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Abstract: The popularity of action recognition (AR) approaches and the need for improvement
of their effectiveness require the generation of artificial samples addressing the nonlinearity of the
time-space, scarcity of data points, or their variability. Therefore, in this paper, a novel approach to
time series augmentation is proposed. The method improves the suboptimal warped time series
generator algorithm (SPAWNER), introducing constraints based on identified AR-related problems
with generated data points. Specifically, the proposed ARSPAWNER removes potential new time
series that do not offer additional knowledge to the examples of a class or are created far from
the occupied area. The constraints are based on statistics of time series of AR classes and their
representative examples inferred with dynamic time warping barycentric averaging technique (DBA).
The extensive experiments performed on eight AR datasets using three popular time series classifiers
reveal the superiority of the introduced method over related approaches.

Keywords: data augmentation; skeletal data; human action recognition; time series classification

1. Introduction

The automatic interpretation of actions performed by the human body is both chal-
lenging and desired. Well-designed action recognition (AR) algorithms could be put into
practice in the detection of aggressive behavior, video surveillance, interaction with hu-
mans and robots, or advanced control over virtual reality avatars. In recent years, many
methods for human action recognition have been developed [1]. However, similarly to
other subfields of pattern recognition, they suffer from overfitting or inability to create more
robust machine learning models due to lack of diverse training samples. Therefore, the data
augmentation techniques designed to enrich AR databases are desired. Furthermore, their
usability in practice is also supported by the difficulty of creating AR databases with vari-
ous samples covering feature space well enough to train a classifier. Consequently, the data
augmentation methods used for multidimensional data samples (e.g., synthetic minority
over-sampling technique (SMOTE) [2]) cannot be directly used for augmenting time series
of AR classes since they take into account a relationship between consecutive measurements
or often non-linear distortions affecting the duration variability of registered time series of
a class [3]. Additionally, such time-related feature space prevents a simple addition of new
data points (i.e., entire time series) between existing samples. Considering the challenges
of the time series data augmentation techniques, in the literature, several approaches have
been proposed. They perform operations that stretch, cut, shrink, or perturb input time
series [4,5]. In more advanced solutions, new time-series are generated using deep network-
based models [6], the weighting of aligned averages [7,8], or concatenating parts of two
perturbed time series by the dynamic time warping (DTW) technique [9]. However, those
methods are considering time series classification problems without addressing issues
related to the AR time series domain, in which data samples often belong to a relatively
large number of similar classes with irregular, partially-overlapping boundaries.
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The literature review reveals the scarcity of time series augmentation approaches
devoted to AR problems. Additionally, the existing solutions are often associated with
mandatory data processing steps damaging important temporal information or archi-
tectures that require large-scale datasets and dedicated hardware for efficient training.
Therefore, in this paper, a novel method for time series data augmentation is introduced. It
uses SPAWNER (SuboPtimAl Warped time series geNEratoR) algorithm [9] to generate
new data samples and incorporates a set of constraints to provide time series suitable
for AR datasets. The constraints are defined to reject samples that do not introduce new
knowledge to the dataset and samples likely to be generated in a solution space occupied
by a neighboring class. To achieve such a goal, new time series is compared with one of
its input samples and a representative solution created for a class using Dynamic Time
Warping Barycenter Averaging (DBA) [7]. In the proposed Action Recognition SPAWNER
(ARSPAWNER), the comparison is performed taking into account statistics of samples
within a considered class.

The contributions of this study are as follows.

1. A novel method for AR time series augmentation with small amount of data;
2. A novel and efficient method for determining constraints on generated data samples

using statistics for a class and its representatives along with their incorporation into
the data augmentation approach to address AR-related characteristics;

3. Comparative evaluation of the method with related approaches on eight AR datasets
using popular classifiers.

The paper is arranged as follows. Section 2 reviews previous work on human action
recognition and time-series data augmentation. Section 3 introduces the proposed approach.
In Section 4, feature extraction techniques used to process AR time series benchmarks
employed in experiments are described. Section 5 presents comparative evaluation of
the method with related approaches. Finally, Section 6 concludes the paper and indicates
possible directions of future work.

2. Related Work

The classification results of a machine learning method depend on the availability
of learning data samples. Hence, they should cover enough feature space to provide the
classifier with information that allows for unequivocal determination of class labels of
unknown samples. With only a few learning examples, the classifier in most cases would
not be able to correctly infer differences between classes, identify class boundaries, or
address the variability of samples within a class. Similarly, the imbalanced distribution
of data samples per class or the occupation by the most samples of a small area may lead
to a drop in the classification performance. Therefore, many approaches to enrich class
diversity or determine artificial samples close to class boundaries are proposed based
on linear data transformation [2,10]. However, such approaches cannot be used with
time series as most of them are nonlinearly transformed in the time scale, which causes
variations in their lengths, even for the same class. Hence, simpler approaches to time
series augmentation consider removal of a part of a time series, adding data points between
existing values (i.e., warping), or introducing noise, rotation, and scaling [4]. In a more
developed solution proposed by Forestier et al. [8], DBA, averages of multiply aligned
data samples are iteratively weighted. As a result, for a set of time series, a new example
is generated that can be seen as their representative. However, its usage for time series
of large dimensionality and length, aiming at generating more samples from selected
subsets from the input dataset, is challenging due to its computation demands [7,9]. In the
previous authors’ work, SPAWNER, time series are generated in the warped space between
two data samples using their suboptimal alignment [9]. Specifically, the method uses
DTW [11] for the alignment of perturbed parts of two input time series and concatenates
aligned parts. The suboptimality arises from the usage of two randomly selected parts
of each sample and the concatenation of their result instead of the DTW-based optimal
alignment of the entire (i.e., non-divided) sequences. As those approaches are devoted to
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augmenting time series databases from many domains, there are works devoted to data
generation techniques devoted to enriching time series from a single domain, addressing
its characteristics. For example, Haradal et al. [6] introduced a method for augmentation
of electrocardiogram (ECG) and electroencephalogram (EEG) datasets using generative
adversarial networks (GAN) for the generation and discrimination of synthetic biosignals.
In the work of Ramponi et al. [12], similar signals are generated with conditional GAN. The
electrocardiograms are generated by Cao et al. [13] using samples of different classes and
by Delaney et al. [14] using a variety of GAN architectures. Electroencephalographic data
are augmented by Krall et al. [15] introducing distortions that consider temporal, spatial, or
rotational changes. The data augmentation technique introduced by Le Guennec et al. [4]
adds noise and magnitude changes to the input time series. Additionally, it warps them
and removes some of their fragments (the cropping operation).

Some works address the augmentation of human action recognition datasets. For
example, Shen et al. [16] proposed the Imaginative GAN (IGAN) and assessed it from a
perspective of diversity and affinity of resulting samples. IGAN is a modification of the
conventional GAN using unsupervised learning. The method approximates the distribution
of the input data and samples new data. Additionally, it learns the latent behavioral (speed
of actions) and physical (sizes of body parts) attributes. Ramachandra et al. [17] proposed
an approach in which human activities measured by inertial sensors are recognized using
data augmented by the proposed transformer GAN. Song et al. [18] specified an Interactive
Action Translation (IAT) task that, taking into account rules of interaction, learns a model
to generate a response for a given stimulation during inference. The method uses the
Pair Embedding (PE) that utilizes Gaussian distributions of paired relationships to cluster
individual actions in an embedding space and generate new pairs in their respective
neighborhood. Here, encoders in a Paired Variational Auto-Encoders (PVAEs) and PCA-
based linear dimension reductions are employed. Hoelzemann et al. [19] proposed human
action data augmentation using a recurrent GAN based on a set of long short-term memory
(LSTM) cells of four trained DeepConvLSTM models.

Despite promising performance of recent GAN-based data augmentation approaches,
the GAN solutions require large-scale data to obtain stable models [16,18] or can be sensitive
to outlying data samples [17]. Additionally, they may require data prepossessing in which
human actions are unified to the same length due to architecture constraints. Consequently,
the unification, or interpolation, negatively affects the input data and limits the variability
of obtained samples. Furthermore, GAN, as other deep learning techniques, require
demanding hyperparameter tuning [17], time-consuming training, and are associated with
additional input data modifications to avoid overfitting.

Since, in this work, the augmentation of time series representing human actions is
considered, main methods for their recognition are briefly introduced. They can be divided
into deep learning and handcrafted approaches, where the techniques that belong to
the first category extract suitable features and train a classifier in an end-to-end manner,
while handcrafted approaches have separate feature extraction and classification steps.
Furthermore, some of the deep learning methods are based on feature vectors but require a
large amount of training data to provide acceptable models.

Among recently introduced AR methods, the approach by Sidor and Wysocki [20] uses
a handcrafted Viewpoint Feature Histogram (VFH) point cloud description method [21]
to calculate features for cells dividing point clouds of registered human actions. The cells
represent different parts of the human body, and, therefore, such calculated features are
more distinctive than those extracted for the whole cloud. Additionally, the method fuses
two classifiers to improve its effectiveness. In the works of Pazhoumand-Dar et al. and
Lillo et al. [22,23], the recognition is based on skeletal joint locations, angles between them,
and more complex relationships between body parts. Skeletal data combined with local
features extracted from depth images in the area around the projected joints can be found
in the works of Raman and Maybank and Shahroudy et al. [24,25]. In these solutions, a
two-level hierarchical Hidden Markov Model (HMM) [24] or hierarchical mixed norm with
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three levels of regularization over learning weights [25] are employed. One of the latest
and most effective approaches to applying deep learning techniques to AR is presented
by Farnoosh et al. [26]. In that work, a low-dimensional deep generative latent model
encoding highly correlated skeletal data into a few sets of switching autoregressive temporal
processes is introduced. The model decodes from the low-dimensional representations to
the skeletal data and associated labels. Wang et al. [27] proposed the Skeleton Edge Motion
Networks (SEMM) with spatio-temporal building blocks consisting of the concatenated
spatial branch and temporal branch. It is observed that the spatial branch is effective when
human actions do not have rich temporal information, while the temporal branch performs
well with actions having a lot of movement of specific body parts. To boost the performance
of SEMM, a progressive ranking loss that facilitates maintaining temporal order information
in a self-supervised manner is employed. The spatial–temporal transformer network (ST-
TR) is introduced by Plizzari et al. [28]. It models dependencies between skeletal joints
using the transformer self-attention operator. Additionally, a spatial self-attention module
(SSA) and a temporal self-attention module (TSA) are applied to understand intra-frame
interactions between particular body parts and model inter-frame correlations. Then, the
SSA and TSA are combined in a two-stream network. Donahue et al. [29] proposed an
approach to human activity recognition based on video recordings using the long-term
recurrent convolutional network (LRCN) with jointly trained convolutional (spatial) and
recursive (temporal) parts.

In this study, to better highlight the capabilities of data augmentation techniques and
offer results that can be easily replicated without additional hardware needed by recent
deep learning models, handcrafted features, and popular classifiers are taken into account.
Consequently, the relationship between generated samples of AR datasets that contain
effective handcrafted features and the performance of several classifiers is investigated.

3. Proposed Method

In ARSPAWNER, two input time series of a given class are divided into two parts for
a separate alignment using DTW and, after their concatenation, a new time series example
is formed. This part of the time series processing is performed by the SPAWNER technique.
Then, the resulted time series is rejected if it does not satisfy a set of constraints based on
the AR time series characteristics.

In the approach, M-dimensional time series X = [x1, x2, . . . , xL] of the length L is
processed. Specifically, each xl ∈ RM, l = 1, 2, . . . , L, and X ∈ RL×M. Then, a dataset
of N samples, Ln, n = 1, 2, . . . , N, Xn ∈ RLn×M, Ln is length of n-th sample, forms a
collection U = {(X1, C1), (X2, C2), . . . , (XN , CN)}, where C ∈ {1, K} are class labels (K).
Consequently, a classifier trained on U assigns a label C to test time series Y ∈ RL×M.

To generate new time series based on a combination of two input samples X1 and X2

of the same class, the method employs DTW. In DTW, for X1 = [x1
1, x2

1, . . . , xi
1, . . . , xL1

1 ] and

X2 = [x1
2, x2

2, . . . , xj
2, . . . , xL2

2 ], so-called warping path is determined which indicates optimal
sequence W = [w1, w2, . . . , wP], where P is the length of the path, p-th element wp = (i, j),
and max(L1, L2) ≤ P < L1 + L2. Therefore, a L1 × L2 matrix D is calculated. For all (i, j),
it contains distances between time series [x1

1, . . . , xi
1] and [x1

2, . . . , xj
1]. To select the optimal

alignment between X1 and X2, the path W∗ minimizing the total cumulative distance is
found by calculating D(i, j) = (xi

1− xj
2)

2 + min(D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)). The
warping path satisfies three conditions: (1) The boundary condition which forces the path to
start at the beginning of the time series, w1 = (1, 1), and finish at their ends, wP = (L1, L2);
(2) The monotonicity condition according to which the time series indices in the path are
monotonically increasing: (i1 ≤ i2 ≤ . . . ≤ L1, j1 ≤ j2 ≤ . . . ≤ L2); (3) The continuity
condition which limits the acceptable path steps to adjacent matrix elements. It can be
written as wp+1 − wp ∈ {(1, 0, (0, 1), (1, 1)}∀p∈{1,2,...,P−1}. The warping window ξ limits
the elements of X1 and X2 that can be aligned, i.e., ∀(i,j)∈wp ||i− j|| ≤ ξ. DTW is used to
calculate the distance d = D(L1, L2) between time series.
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To generate new examples in a suboptimal manner, an additional fourth constraint
on the warping path is considered that forces it to contain the element wp = (R1, R2),
where R1 = drL1e, R2 = drL2e, r is a single, uniformly distributed, randomly generated
number in the interval (0, 1). Here, d·e denotes ceiling operation. To prevent the calculation
of L1 × L2 matrix D and reducing the computational cost, two matrices R1 × R2 D1 and
|(L1− R1)| × |(L2− R2)| D2 are used. Then, [x1

1, x2
1, . . . , xR1

1 ] is aligned with [x1
2, x2

2, . . . , xR2
2 ]

and [xR1+1
1 , xR1+2

1 , . . . , xL1
1 ] is aligned with [xR2+1

2 , xR2+2
2 , . . . , xL2

2 ]. The resulting warping
paths W∗1 and W∗2 are optimal due to the fourth constraint and the separate usage of
D1 and D2. However, after their concatenation the obtained path is suboptimal. More-
over, ξ1 and ξ2 used to determine W∗1 and W∗2 are taken from d0.1 · max(R1, R2)e and
d0.1 ·max(|L1 − R1|, |L2 − R2|)e, respectively. They reduce the flexibility of the path from
the perspective of the matrix D, as well as the concatenated paths W∗1 and W∗2 . After the
paths are concatenated to W∗1,2, the algorithm aligns X1 to X2 generating sequences X?

1
and X?

2 with the length of W∗1,2. To produce a new time series, X?, X?
1 and X?

2 are merged,
where x? ∈ X?, is a random number chosen from a normal distribution with a small σ,
x? ∼ N (µ, σ2), µ = 0.5(x?1 + x?2), σ = 0.05|x?1 − x?2 |.

To improve the quality of a AR dataset involving artificial example, X?,C, generated by
the method, additional constraints limiting the possibility of its acceptance are introduced.
At first, average d̃k and standard deviation d̂k of the DTW distances is computed between all
samples that belong to each k-th (k = 1, 2, . . . , K) class. Then, the DBA approach is employed
to provide representative sample for the class X́k = DBA(XC

1 , XC
2 , . . . ,XC

N), C = k, where
XC

N is the number of samples that belong to the C = k class [8]. Specifically, it is computed as

argminX́k ∈ E
NC

∑
i=1

DTW2(X́k, XC
i ), (1)

where E is a space induced by DTW and the optimization problem is solved using an
expectation-maximization scheme and iterative refining of the X́k [8]. Finally, the X?,C is
introduced to the dataset if the following conditions are met (Equations (2) and (3)):

d1 > r1d̃k ∧ d2 > r1d̃k, (2)

d1 < T ∧ d2 < T, (3)

where d1 = DTW(X1, X?,C), d2 = DTW(X́k, X?,C), T = r1d̃k + d̂k(r2 + d̂k/d̃k), and (r1, r2)
are parameters.

The proposed condition accepts only such time series which introduce new knowledge
to the dataset, assuming that close proximity of the already present examples makes new
examples redundant. The upper limit prevents the emergence of new examples in areas
occupied by other classes.

To highlight the differences between SPAWNER and ARSPAWNER, 2D Multi-Dimensional
Scaling (MDS) [30] embeddings of DTW dissimilarities for the exemplary time series from
the MSRA I dataset are presented in Figure 1. The figure contains class boundaries of
similar or overlapping classes to better indicate areas in which the methods created new
examples. Input data samples are denoted by filled triangles. To facilitate the analysis, the
same examples are connected by arcs. As shown, the SPAWNER produces examples that
are filtered out by ARSPAWNER. For example, two newly created members of the “orange”
class by SPAWNER are rejected by ARSPAWNER due to their close proximity to the input
data samples. Consequently, one member of the “green” class and three members of the
“purple” class were rejected by ARSPAWNER. Interestingly, the scattered input examples
of the “blue” class resulted in the emergence of two samples produced by SPAWNER that
are too far from them. Hence, ARSPAWNER removed them, significantly altering the class
boundary. It is worth noticing that the MDS embeddings strongly depend on the examples
that are considered while it is calculated. Overall, the class boundaries with examples
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introduced by ARSPAWNER are compact, without time series that could negatively impact
the recognition of samples from other classes.

Figure 1. Class boundaries in the 2D MDS embeddings of DTW dissimilarities for the exemplary
time series from the MSRA I dataset generated by SPAWNER and ARSPAWNER. Boundaries of
neighboring classes are highlighted.

4. Action Recognition Descriptors and Features

The action recognition features employed to show the effectiveness of the proposed
data augmentation approach are using successful Bone Pair Descriptor (BPD) [31] and
Distance Descriptor (DD) [32].

4.1. Distance Descriptor

The Distance Descriptor represents relationships among pairwise joint distances in
skeletal data. DD can be calculated based on 3D joint coordinates, without using vector
data. The descriptor features are obtained for N joints as follows.

1. For each joint Pi, 1 ≤ i ≤ N do:

(a) Calculate distances between the other joints Pj, j 6= i;
(b) Sort joints Pj by the calculated distances in ascending order;
(c) Assign consecutive integers aij to the ordered joints Pj, starting from 1.

2. Create a feature vector consisting of integer values assigned to the joints Pj in step 1(c)
in the following order: [a12, a13, a14, a15, a21, . . . , aNN−1];

3. Reduce the feature vector by adding together integers a corresponding to the same
pair of indices i, j: [a12 + a21, a13 + a31, . . . , aN−1N + aNN−1].

Finally, each feature value is divided by 2(N − 1) to normalize them to the interval
[0–1]. Note that an input set of joints should be selected from the whole skeleton before the
calculation of DD to reduce the computation time and increase the classification accuracy.
DD is calculated using the Euclidean distance.

4.2. Bone Pair Descriptor

The Bone Pair Descriptor encodes the angular relations between particular pairs of
bones. The descriptor is calculated as follows. Let Pc be the skeleton central joint, bc the
central vector associated with the joint Pc, Pi the i-th non-central joint, and bi the vector
associated with that joint (Figure 2). Vectors bc and bi coincide with a bone or a part of the spine.
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Figure 2. Calculation of Bone Pair Descriptor.

The relative position of vectors bc and bi is described by α, φ, and Θ according to
Equations (4)–(6) [33]:

αi = a cos(vi · bi) (4)

φi = a cos
(

u · di
|di|

)
(5)

Θi = a tan
(

wi · bi
u · bi

)
(6)

where the vectors u, vi, and wi define the Darboux frame [34]:

u = bc (7)

vi =
di
|di|
× u (8)

wi = u× vi (9)

with · and × representing the scalar product and the vector product, respectively. Let N be
the number of non-central joints. The BPD has 3N features calculated for each non-central
joint using Equations (4)–(6):

V = [α1, φ1, Θ1, α2, φ2, Θ2, . . . , αN , φN , ΘN ] (10)

Finally, the features are normalized to the interval [0–1], dividing them by the maxi-
mum of π for α or φ, and 2π for Θ. BPD requires the selection of central joint Pc, non-central
joints Pi, and joints determining vectors, bc bi, from the whole skeleton.

In the experiments, only α and φ features were used since Θ proved ineffective and its
calculation is time-consuming [31].

5. Experiments and Discussion
5.1. Datasets

For the evaluation of the approach, six human action datasets with skeletal data
were used: MSR Action3D (MSRA) [35], UTD Multimodal Human Action Dataset (UTD-
MHAD) [36], UTKinect-Action3D (UTK) [37], Florence 3D Action Dataset (FLORENCE) [38],
SYSU 3D Human–Object Interaction Set (SYSU) [39], and Kinect Activity Recognition
Dataset (KARD) [40]. The MSRA dataset is split into three separate subsets, MSRA I, MSRA
II, MSRA III, as suggested by its authors [35]. Each subset contains different action classes,
although some of them appear in two subsets. That makes a total of eight datasets used
in experiments. Detailed information about the datasets, including the length variability
of time series, the number of input examples, and the number of augmented examples
produced by each approach, is presented in Table 1.
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Table 1. Characteristics of datasets used in experiments.

Name Classes Subjects Sequences Time Series Input Augmented Validation
(Actions) Length Examples Examples Protocol

MSRA I 8 10 224 13–76 118 611 50-50 validation
MSRA II 8 10 207 15–100 118 573 50-50 validation
MSRA III 8 10 225 13–71 113 438 50-50 validation

UTD-MHAD 27 8 861 41–125 431 1163 50-50 validation
UTK 10 10 199 5–110 179 744 10-fold cross-validation

FLORENCE 9 10 215 8–35 194 1109 10-fold cross-validation
SYSU 12 40 480 58–638 240 1087 50-50 validation
KARD 18 10 540 42–310 270 685 50-50 validation

According to the original paper introducing the MSRA dataset, there are seven subjects
performing actions. However, the larger version, consisting of 10 subjects, is publicly
available and can be downloaded from the authors’ website [41]. This version was used in
the experiments.

In this study, two types of validation were performed. For MSRA, SYSU, UTD-MHAD,
and KARD, 50-50 validation tests were used, in which the training and testing sets were
split in half based on the subjects performing actions. The protocol for UTD-MHAD
and FLORENCE is 10-fold cross-validation. For each dataset, the validation protocols
proposed by the authors were used. In the case of KARD, 50-50 validation was used instead
of the 10-fold cross-validation due to excessive computation time. All performed tests
were subject independent, which means that in each test, the training set contains actions
performed by subjects not present in the testing set. Such tests simulate the behavior of a
recognition application in practice, where people performing actions do not participate in
the creation of the training data.

Actions from all datasets were recorded using a Microsoft Kinect sensor. In this work,
only skeletal joints were used to characterize human actions. The skeletons for actions
present in all datasets except FLORENCE and KARD consist of 20 joints, while the skeletons
used to capture actions in the FLORENCE and KARD datasets consist of 15 joints (see
Figure 3).

Figure 3. Three skeletons available in datasets: (left) MSRA, UTD-MHAD, UTK, and SYSU; (middle)
FLORENCE; (right) KARD.

The same subsets of joints and bones cannot be used for 20-joint datasets and 15-joint
datasets. Furthermore, FLORENCE and KARD do not have identical joint sets despite
having the same number of joints. Therefore, for the experiments, three groups of joint
subsets and bone subsets were selected separately for the Distance Descriptor and the Bone
Pair Descriptor. They are listed in Tables 2 and 3 .
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Table 2. Subsets of joints used for the Distance Descriptor. “L.” and “R.” denote Left and
Right, respectively.

MSRA, UTD-MHAD, UTK, SYSU FLORENCE KARD

Hand L. Wrist L. Hand L.
Hand R. Wrist R. Hand R.
Shoulder L. Shoulder L. Shoulder L.
Shoulder R. Shoulder R. Shoulder R.
Head Head Head
Spine Spine Spine
Hip L. Hip L. Hip L.
Hip R. Hip R. Hip R.
Ankle L. Ankle L. Foot L.
Ankle R. Ankle R. Foot R.

Table 3. Subsets of bones used for the Bone Pair Descriptor. “L.” and “R.” denote Left and
Right, respectively.

MSRA, UTD-MHAD, UTK, SYSU FLORENCE KARD

Spine–Head (central) Spine–Head (central) Spine–Head (central)
Elbow R.–Wrist R. Elbow R.–Wrist R. Elbow R.–Wrist R.
Wrist R.–Hand R. Shoulder R.–Elbow R. Shoulder R.–Elbow R.
Shoulder R.–Elbow R. Elbow L.–Wrist L. Elbow L.–Wrist L.
Elbow L.–Wrist L. Shoulder L.–Elbow L. Shoulder L.–Elbow L.
Wrist L.–Hand L. Hip R.–Knee R. Hip R.–Knee R.
Shoulder L.–Elbow L. Knee R.–Ankle R. Knee R.–Foot R.
Hip R.–Knee R. Hip L.–Knee L. Hip L.–Knee L.
Knee R.–Ankle R. Knee L.–Ankle L. Knee L.–Foot L.
Ankle R.–Foot R.
Hip L.–Knee L.
Knee L.–Ankle L.
Ankle L.–Foot L.

The subsets of joints and bones were selected experimentally as a part of the previous
work on the subject of human action recognition [31]. Different configurations were also
tested, however, the chosen subsets yielded the best results in terms of recognition rate and
computation time.

5.2. Visual Examples of Augmented Time Series

To show exemplary time series, in Figure 4, two actions from the MSRA II dataset [35]
(i.e., “draw circle” and “high arm wave”) are presented along with the additional time
series generated by ARSPAWNER. The curves of the first action represent the first DD
feature related to Hand Left and Hand Right joints, and the curves of “high arm wave”
action represent φ feature of BPD, for which the non-central vector is determined by Wrist
Right and Hand Right joints.
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Figure 4. Time series generated by ARSPAWNER (blue curve) based on two exemplary timeseries
(red and green curves). The left plot represents “draw circle” action and the right plot represents
“high arm wave” action from MSRA II dataset.

5.3. Classifiers

Among classification methods, the classical Dynamic Time Warping (DTW) and two
recent methods were used: LogDet Divergence-based Metric Learning with Triplet con-
straints (LDMLT) [42] and Time series Cluster Kernel (TCK) [43]. LDMLT is a classifier
based on Mahalanobis distance and the so-called triplet constraints used for its learning [42].
TCK is a method that calculates similarities between time series using Gaussian Mixture
Models (GMM) augmented with informative prior distributions. It can handle missing
data without the usage of imputation methods [43]. The output of DTW and LDMLT is
the distance between two given sequences, i.e., each testing sequence is compared to each
training sequence. Therefore, there is a need to apply the nearest neighbor classifier to
determine the class represented by the closest sequence.

In Table 4, the configuration of parameters for each classifier is presented. The pa-
rameter values were set experimentally in the spirit of fairness, i.e., by changing them and
checking whether the recognition rate is improved.

Table 4. Parameters of the classifiers.

Classifier Parameter Name Parameter Value

DTW Window size 5
Metric Euclidean

Triplets factor 20
LDMLT Alpha factor 5

Number of iterations 15

Maximum number of mixture components 5
TCK Number of randomizations 50

Number of iterations 20

5.4. Results

The feature vectors used in the experiments are concatenations of the DD and BPD
features without Θ, which makes a total of 69 features (45 for DD and 24 for BPD).

ARSPAWNER generates new data based on a pair of input time series, and therefore,
the number of generated examples by other methods is aligned with the number of returned
samples. This ensures a fair comparison of algorithms.

In this study, four augmentation methods are compared using the classification accu-
racy obtained for each dataset and classifier. Due to the randomness of the augmentation
algorithms and TCK classifier, each accuracy is calculated for 10 runs and averaged. Then,
the following values are calculated: average accuracy, average rank, geometric average
rank, and a number determining how many times a method achieved the best accuracy
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(count best). These values are considered as the comparative criteria. To compare the
methods, ranks from 1 to 5 are used, where a lower rank means a method has greater
accuracy. The compared approaches are: SPAWNER, ARSPAWNER, Window Slicing [4],
and Window Warping [4]. The results for each method, and for the case in which the
augmentation is not performed (non-augmentation case), are presented in Table 5.

The experimental results reveal that the proposed ARSPAWNER is the most effective
augmentation method and outperforms the non-augmentation case according to all com-
parative criteria. The method shows the greatest advantage over the others when used
with DTW. However, in the case of the other two classifiers, ARSPAWNER and SPAWNER
have close average effectiveness. They both significantly outperform the other methods, as
well as the results of the non-augmentation case.

The LDMLT classifier yielded better results than the other two methods for all datasets,
and its suitability for the action recognition problems was proven in the previous study [31].
The study of Kamycki et al. [9], in which SPAWNER was introduced, does not address
action recognition problems considering time series from different domains. Interestingly,
in that study, the LDMT classifier showed inferior performance. From Table 5, it can also
be seen that the TCK classifier obtained the worst results among all three methods for all
datasets, except UTK, for which it outperformed DTW.

Overall, it can be seen that the introduced ARSPAWNER outperforms the remaining
data augmentation methods on action recognition datasets, since it considers the specificity
of such data collections, with many similar and overlapping action classes.

Table 5. Experimental comparison of augmentation methods for three classifiers in terms of classifi-
cation accuracy. The two best results for each classifier and dataset are written in bold.

Dataset/Aug. Method None WW WS SPAWNER ARSPAWNER

DTW
MSRA I 71.7 70.6 74.3 74.4 76.1
MSRA II 69.0 69.7 73.1 69.3 71.7
MSRA III 83.9 84.2 84.0 86.5 86.5
UTD-MHAD 86.3 86.3 83.9 86.5 86.7
UTK 81.9 80.7 86.4 85.4 86.4
FLORENCE 78.6 78.4 81.7 81.5 81.8
SYSU 69.2 67.2 70.8 71.2 72.5
KARD 89.6 90.9 91.6 88.0 89.7

LDMLT
MSRA I 75.5 80.6 82.6 86.2 86.5
MSRA II 78.8 77.3 73.2 80.6 83.2
MSRA III 90.2 88.8 88.6 89.4 89.6
UTD-MHAD 92.1 90.4 84.4 92.4 89.2
UTK 91.5 92 91.9 95.4 95.7
FLORENCE 86.0 84.7 84.7 88.5 87.4
SYSU 68.8 61.4 64.4 70.9 70.5
KARD 95.9 96.4 94.0 97.0 97.6

TCK
MSRA I 55.8 62.8 62.1 65.7 66.5
MSRA II 54.9 58.0 58.5 54.9 58.1
MSRA III 75.7 79.3 77.1 81.7 81.4
UTD-MHAD 62.0 56.6 57.7 61.5 60.3
UTK 92.6 93.3 93.7 93.2 93.3
FLORENCE 78.0 79.7 79.4 81.6 80.4
SYSU 62.7 62.8 62.3 66.5 66.2
KARD 85.5 88.0 88.3 88.9 85.2

Overall results
Average rank 3.88 3.65 3.38 2.21 1.90
Geometric average rank 3.6 3.53 2.95 1.93 1.68
Count best 2 0 5 8 11
Average accuracy 78.2 78.3 78.7 80.7 80.9
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5.5. Visual Comparison

To show the areas in which new samples are generated by the augmentation methods
from the MSRA I dataset, Kruskal’s nonmetric MDS [30] is employed. To facilitate the
analysis, the first 60 actions are considered. MDS reduces the dimensionality of data
samples and can be used with time series of different lengths by the usage of the DTW
dissimilarity matrix. The matrix contains pairwise DTW distances between examples. The
MDS representations of exemplary time series are shown in Figure 5. Input time series are
filled while the colors indicate their classes. The proximity of samples from different classes
or existing overlapped class boundaries illustrate the recognition problems. However,
the introduction of new data samples in most cases improved the recognition accuracy
of classifiers, it can be assumed that methods generating time series in areas within class
boundaries are likely to lead to a higher recognition rate. As presented, ARSPAWNER
generates fewer examples in areas occupied by representatives of other classes than in the
case of the remaining augmentation approaches.

The recognition problems can also be highlighted by showing testing examples to-
gether with training data and augmented data. Therefore, in Figure 6, solid triangles
represent 2D MDS embeddings of testing samples from the entire MSRA I dataset, and
empty triangles denote training data (Figure 6a) and augmented data (Figure 6b), respec-
tively. The placement of testing samples in the feature space indicates recognition problems
as the class boundaries are difficult to determine due to the presence of clusters of similar
examples from different classes in close proximity. Even classes that seem to be easily
distinguished, represented here by yellow and bright green triangles are close to each other
while training examples of the bright green class are far from that boundary (Figure 6a).
This means that training examples do not carry enough information to be able to success-
fully recognize examples from these two classes. The emergence of augmented samples
(Figure 6b) cannot solve this problem, since such knowledge cannot be obtained, but adds
more examples in vital areas, shrinking overlapped class areas. Similar observations can be
made for other datasets. It is worth noticing that the reported results strongly depend on
the capabilities of used classifiers. Some of them may not be suitable to recognize human
actions as can be seen in the TCK case.

5.6. Comparison with CGAN

Since there are approaches based on GAN architecture to augment time series in differ-
ent domains, the performance of ARSPAWNER is compared with those of Conditional GAN
on three MSRA datasets. Due to the lack of Matlab implementations of GAN-based ap-
proaches designed to augment action recognition time series in the literature, the available
Matlab CGAN example designed to generate synthetic time series was adapted (Math-
Works, https://www.mathworks.com (accessed on 13 March 2022)) [44]. The employed
CGAN uses 1-D convolutional networks and is designed to perform the two-class aug-
mentation. The generator network projects and reshapes the 1 × 1 × 100 noise arrays
to 4 × 1 × 1024 arrays. It converts data labels to embedding 4× 1 × 1 vectors. Then, it
concatenates the outputs of the two inputs and upsamples them to 1201 × 1 × 1 arrays
with 1-D transposed convolution layers and ReLU layers. The dimensionality of the arrays
is determined by the application of the origin of the adapted example. The discriminator
network takes two inputs and classifies original and synthesized 1201 × 1 × 1 signals. It
reshapes and concatenates them. Then, after downsampling, a series of 1-D convolution
layers with leaky ReLU (a scale of 0.2) are employed.

https://www.mathworks.com
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Figure 5. The 2D MDS embeddings of DTW dissimilarities between training and augmented se-
quences from the MSRA I dataset for the compared augmentation methods. Colors are used to
differentiate the classes, the filled triangles denote input examples.

(a) Training and testing data (b) Augmented and testing data

Figure 6. The 2D MDS embeddings of DTW dissimilarities between testing and training or testing and
augmented sequences from the MSRA I dataset. Colors differentiate the classes, the filled triangles
denote testing examples.

The network was adapted to perform the augmentation of action recognition MSRA
datasets that contain time series of different lengths, belonging to 8 classes and composed of
69 features. Specifically, due to the ability to generate two class time series, it was run eight
times with input samples divided into two classes (i.e., the class considered in a given run
and the rest). Additionally, since it is not designed to process multivariate time series and to
avoid time-consuming computations, the PCA technique was applied to reduce the feature
dimensionality from 69 to 5 and CGAN was run for each new feature independently with
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the concatenation of data to form synthesized five-dimensional vectors. Furthermore, since
time series in MSRA datasets are of different lengths, they were interpolated to the same
length, imposed by the network architecture. The finally obtained augmented examples
were added to the original samples and employed by the nearest neighbor classifier with
the DTW distance. The parameters of the network were set as recommended by the
network designers, with the reduced number of iterations since the model converged
earlier, allowing for the reduction in the training time. Important parameters of CGAN:
number of iterations = 1000, learning rate = 0.0002, the Adam optimizer, batch size = 256,
latent dimension = 100, and embedding dimension = 100. In experiments with CGAN, a PC
with Nvidia Quadro RTX 4000 MAX-Q GPU, i9-10885H CPU, and 64 GB RAM was used.
To ensure a fair comparison, ARSPAWNER was also run on the same five-dimensional
feature vectors resulting from PCA.

The accuracy of the classifier for three augmented MSRA datasets after PCA feature
reduction is presented in Table 6. It can be seen that the classifier equipped with data
generated by ARSPAWNER improves its accuracy by a large margin. The improvement
can also be visible for CGAN-created data in the case of MSRA I. However, for the MSRA
II and III datasets, creating synthetic samples led to a significant drop in the performance
of the classifier. The problems with the generation of suitable data examples of CGAN are
possibly caused by the lack of a sufficient number of learning data examples, challenging
data examples in the dataset after reduction by PCA, and inefficiency of the employed
network architecture. To better highlight encountered problems with CGAN architecture,
the 2D MDS embeddings were created for the entire MSRA I dataset (Figure 7). As
shown, input data samples are close to each other due to the usage of PCA reducing the
dimensionality of the time series in the dataset. However, ARSPAWNER was able to create
samples in large clusters (Figure 7d) in their proximity (Figure 7c). CGAN, in turn, created
many samples across the feature space, with their representatives also located in places
that belong to the neighboring classes (Figure 7a,b).

Table 6. Comparison of CGAN and ARSPAWNER on the MSRA datasets. The best result for each
dataset is written in bold.

Dataset None CGAN ARSPAWNER

MSRA I 0.7075 0.7453 0.8118
MSRA II 0.6283 0.5487 0.6994
MSRA III 0.8125 0.6964 0.8393

5.7. Impact of Parameters

The next experiment concerns the impact of the ARSPAWNER parameters r1 and r2
on the classification accuracy. Figure 8 shows 3D surface plots calculated for each classifier
and MSRA II dataset. The values of r1 and r2 are within the range [0.1–1.0] with step 0.1.
The classification accuracy for DTW ranges from 63.2% to 72.6%, for LDMLT the range
is [78.8–85.5%], and for TCK the range is [53.3–62.4%]. For each classifier, the difference
between the lowest and the highest result is greater than 5 percentage points and smaller
than 10 percentage points. Therefore, it can be concluded that the parameters r1 and r2
have a moderate impact on the classification accuracy.

The r1 and r2 parameters govern two constraints on the generated time series. Hence,
a more detailed experiment, involving all three MSRA datasets, shows the impact of lower
and upper constraints on the performance of ARSPAWNER with the nearest neighbor
classifier with the DTW distance. Additionally, it allows for assessing the importance of
the class representatives used in the conditions. The results presented in Table 7 indicate
that both conditions should be present to obtain the best recognition rate for the MSRA
datasets. However, the condition that rejects examples created near to a given input sample
or a representative sample of a class (Equation (2)) is more influential than the upper limit
(Equation (3)), responsible for acceptance of candidates closer to the class borders. Since
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both conditions are based on two distances to a considered input sample (d1) and the DBA
representative (d2), their calculation reveals that they both should be used. It is justified by
a larger drop in the performance of the ARSPAWNER in the case in which distance to the
input sample is not employed. This confirms the usability of the introduced usage of the
representative time series for each class.

(a) CGAN, all samples (b) CGAN, augmented samples

(c) ARSPAWNER, all samples (d) ARSPAWNER, augmented samples

Figure 7. The 2D MDS embeddings of DTW dissimilarities between sequences of reduced dimen-
sionality from the MSRA I dataset for CGAN and ARSPAWNER. Colors are used to differentiate
the classes, the filled triangles denote input examples (a,c), while filled circles denote augmented
samples (b,d).

Table 7. Performance of ARSPAWNER with active conditions.

Active Condition MSRA I MSRA II MSRA III

Equations (2)–(3) 76.1 71.7 86.5
Equation (2) 76.1 70.4 86.5
Equation (3) 76.0 70.1 84.9

Lack of d1 in Equations (2)–(3) 76.5 70.1 85.6
Lack of d2 in Equations (2)–(3) 75.6 70.8 85.6
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Figure 8. Three-dimensional surface plots presenting the impact of ARSPAWNER parameters r1 and
r2 on classification accuracy with MSRA II dataset. The upper, middle, and lower plots represent the
results of DTW, LDMLT, and TCK, respectively.



Sensors 2022, 22, 2947 17 of 20

5.8. Performance with Small Number of Training Examples

To determine the capability of the introduced ARSPAWNER to augment small datasets,
composed of a small number of training examples per class, it was tested using the MSRA
I-III datasets varying the number of input time series. This experiment also indicates prob-
lems with small benchmark datasets in which class boundaries cannot be easily established
due to an insufficient amount of available data and a relatively large number of classes (i.e.,
there are eight classes in the MSRA datasets). In the experiment, 3 to 15 input examples per
class were randomly selected and used by ARSPAWNER to generate synthetic data. Then,
the average accuracy of the nearest neighbor classifier with the DTW distance based on ten
draws is reported in Figure 9. Overall, as reported, ARSPAWNER can improve the results
of the classifier based only on a few available training samples. Depending on the dataset
and the way testing examples are scattered in the feature space, the positive effect of the
augmentation is visible even for five input examples.

Figure 9. Average accuracy of the nearest neighbor classifier with the DTW distance based on a small
number of augmented training examples per class.

6. Conclusions

In this paper, a novel method for the augmentation of datasets with time series rep-
resenting human actions has been presented. The introduced ARSPAWNER improves
the original SPAWNER by introducing action recognition-related constraints addressing
problems present in this domain. The approach identifies data samples, i.e., time series, that
are far enough from input samples and still do not cross the boundaries of other classes. Ad-
ditionally, data samples that are in the proximity of the input time series, and consequently
do not introduce new knowledge, are rejected. The constraints are based on distances
between a new sample and an input sample and a sample generated as a representative
time series characterizing a class. It has been shown that the introduced constraints provide
to the augmentation leading to the improved performance of classifiers. The method has
been experimentally compared with related approaches using three classifiers on eight
action recognition datasets.

Future work will involve an application of optimization techniques to select a suitable
set of generated time series based on data clustering quality indices. Such an approach can
be seen as an extension of the study presented in this paper since constraints that remove
augmented samples may be replaced with a step in which their suitability is assessed
based on the quality criteria describing clusters of generated samples. Another interesting
research direction is to employ augmentation methods like ARSPAWNER to augment small
datasets and train time-consuming deep learning classifiers.

To facilitate the reproducibility of the approach, the Matlab implementation of the
introduced ARSPAWNER is available at www.marosz.kia.prz.edu.pl/ARSPAWNER.html

www.marosz.kia.prz.edu.pl/ARSPAWNER.html
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(accessed on 13 March 2022). The scripts for Distance Descriptor and Bone Pair Descriptor
are also publicly available and can be downloaded [45].
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31. Warchoł, D.; Kapuściński, T. Human Action Recognition Using Bone Pair Descriptor and Distance Descriptor. Symmetry 2020, 12,
1580. [CrossRef]
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