearing structure when
the load-bearing capacity was required from the outer wall line. Therefore, the need for
load-bearing external wall lines should be reduced. The first way to reduce load-bearing
wall lines was to abandon cantilever balconies. Streetside cantilevered balconies can be
replaced with retracted balconies. Both balconies of the courtyard facade were built by
being moved from the ground, so that the outer walls did not have to carry them. Some
of the outer walls can also be replaced with a hybrid structure. a load-bearing concrete
inner shell, and a wooden outer shell, as shown in Figure 16. Here, version A reduced the
number of delta beams to 31 running meters per floor. Only 10 load-bearing concrete walls
per floor had to be added. Such a solution can be conveniently used in two blocks in a
taller building, as they both have balconies carried on the ground. The number of delta
beams can be further reduced by increasing the number of hybrid exterior walls. In version
B, these walls were added as follows, as delta beams were not needed at all. However, in
this version, concrete walls might adversely affect the aesthetic benefits of visible wood.
Replacing the delta beam with a full-length concrete inner shell probably would not lower
carbon footprint, either.
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5. Conclusions

In this paper, a five-story hybrid building was designed in detail as a case study
in Finland to make a comparison with timber and reinforced concrete counterparts in a
whole-building LCA using One Click LCA for environmental impact estimation.

The results showed that for modules A1–A3, the timber apartment had the smallest
carbon footprint (28% less than the hybrid building); in module A4, the timber building had
a much smaller carbon footprint (55% less than the hybrid case), and the hybrid building
had a smaller carbon footprint (19%) than the concrete apartment; for modules B1–B5, the
carbon footprint of the timber building was larger than those of the others (>20%); for
the carbon footprint in C1–C4, the concrete apartment had the lowest emissions (35,061
kg CO2-e) and timber apartment the highest (44,627 kg CO2-e), but in module D, timber
became the most advantageous building material; the share of life-cycle emissions from
building services was substantial across all building types; and in the timber apartment,
gypsum boards accounted for the bulk of the material emissions.

Based on the results obtained in this paper, although the timber apartment had the
lowest carbon footprint in many modules of life-cycle analysis, the hybrid (timber and
concrete) apartment building also showed a notable environmental performance, especially
when compared to the reinforced concrete apartment building. These results can be
considered as an innovative contribution to the literature, since it is not a hybrid structure-
based comparative study in terms of the life cycle assessment and the carbon footprint.
Considering the environmental performance of hybrid construction as well as its other
advantages over pure timber construction such as sagging, vibration, and acoustic issues,
smart timber-based hybrid solutions can lead to more rational use of wood, encouraging
the development of more efficient buildings. In the long run, this will give rise to a
higher proportion of wood in buildings, which will be beneficial for living conditions, the
environment, and the society in general. In this sense, this study, which reveals the eco-
friendly potential of timber-based hybrid solutions, provides insight into and incentives to
construction practitioners such as architects, developers, and contractors to integrate more
timber-based hybrid solutions into their spectacular projects such as tall buildings (e.g., the
18-story and 58 m high Brock Commons Tallwood House (Vancouver, 2017) and the 24-story
and 84 m high HoHo (Vienna, 2020)). In general, it is recommended to implement holistic
assessments such as LCA as part of the decision process to support more environmentally
friendly decisions regarding the construction industry.

Several limitations of this study should be mentioned. One of the limitations of
this study was the exclusion of the impact of the demolition of an existing building or
excavation on the plot on emissions, as well as the impact of fixed furniture, movable
furniture, and other equipment such as windows and doors. The courtyard decks from
other buildings were also excluded. Additionally, while the combination of timber and
concrete was generally studied as a hybrid structure in this study, a combination of timber
and steel or timber and a combination of concrete and steel can be investigated to enrich
the hybridization approach.

In future research, economic and social factors affecting the choice of building materials
can be also examined, where methods such as life-cycle costing [118] and social LCA [119]
might be utilized. Future research may also focus on the effects of different design decisions
on many aspects, e.g., variations in the column spacing, beam depth, change the amount of
material, and thus life-cycle environmental impact. In this sense, modifications in design
configurations that can use thinner massive wood panels, smaller foundations, and less
concrete for flooring should further reduce the overall environmental impact for hybrid
construction. Future work may also include other hybrid alternatives such as wood and
steel. In addition, similar studies can be conducted in other Scandinavian countries to
enrich the subject with comparative analysis. Finally, future research should also emphasize
combining use–phase scenarios to further examine the impact of the exterior facade design
on both embodied and operational energies and the interaction between the two.



Int. J. Environ. Res. Public Health 2022, 19, 774 20 of 24

Author Contributions: Conceptualization, R.R., H.E.I. and M.K.; methodology, R.R., H.E.I. and M.K.;
software, R.R. and H.E.I.; formal analysis, R.R., H.E.I. and M.K.; investigation, R.R., H.E.I. and M.K.;
data curation, R.R., H.E.I. and M.K.; writing—original draft preparation, H.E.I.; writing—review and
editing, R.R., H.E.I. and M.K.; visualization, R.R. and H.E.I.; supervision, M.K. and H.E.I.; project
administration, M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sandanayake, M.; Lokuge, W.; Zhang, G.; Setunge, S.; Thushar, Q. Greenhouse gas emissions during timber and concrete building

construction—A scenario based comparative case study. Sustain. Cities Soc. 2018, 38, 91–97. [CrossRef]
2. Brussels Energy, European Commission. New Rules for Greener and Smarter Buildings Will Increase Quality of Life for All

Europeans. NEWS. 15 April 2019. Available online: https://ec.europa.eu/info/news/new-rules-greener-and-smarter-buildings
-will-increase-quality-life-alleuropeans-2019-apr-15_en (accessed on 6 January 2022).

3. Kisku, N.; Joshi, H.; Ansari, M.; Panda, S.; Nayak, S.; Dutta, S.C. A critical review and assessment for usage of recycled aggregate
as sustainable construction material. Constr. Build. Mater. 2017, 131, 721–740. [CrossRef]

4. Yan, H.; Shen, Q.; Fan, L.C.H.; Wang, Y.; Zhang, L. Greenhouse gas emissions in building construction: A case study of One
Peking in Hong Kong. Build. Environ. 2010, 45, 949–955. [CrossRef]

5. Abergel, T.; Dean, B.; Dulac, J. Towards a Zero-Emission, Efficient, and Resilient Buildings and Construction Sector: Global Status Report
2017; UN Environment and International Energy Agency: Paris, France, 2017.

6. Solís-Guzmán, J.; Martínez-Rocamora, A.; Marrero, M. Methodology for determining the carbon footprint of the construction of
residential buildings. In Assessment of Carbon Footprint in Different Industrial Sectors; Springer: Singapore, 2014; Volume 1, pp.
49–83.

7. Chen, Z.; Gu, H.; Bergman, R.D.; Liang, S. Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with
an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings. Sustainability 2020, 12, 4708.
[CrossRef]

8. Panteli, C.; Kylili, A.; Stasiuliene, L.; Seduikyte, L.; Fokaides, P.A. A framework for building overhang design using Building
Information Modeling and Life Cycle Assessment. J. Build. Eng. 2018, 20, 248–255. [CrossRef]

9. Mahmoudkelaye, S.; Azari, K.T.; Pourvaziri, M.; Asadian, E. Sustainable material selection for building enclosure through ANP
method. Case Stud. Constr. Mater. 2018, 9, e00200. [CrossRef]

10. Zabalza Bribián, I.; Valero Capilla, A.; Aranda Usón, A. Life cycle assessment of building materials: Comparative analysis
of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 2011, 46,
1133–1140. [CrossRef]

11. Bribián, I.Z.; Uson, A.A.; Scarpellini, S. Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a
complement for building certification. Build. Environ. 2009, 44, 2510–2520. [CrossRef]

12. Carreras, J.; Boer, D.; Cabeza, L.F.; Medrano, M.; Jiménez, L.; Guillén-Gosálbez, G. Reducing the Life Cycle Environmental Impact
of Buildings Following a Simulation—Optimization Approach. In Advances in Energy Systems Engineering; Springer International
Publishing: Cham, Switzerland, 2016; pp. 823–839.

13. Hafner, A. Contribution of timber buildings on sustainability issues. In Proceedings of the World Sustainable Building 2014,
Barcelona, Spain, 28–30 October 2014.

14. Sizirici, B.; Fseha, Y.; Cho, C.-S.; Yildiz, I.; Byon, Y.-J. A Review of Carbon Footprint Reduction in Construction Industry, from
Design to Operation. Materials 2021, 14, 6094. [CrossRef]

15. Worldsteel Position Paper, Steel’s Contribution to a Low Carbon Future and Climate Resilient Societies. Available online:
https://www.worldsteel.org/publications/position-papers/steel-s-contribution-to-a-lowcarbon-future.html (accessed on 6
January 2022).

16. Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [CrossRef]
17. Smedley, T. Timber Structures Would Allow Us to Draw Carbon from the Air and Store It in Our Homes and Offices—Leading

Some to Believe That Wooden Buildings Are the Future of Architecture. Available online: http://www.bbc.com/future/story/2
0190717-climate-change-wooden-architecture-concrete-globalwarming (accessed on 6 January 2022).

18. Oladazimi, A.; Mansour, S.; Hosseinijou, S.A. Comparative Life Cycle Assessment of Steel and Concrete Construction Frames: A
Case Study of Two Residential Buildings in Iran. Buildings 2020, 10, 54. [CrossRef]

19. Svensson, E.; Panojevic, D. A Life Cycle Assessment of the Environmental Impacts of Cross-Laminated Timber. Master’s Thesis,
Lund University, Lund, Sweden, January 2019.

http://doi.org/10.1016/j.scs.2017.12.017
https://ec.europa.eu/info/news/new-rules-greener-and-smarter-buildings-will-increase-quality-life-alleuropeans-2019-apr-15_en
https://ec.europa.eu/info/news/new-rules-greener-and-smarter-buildings-will-increase-quality-life-alleuropeans-2019-apr-15_en
http://doi.org/10.1016/j.conbuildmat.2016.11.029
http://doi.org/10.1016/j.buildenv.2009.09.014
http://doi.org/10.3390/su12114708
http://doi.org/10.1016/j.jobe.2018.07.022
http://doi.org/10.1016/j.cscm.2018.e00200
http://doi.org/10.1016/j.buildenv.2010.12.002
http://doi.org/10.1016/j.buildenv.2009.05.001
http://doi.org/10.3390/ma14206094
https://www.worldsteel.org/publications/position-papers/steel-s-contribution-to-a-lowcarbon-future.html
http://doi.org/10.5194/essd-10-195-2018
http://www.bbc.com/future/story/20190717-climate-change-wooden-architecture-concrete-globalwarming
http://www.bbc.com/future/story/20190717-climate-change-wooden-architecture-concrete-globalwarming
http://doi.org/10.3390/buildings10030054


Int. J. Environ. Res. Public Health 2022, 19, 774 21 of 24

20. Ritter, M.; Skog, K.; Bergman, R. Science Supporting the Economic and Environmental Benefits of Using Wood and Wood Products
in Green Building Construction; General Technical Report FPL-GTR-206; U.S. Department of Agriculture, Forest Service, Forest
Products Laboratory: Madison, WI, USA, 2011; pp. 1–9.

21. Pierobon, F.; Huang, M.; Simonen, K.; Ganguly, I. Environmental benefits of using hybrid CLT structure in midrise non-residential
construction: An LCA based comparative case study in the U.S. Pacific Northwest. J. Build. Eng. 2019, 26, 100862. [CrossRef]

22. Dong, Y.; Qin, T.; Zhou, S.; Huang, L.; Bo, R.; Guo, H.; Yin, X. Comparative Whole Building Life Cycle Assessment of Energy
Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China. Sustainability
2020, 12, 1566. [CrossRef]

23. Lolli, N.; Fufa, M.S.; Wiik, M.K. An assessment of greenhouse gas emissions from CLT and glulam in two residential nearly zero
energy buildings. Wood Mater. Sci. Eng. 2019, 14, 342–354. [CrossRef]
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