
Creative Commons licenses: This is an Open Access article distributed under the terms of the Creative Commons  
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY -NC -SA 4.0). License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Corresponding author:
Assoc. Prof. Michal T. Marzec
University of Copenhagen
Department of Biomedical 
Sciences
Panum Institute, room 12.6.10
Blegdamsvej 3
DK-2200 Copenhagen N
Denmark
E-mail: Michal@sund.ku.dk 

1�Department of Pathology and Medical Biology, University Medical Center Groningen, 
Groningen, Netherlands  

2Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany 
3Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark

Submitted: 14 August 2019; Accepted: 23 October 2019 
Online publication: 31 January 2020

Arch Med Sci 2023; 19 (4): 895–911
DOI: https://doi.org/10.5114/aoms.2020.92674
Copyright © 2020 Termedia & Banach 

Immunometabolism in type 2 diabetes mellitus:  
tissue-specific interactions 

Erika Pinheiro-Machado1, Ewa Gurgul-Convey2, Michal T. Marzec3

A b s t r a c t

The immune system is frequently described in the context of its protective 
function against infections and its role in the development of autoimmuni-
ty. For more than a decade, the  interactions between the  immune system 
and metabolic processes have been reported, in effect creating a  new re-
search field, termed immunometabolism. Accumulating evidence supports 
the hypothesis that the development of metabolic diseases may be linked 
to inflammation, and reflects, in some cases, the  activation of  immune 
responses. As such, immunometabolism is defined by 1) inflammation as 
a driver of disease development and/or 2) metabolic processes stimulating 
cellular differentiation of the immune components. In this review, the main 
factors capable of  altering the  immuno-metabolic communication leading 
to the development and establishment of obesity and diabetes are compre-
hensively presented. Tissue-specific immune responses suggested to impair 
metabolic processes are described, with an emphasis on the adipose tissue, 
gut, muscle, liver, and pancreas.
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Introduction

Obesity prevalence has doubled in more than 70 countries and con-
tinuously increases globally since 1980 [1]. Studies have associated high 
body mass index (BMI) and physical inactivity with a set of chronic diseas-
es such as type 2 diabetes (T2DM), and an array of other disorders [2–4]. 
The main link between these metabolic disorders is the ability to induce 
insulin resistance and, as a  consequence, affect the whole organism’s 
function. However, some organs and tissues exacerbate the pathological 
conditions including: 1) adipose tissue (AT) – the site of  fat accumula-
tion, 2) the gut – the site for the microbiota and metabolites that have 
been associated with metabolic disorders [5], 3) muscles – the primary 
site of insulin resistance [6], 4) the liver – obesity is a major risk factor 
for liver damage, and finally, 5) the pancreas – once impaired it leads to 
compromised insulin production and secretion. All metabolic processes 
that these organs are involved in are also influenced by immunological 
responses that stimulate and maintain them. 

The interface between the immune system and metabolism has been 
investigated over the last 15 years and has been branded with the term 
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immunometabolism. This interdisciplinary ap-
proach made the  field essential for understand-
ing the  pathology and progression of  metabolic 
diseases as immunometabolism places the  low-
grade chronic inflammation as the central cause 
and consequence of  metabolic disorders  [7]. In-
flammation is described as a prompt and a short-
term response to deal with injuries and infec-
tions, providing repair to injured tissues, and it 
is composed of a series of signals and pathways 
that are rapidly resolved upon healing. In con-
trast, low-grade chronic systemic inflammation 
or metaflammation is primarily caused by per-
sistent activation of  the  innate immune system 
that promotes increased production and secretion 
of  proinflammatory cytokines and other media-
tors [8, 9]. It is generally believed that persistent 
over-nutrition, physical inactivity and exposure to 
certain epigenetic factors contribute to the devel-
opment of low-grade systemic inflammation asso-
ciated with metabolic diseases  [10–12]. The  con-
stant activation of the innate immune system has 
been shown to induce the  production of  stimuli 
that may additionally activate the  adaptive im-
mune system. In some tissues, such as visceral AT, 
an alternative chain of events combining the im-
mune response and inflammation was described, 
in which the adaptive immune cells (CD4 and/or 
CD8 T cells) were shown to trigger AT inflamma-
tion [13, 14]. Together, it is proposed that an inter-
play between disturbed metabolic state and these 
low-grade chronic inflammatory responses culmi-
nate in a vicious cycle leading to the development 
of metabolic diseases, such as T2DM [15–17]. 

An inflammatory state playing a role in the de-
velopment of  metabolic diseases was shown for 
the first time in 1993 [18] when the adipose tissue 
(AT) was described to produce the proinflamma-
tory cytokine tumor necrosis factor α (TNF-α). In 
accordance, it was proposed that obesity could 
be associated with enhanced expression of proin-
flammatory mediators and that this environment 
could modulate glucose metabolism and/or insu-
lin action [19]. 

Increased serum free fatty acids (FFAs) lev-
els have been associated with insulin resistance 
in obese individuals  [20–23]. Especially satu-
rated FFAs have been correlated with induction 
of  the  inflammatory response and insulin resis-
tance in insulin target tissues, while polyunsatu-
rated FFAs have been described as generally an-
ti-inflammatory [24]. In contrast to omega-6 FFAs, 
omega-3 FFAs by stimulating the  biosynthesis 
of specialized pro-resolving lipid mediators (SPMs; 
such as protectins, resolvins, lipoxins, maresins) in 
immune cells and other tissues are believed to 
possess a strong protective anti-inflammatory po-
tential [25]. Specialized pro-resolving lipid media-

tors were shown to improve insulin sensitivity and 
reduce AT inflammation via inhibition of  TNF-α,  
IL-1β, IL-6 and IL-8 secretion [26].

The analysis of AT from obese patients showed 
that macrophages were able to infiltrate this tis-
sue  [27] and that FFAs promoted the polarization 
of  these cells towards a  proinflammatory pheno-
type (M1 macrophages)  [28]. It is important to 
mention that macrophage polarization has been 
clustered into two major macrophage polarization 
programs, classically activated macrophages or M1 
and alternatively activated macrophages or M2, 
each related to specific immune responses, among 
which both progression and resolution of  in-
flammation constitute critical determinants  [29].  
However, this clear distinction has been challenged 
with data identifying a  metabolically activated 
macrophage phenotype that is mechanistically dis-
tinct from M1 or M2 activation [30, 31].

Nevertheless, the presence of classical M1 mac-
rophages in AT of obese patients and high-fat fed 
animal models (HFD; HFD-fed M-JAK2–/– and HFD-
fed MIF–/– C57Bl\6J) was clearly associated with 
impaired insulin action  [32, 33]. Beyond the  in-
nate immune system, it has also been demon-
strated that the adaptive immune response with 
T and B lymphocytes may influence metabolic 
processes. So far, the immuno-metabolic crosstalk 
has been described in various tissues, suggesting 
functional links with consequences for transla-
tional studies [34, 35]. 

This review aims to present and discuss the up-
dated knowledge about important processes in 
the  intercommunication between the  immune 
system and metabolism (Figure 1). Although much 
of what is known about these interactions during 
obesity and obesity-related diseases was first de-
scribed in AT, other organs are also involved and 
they will be discussed in more detail in forthcom-
ing sections.

Tissue-specific immune responses leading to 
metabolic diseases

Adipose tissue

Initially treated as a deposit for triacylglycerol 
and thus as a sole energy-storage tissue, the AT 
is now considered a  multifunctional endocrine 
organ that is able to synthesize bioactive fac-
tors (adipokines) to regulate metabolism, energy 
intake, fat storage and immunity  [36, 37]. Com-
posed mainly of adipocytes, the AT also contains 
pre-adipocytes, endothelial cells, fibroblasts, and 
a diversity of immune cells such as macrophages, 
neutrophils, T lymphocytes, and others, with clear 
differences observed between obese and lean adi-
pose tissue, as well as distinct functions of viscer-
al fat (VAT) and subcutaneous fat (SAT)  [38, 39]. 
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The  volume of  abdominal visceral fat area was 
the most predictive factor for AT macrophage in-
filtration in patients [39], and correlated with in-
creased proinflammatory mediator secretion [40]. 
In lean individuals only 10% of  AT is composed 
of  macrophages and they are predominantly in 
the anti-inflammatory M2 state [41]. In contrast, in 
obese individuals up to 50% of AT consists of M1 
macrophages  [42, 43]. TNF-α released from M1 
macrophages can inhibit the  transcription factor 
PPARγ that is responsible for the ability of AT to 
produce new healthy fat cells from stem cells [44]. 
Consequently, the decreased capability for gener-
ation of new healthy fat cells together with a par-
allel overexpansion of inflamed adipocytes results 
in the acceleration of necrotic cell death of adipo-
cytes. This process triggers the aggravation of AT 
inflammation through migration of  neutrophils 
and macrophages [45–47].

Alterations in the  AT immune status influence 
cytokine content, adipocyte metabolism and insu-
lin sensitivity. Proinflammatory adipokines stimu-
late local recruitment and accumulation of inflam-
matory cells in AT as well as increasing the systemic 
levels of inflammatory markers [48–50]. This is the 
mechanism suggested to trigger the low-grade 

chronic inflammation that is directly related to the 
development of various diseases, such as obesity, 
T2DM, cardiovascular pathologies or cancer [51, 52]. 

The major immuno-metabolic interaction tak-
ing place in the obese AT is the adipocyte-macro-
phage crosstalk [53]. The inflamed environment is 
not only a result of the TNF-α production by adipo-
cytes [18] but also a result of macrophage activity. 
M1 macrophages secrete high levels of  chemo
kines and proinflammatory cytokines, fostering 
the  insulin-resistant state in AT  [16, 54]. It has 
been shown that amelioration of  AT inflamma-
tion strongly correlates with a decreased number 
of proinflammatory macrophages as well as reduc-
tion of the whole-body insulin resistance [55, 56]. 
Other proinflammatory factors that impair insulin 
signaling in the AT include activation of the nucle-
ar factor-κB (NF-κB) [57, 58], and c-Jun N-terminal 
kinase (JNK) [59] pathways in adipocytes, as well 
as induction of oxidative stress [60]. Once active, 
these components stimulate the  transcription 
of  genes that, 1) encode pro-inflammatory pro-
teins, 2) inhibit the  activation of  the  insulin re-
ceptor, and, 3) impair processes such as the PI3K/
Akt/mTOR pathway resulting in defective insulin 
signaling [61]. 

Figure 1. Important processes in the intercommunication between the immune system and metabolism 

[This figure was created using images from Servier Medical Art Commons Attribution 3.0 Unported License. (http://smart.servier.
com). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License]
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Interleukin-6 (IL-6), secreted by the adipocytes, 
stromal cells and macrophages, also affects in-
sulin sensitivity in the  AT through similar mech-
anisms and its serum level positively correlates 
with the  degree of  obesity in humans  [62–64]. 
Although its activity impairs insulin signaling [65], 
the  absence of  IL-6 leads to the  development 
of obesity and insulin resistance [66, 67], suggest-
ing that a certain threshold of IL-6 concentration 
is required for unbiased AT function. The  appe-
tite-control adipokine leptin is another factor 
considered as a crucial pro-inflammatory contrib-
utor to AT dysfunction [68], capable of activating 
macrophages [69], and promoting glucose metab-
olism in CD4+ Th1 cells  [70–72]. Finally, neutro-
phils, which are the  first immune cells recruited 
to the AT in obese animals fed a HFD  [73], have 
also been shown to participate in the AT inflam-
matory response and malfunction. When present 
in the AT, neutrophils secrete neutrophil elastase, 
which hampers insulin signaling through degrada-
tion of the insulin receptor substrate 1 (IRS-1) [73].  
This process was shown to be attenuated in HFD 
exercise-trained mice [74].

Interestingly, apart from the innate immune cell 
components, lymphocytes have also been shown 
to be engaged in the regulation of the inflamma-
tion-metabolic state axis of AT. After macrophages, 
CD3+ T cells are the largest population of immune 
cells present in the AT with even more abundant 
presence in response to increasing adiposity [75]. 
Besides CD3+, the levels of CD8+ and CD4+ T cells 
are also elevated during obesity  [76–78], most-
ly in VAT [79, 80]. The increase in CD8+ T cells is 
suggested to precede and contribute to the  ac-
cumulation of  macrophages in the  AT, and their 
depletion is associated with the decrease of M1 
macrophages and insulin resistance improve-
ment [76]. The CD4+ (Th1) increase is suggested to 
have a pathological role in obesity and obesity-in-
duced insulin resistance. It was demonstrated 
that activated CD4+ T cells (CD4+CD44

hi
CD62L

lo
) 

accumulate in the visceral AT of obese mice and 
display features of  cellular senescence  [81]. In 
addition, the MHC class 2 induction in the obese 
AT activates CD4+ T cells, which triggers AT in-
flammation and insulin resistance [82]. γδ T cells, 
when in the white adipose tissue (WAT) and after 
long-term HFD, are present in high numbers and 
secrete high amounts of IL-17, a cytokine that reg-
ulates adipogenesis and glucose metabolism [83]. 
Animals lacking γδ T cells display reduced HFD-in-
duced inflammation, while the presence of these 
cells positively contributes to WAT inflammation 
by regulating the  macrophage populations pres-
ent in the tissue [84]. It is important to point out 
that the dynamics of  the  immune system within 
VAT and SAT is remarkably different [85, 86].

On the other hand, Th2 cells are suggested to 
play a protective role against systemic inflamma-
tion and insulin resistance by producing type 2  
cytokines (IL-4, IL-5, IL-13) and stimulating po-
larization of  macrophages to M2 phenotypes. 
Production of  Th2 cytokines, such as IL-10, was 
reported to occur in SAT, indicating an anti-inflam-
matory role of this fat depot [87–89]. CD4+ T cells 
once transferred into a diet-induced obesity ani-
mal model were shown to acquire a Th2 profile. 
The observation was associated with a reduction 
of  body weight and insulin resistance improve-
ment [88, 90]. An unbalanced ratio between Th1 
and Th2 cells is strongly associated with systemic 
inflammation and insulin resistance [88]. T regu-
latory cells (Tregs), a cell type that generally inhib-
its the acceleration of inappropriate inflammatory 
processes, thereby maintaining insulin sensitiv-
ity  [91], are also involved. Tregs display reduced 
levels during obesity  [92], while non-obese AT is 
rich in Tregs [14]. It was demonstrated that obese 
mice with adipocytes lacking MHC class 2 and 
consequently displaying lower amounts of  IFN-γ 
presented a  higher number of  Tregs, which led 
to reduced obesity-induced AT inflammation and 
insulin resistance  [92]. In addition, imbalances 
between Tregs and Th17 cells, characterized by 
the  production of  proinflammatory cytokines 
such as IL-17A, IL-22, and IL-21  [93], caused by 
lipotoxicity were shown to contribute to obesity 
and T2DM progression [94]. Ablation of Tregs spe-
cifically in the AT of HFD-fed animals resulted in 
impaired insulin sensitivity [92]. 

B lymphocytes have been shown to accumulate 
before T cells in the AT in HFD models [95] and are 
recruited by the  pro-inflammatory chemokines 
produced by the AT (CXCL10/CCL2/CCL5) [96], and 
through leukotriene LTB4 signaling [97]. A patho-
genic role for B cells was reported, leading to en-
hancement of the AT insulin resistance [98]. B cell 
accumulation is associated with M1 macrophage 
polarization, activation of T cells (CD4+ and CD8+), 
and production of pathogenic IgG antibodies [98]. 
A distinct B cell subtype, called the B regulatory 
cell (Breg), was reported as a constitutive subset 
with an anti-inflammatory profile within AT. Bregs 
maintain tissue homeostasis, produce IL-10, and 
their function is impaired during obesity  [99]. 
Bregs were shown to have a  central contribution 
to the  progression of  obesity-induced inflamma-
tion, displaying reduced numbers in the obese AT  
[99, 100]. The same study showed a causal rela-
tionship between increased levels of Th1 cytokines 
and decreased frequency of Bregs [100]. Another 
anti-inflammatory agent influencing the  AT me-
tabolism is the cytokine IL-37. Transgenic mice ex-
pressing IL-37 were found to be protected against 
metabolic syndrome even when fed a HFD [101]. 
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Moreover, HFD-fed mice treated with recombinant 
IL-37 displayed improved insulin sensitivity and 
obesity-induced inflammation [102]. 

Moreover, dietary FFA composition has been 
suggested to play an  important role in insulin 
resistance and AT inflammation  [26, 103, 104], 
with saturated FFAs promoting AT inflammation 
whereas omega-3 FFAs resolves the inflammatory 
response [105, 106].

The innate lymphoid cells (ILCs) are a  lin-
eage-negative subset of T cells (lacking the expres-
sion of surface markers that define other T cells) 
that act in response to the  cytokines produced 
by surrounding macrophages, dendritic cells, and 
epithelial cells  [107]. ILCs comprise five different 
subsets of  immune cells: 1) natural killer (NK) 
cells, 2) ILC1s that produce interferon g (IFN-γ),  
3) ILC2s that produce IL-5 and IL-13, 4) lymphoid 
tissue inducer cells, and 5) ILC3s that produce IL-17  
and IL-22 [107, 108]. These cells are suggested to 
regulate metabolism and to play a role in the de-
velopment of  obesity. NK cells and ILC1s are in-
volved in the development of obesity-associated 
insulin resistance [109, 110], ILC2S are involved in 
the browning of the WAT and protection against 
obesity [111], ILC3S and lymphoid tissue inducer 
cells might be involved in the induction of obesity 
and obesity-associated insulin resistance due to 
lymphotoxin/IL-23/IL-22 activity [112].

Cell death and hypoxia also contribute to AT 
macrophage migration through the  formation 
of  “crown-like structures”, and the  hypoxia hy-
pothesis, respectively. Macrophages accumulate 
in the AT around adipocytes that are dead or in 
the  process of  dying, forming “crown-like struc-
tures” around the  dead adipocytes  [113]. These 
macrophages (M1 phenotype) produce a  range 
of  pro-inflammatory cytokines, such as TNF-α, 
which ultimately results in the  development 
of  metabolic disorders  [114]. Moreover, macro-
phages localized in the  “crown-like structures” 
in obese AT were shown to be enriched in Min-
cle (macrophage-inducible C-type lectin)  [115]. 
The expression of Mincle correlated with the  in-
tensity of AT inflammation and ectopic lipid accu-
mulation [116]. 

Their proliferation has IL-4/STAT6 as the  driv-
ing force since IL-4 administration significantly 
enhanced the proliferation of ATMs in non-obese 
animals [117]. However, AT macrophages were re-
cently suggested to be responsible for promoting 
the  clearance of  dead adipocytes through lyso-
somal exocytosis, also indicating their beneficial 
role  [31]. Finally, the  hypoxia hypothesis states 
that during obesity, angiogenesis is insufficient 
to maintain the vascularization and oxygenation 
necessary for AT proper function. Hypoxia acti-
vates the  hypoxia-inducible factors (HIFs) which 

can stimulate gene expression of proinflammato-
ry pathway genes such as NK-κB [118], affect AT 
macrophage polarization and inhibit preadipocyte 
differentiation [119]. The understanding of obesi-
ty and insulin resistance development from the AT 
perspective can be summarized through the  in-
teractions between adipokines, immune cells, cell 
death, and hypoxia.

Gut

The gut is a site of intricate immunological pro-
cesses since it is the  largest site of contact with 
antigens either from microbiota or from dietary 
factors. It also possesses the largest mass of lym-
phoid tissue in the organism. In the past decade, 
the number of investigations about immuno-met-
abolic interactions within the gut increased expo-
nentially, especially due to strong evidence sug-
gesting a direct association of the gut microbiota 
composition and its metabolites with the  devel-
opment of  obesity and related metabolic disor-
ders [120, 121]. 

Data show that caloric restriction and obesity  
affect gut permeability  [122–124]. Standardized 
caloric restriction positively impacted gut per-
meability through a  mechanism that remains 
unclear  [122]. On the other hand, intestinal bar-
rier impairment was shown to be exacerbated by 
a lipid challenge in obese patients [123], and an-
thropometric measurements and metabolic vari-
ables were shown to be positively correlated to 
increase in gut permeability during obesity [124]. 
The  metabolites and byproducts generated by 
the microbiota also play an important role as com-
ponents influencing inflammatory and metabolic 
processes as well as modulating the intestinal bar-
rier function [125–127]. Molecules such as acetate, 
propionate, and butyrate – short-chain fatty acids 
(SCFAs) – produced as a result of the fermentation 
processes performed by the microbiota, can act as 
signaling and regulatory molecules involved in in-
flammation and insulin sensitivity [128–131]. Un-
der non-obese conditions, SCFAs do not accumu-
late since they are transported through the portal 
vein, reaching the liver for clearance [132]. How-
ever, during obesity, the outcome of the increased 
barrier permeability is migration of products that 
usually remain in the intestinal environment, but 
which are now directed towards the  systemic 
circulation at high concentrations. The  problem 
associated with this migration is the recognition 
by the  immune system of  pathogen-associated 
molecular patterns (PAMPS), and lipopolysaccha-
rides (LPS) in other tissues  [133]. This recogni-
tion through toll-like receptors (TLRs) stimulates 
the  proinflammatory response in insulin target 
tissues, contributing to reduced insulin sensitiv-
ity [134, 135]. On the one hand, excessive SCFAs 
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serve as an additional source of energy as well as 
an  inflammatory factor in tissues such as the AT 
and liver. At the same time, they are involved in the 
β-cell glucose-stimulated insulin secretion through 
the G-protein coupled receptor 43 (GPR43)/GRPR41 
[136, 137], and release of  pancreatic peptide  
YY3-36 and glucagon-like peptide-1 (GLP-1) [138]. 
This suggests that the composition of the micro-
biota is responsible for the  generation of  a  dif-
ferent type of  SCFAs, which in turn are capable 
of triggering different regulatory cascades. 

Germ-free animals enable greater insights to 
be gained into the  impact of  the  microbiome in 
the metabolic homeostasis. These animals are re-
sistant to the development of obesity and insulin 
resistance [139], concomitantly to the disruption 
of T and B cell function, and less efficient, impaired 
Tregs [140]. Obesity leads to dysbiosis [141], and 
it was recently suggested that this imbalance 
occurs even in a diet-independent fashion [142]. 
HFD affects not only the gut but also the gastric 
microbiota  [143], and germ-free mice that are 
long-term exposed to a  microbiota-derived from 
HFD animals develop dysglycemia and glucose in-
tolerance [144]. An array of studies indicate that 
the  diversity of  the  microbiota is closely associ-
ated with disease development and show that 
reduced diversity is positively correlated with in-
flammation and insulin resistance [145, 146]. For 
this reason, many efforts have been made to iden-
tify the potential differences between microbiota 
in health and disease [147].

Obesity stimulates the  accumulation of  non- 
beneficial bacterial strains, the  conclusion made 
by experimental transfer of microbiota from obese 
to germ-free mice resulting in increased adipos-
ity  [148]. As a  consequence of  this imbalance, 
PAMPs and LPS stimulate a pro-inflammatory en-
vironment within the gut. High fat or high sugar 
diets were shown to induce imbalance in the ratio 
of  specific strains of  bacteria within the  gut mi-
crobiota (Firmicutes/Bacteroidetes) and increase 
amounts of  pro-inflammatory strains such as 
Proteobacteria  [149, 150]. These alterations were 
partially restored by reverting to a  regular chow 
diet  [151]. Changes in the  Firmicutes/Bacteroide-
tes ratio are associated not only with obesity (high 
F/B), but also with weight loss (low F/B)  [152]. 
Obese and lean humans were found to display 
comparable altered taxonomic features [153]. Lac-
tobacillus spp. are also affected. Rats that went 
through short- and long-term periods of  caloric 
restriction displayed increased proliferation of this 
genus [154]. Lactobacilli are probiotics with main-
ly anti-inflammatory effects  [155] capable of  reg-
ulating Th17/Treg differentiation  [156], altering 
the Th1/Th2 ratio  [157], and suppressing macro-
phage WAT infiltration  [158]. Under physiological 

conditions, microbe-associated molecular pat-
terns (MAMPS) stimulate the  production of  anti- 
inflammatory factors promoting tolerance and 
proper function of the intestinal barrier [159, 160]. 
On the other hand, during obesity (diet-induced), 
where the intestinal barrier is known to be more 
permeable  [161], MAMPS stimulate intestinal ep-
ithelial cells, macrophages, and dendritic cells to 
produce pro-inflammatory cytokines [162]. The ac-
tivation of  inflammasomes is also suggested to 
contribute to gut microbiome perturbations [163, 
164]. However, a recent rigorous microbial phylo-
genetic analysis performed in inflammasome-de-
ficient mice failed to reproduce the gut microbiota 
composition alterations, raising the  importance 
of careful experimental procedures and controls in 
evaluating results about the gut microbiota [165].

Over the  last decade, the  investigation of  the 
interaction between the gut metabolism and the 
immune system has expanded our understanding 
about its impact on health and disease. Biomark-
ers to discriminate specific microbes’ species will 
soon confirm or refute the direct role of bacterial 
strains in obesity, T2DM, metabolic disorders and 
cancers [166, 167]. Although the exact mechanisms 
are still not fully understood, dysbiosis has an im-
pact on microbe and host metabolism, as well as 
shaping inflammatory responses. The  complex 
crosstalk between the microbiota, intestinal per-
meability and inflammation that leads to insulin 
resistance, alterations in the glucose metabolism, 
and T2DM has already been reviewed by differ-
ent authors [168–170]. Evidence accumulated so 
far opens the  f﻿ield for the  future development 
of therapeutic strategies.

Skeletal muscle

The skeletal muscle (SM) is the primary site for 
dietary glucose uptake and storage in the  form 
of glycogen, being, consequently, a crucial compo-
nent affected during the  development of  insulin 
resistance [6]. The physiology behind how the SM 
takes up glucose is extensively investigated, with 
special attention to the insulin signaling cascade 
and glucose transporter 4 (GLUT4) translocation 
regulation [171, 172]. However, very little is known 
about the potential role of the immune system in 
this regulatory mechanism or how inflammation 
impacts muscle metabolism. 

The very first link reporting immuno-meta-
bolic interactions influencing muscle physiology 
was the observation that LPS, when injected into 
dogs, leads to insulin resistance caused by impair-
ment of SM glucose uptake  [173]. Years after, it 
was shown that, like the  AT, the  skeletal muscle 
of obese animals and humans can also generate 
TNF-α  [174], and its attenuation was associated 
with improved insulin sensitivity and glucose me-
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tabolism [175]. The JNK pathway is also involved, 
and its role in the  pathogenesis of  obesity-in-
duced insulin resistance is well described  [176, 
177]. The  mechanisms behind the  protective ef-
fect of global JNK deficiency against diet-induced 
insulin resistance were carefully discussed pre-
viously  [176]. While some studies have shown 
the SM-specific ablation of  JNK results in an  im-
provement of  insulin resistance an  improvement 
of insulin resistance [178–180], others indicate no 
impact  [181, 182]. Thus, this immuno-metabolic 
interaction is still under discussion. 

Similarly to the AT, many of the classical innate 
immune components play a role in the SM metab-
olism. The SM is characterized by a  relatively low 
expression level of innate immune receptors [183]. 
Of all innate immune receptors, TLR4, 5, and 9 are 
the most abundant [184]. TLR4 activation stimulates 
glycolysis, inhibits fatty acid oxidation and induces 
insulin resistance [185]. Pharmacological inhibition 
of this receptor was shown to protect mice against 
diet-induced obesity  [186]. While the  whole-body 
deficiency of  TLR5 causes increased fat mass, in-
sulin resistance and metabolic syndrome-like 
features  [187], the  TLR5 SM-specific contribution 
remains unclear so far. The  most recent update 
explains the  role of  TLR5 in smooth muscle and 
the development of atherosclerosis through activa-
tion of TLR5-dependent NADPH oxidases, and H2O2 
generation [188]. TLR9, in turn, has been suggested 
to be involved in the development of type 1 diabe-
tes [189], and despite being the most abundant TLR 
at the mRNA level in muscle, its role in SM metab-
olism is being investigated. The role of other TLRs 
has been extensively reviewed [183].

Although often neglected as a  secretory tis-
sue, myocytes can express and secrete myokines. 
The  subset includes some cytokines (IL-6, IL-8, 
IL-15), fibroblast growth factor 21 (FGF21), basic 
FGF (FGF2), follistatin-related protein 1 (FSTL-1) 
and other molecules  [190]. The myokine activity 
counterbalances the  effects of  the  adipokines, 
stimulating beneficial effects on glucose and 
lipid metabolism and inflammation  [190–192]. 
The SM-derived IL-6 is the most investigated myo-
kine and, besides controversies  [192], it is sug-
gested to contribute to the metabolic homeosta-
sis reestablishment upon exercise but not under 
basal conditions [193]. Moreover, IL-6 was report-
ed to act in a gender-specific manner [194]. Mito
chondrial dysfunction  [195] and ER stress  [196] 
trigger FGF21 secretion, but the  relationship be-
tween FGF21-mediated metabolic alterations and 
disease progression is still not clear [197]. 

Altogether, the secretion of myokines does not 
seem to be the  factor responsible for the devel-
opment of  muscular inflammation during obe-
sity. Unlike in the AT, it is suggested that the  in-

flammation in the  muscles develops as a  result 
of  the  production of  proinflammatory molecules 
(adipokines) secreted from accumulated inter-
muscular and perimuscular fat depots and not 
by the tissue itself [198]. The obesity-induced in-
crease of such fat storage sites is correlated with 
the development of a pro-inflammatory environ-
ment in the muscle [198], influencing insulin sen-
sitivity by impairing its signaling as well as glu-
cose uptake through the GLUT4 reduction [199].

Apparently, the skeletal muscle is more of a tar-
get of the  inflammation induced by insulin resis-
tance in other organs than, in fact, a  site where 
this inflammation begins. The most accepted hy-
pothesis is that free fatty acids (FFAs) stimulate the 
inflammatory response characterized by infiltra-
tion of T cells and macrophages with the involve-
ment of the NLRP3 inflammasome [198, 200–202]. 
Likewise, it occurs in other tissues; macrophages 
in the  SM polarize towards a  proinflammatory 
phenotype during obesity  [203]. Consequently, 
proinflammatory mediators such as TNFα, IFN-γ, 
and IL-β are shown to be augmented, while anti- 
inflammatory markers, such as IL-10, remain un-
affected [204]. Similarly to AT, omega-3 FFAs were 
shown to restore SM insulin sensitivity and ame-
liorate lipotoxicity [205].

In summary, despite the  muscle’s ability to 
secrete myokines, the majority of  the  inflamma-
tory molecules affecting its metabolism origi-
nate from the so-called perimuscular AT and not 
from the muscle itself. In the  context of  the  im-
muno-metabolic interactions, the  impact of  SM 
has been under-investigated and the role of  this 
communication and its implications for the  de-
velopment of  metabolic diseases are still largely 
unknown. 

Liver

The liver plays a  crucial role in detoxification 
of  xenobiotics, protein synthesis, carbohydrate 
household, lipid and protein metabolism, iron ho-
meostasis, and secretion of hormones (IGF-1 and 
hepcidin). It is also known that the hepatic tissue 
is immunologically complex, being responsible for 
the production of cytokines, chemokines, and com-
plement components, containing a diverse popu-
lation of immune cells [206]. The hepatic immune 
system is regularly challenged with dietary factors 
of high inflammatory potential. The combination 
of  constant metabolic activity and regular expo-
sure to proinflammatory factors contributes to 
the state of chronic low-level inflammation of this 
organ [12]. Disruptions of this close immuno-met-
abolic interaction are associated with pathological 
inflammation that can lead to liver fibrosis, cancer, 
non-alcoholic fatty liver disease (NAFLD), obesity 
and other chronic diseases [207–210]. 
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The liver displays two dominant types of mac-
rophages: the  Kupffer cells (KC) and the  mono-
cyte-derived macrophages  [211]. Kupffer cells are 
liver-resident macrophages, comprising up to 90% 
of the total population of macrophages in the or-
ganism and around 25% of  the  whole subset 
of non-parenchymal cells in the organ [212]. In con-
trast to other macrophages, KC are prone to respond 
in a milder manner and are known to be able to se-
crete high concentrations of IL-10 [213]. Metabolic 
disorders do not impact KC in a quantitative way 
but impact their polarization states  [214]. Under 
normal conditions, due to the tolerance required 
in the  hepatic environment, KC tend to exhibit 
an M2-like phenotype  [214]. On the other hand, 
because obesity and hepatic steatosis stimulate  
1) secretion of  higher levels of  TGF-β and other 
proinflammatory cytokines  [214], and 2) interac-
tion between PPARγ and NF-κB  [215] signaling 
pathways, KC are polarized towards a proinflam-
matory phenotype (M1). The imbalance in the M1/
M2 ratio was shown to be restored in the HFD-in-
duced NAFLD animal model upon treatment with 
rosiglitazone, a thiazolidinedione [216]. It indicates 
that PPARγ modulation affects the interaction with 
NF-κB, reducing M1 polarization and ameliorat-
ing hepatic steatosis  [216]. It is suggested that 
TNF-α and IL-1β are crucial players in the develop-
ment of  NAFLD and KC are the  main generators 
of the first one in a process mediated by TLRs [217]. 
IL-1β meanwhile was shown to be important for 
the progression of NAFLD to NASH [218].

Phenotypically different from KC is the  other 
important group of macrophages found in the liv-
er, the macrophages that are recruited to the organ 
– monocytes-derived macrophages  [219]. These 
macrophages originate from blood monocytes and 
have CLEC5A as a specific marker, in contrast to 
the CD163 characteristic for the KC [220]. They are 
highly inflammatory, secrete a variety of cytokines 
(TNF-α, IL-1β, IL-6, TGFβ)  [211] and reach the liv-
er through the CCL2/CCR2 pathway [211]. During 
obesity, the  excess of  lipids in the  AT promotes 
lipotoxicity, leading to liver damage and macro-
phage infiltration  [201, 202, 221]. Again, the  di-
etary composition of lipids may play an important 
role in this context, with omega-3 FFAs displaying 
interesting anti-inflammatory properties [222–224]. 
Along with the KC, these macrophages have been 
indicated as mediators of  hepatic inflammation 
during obesity. The  role of  liver macrophages in 
the  etiology of  obesity/T2DM was established 
upon depletion of KC and macrophages in the liver 
resulted in prevention of  steatosis, insulin resis-
tance and inflammation [225]. 

Apart from the  macrophages, neutrophils are 
also recruited to the  liver during obesity  [73] and 
contribute to the  inflammatory process. As in 

the AT, the release of neutrophil elastase in the he-
patocytes leads to impairment of insulin sensitivity 
through IRS-2 degradation [73]. Neutrophils togeth-
er with other cells such as infiltrated monocytes, 
endothelial cells, fibroblasts, mesenchymal cells, 
dendritic cells, and hepatocytes produce interferon 
gamma-induced protein 10 (IP-10), a  proinflam-
matory cytokine associated with the  presence 
of excess fat in the  liver  [226]. Liver lymphocyte 
imbalances during NAFLD and NASH were careful-
ly described previously  [227]. However, their role 
in the progression or development of obesity and 
T2DM has not yet been clearly defined. Decrease 
in CD4+ T cells  [228], and increase in CD8+ T cell 
and NKT were linked to NAFLD and liver damage 
[229]. In addition, a  gut-liver-intrahepatic CD8+ 
T cell axis was suggested  [230]. This axis was 
demonstrated to have type 1 interferons as main 
drivers which provided a mechanism that could be 
the mediator between alterations in the gut mi-
crobiota and subsequent impairment in the insu-
lin action and glucose metabolism during NAFLD 
and obesity [230].

Concerning the involvement of TLRs in the liv-
er immuno-metabolic response, it is known that 
the lack of TLR4 protects mice from diet-induced 
insulin resistance and inflammation  [186], and 
TLR4-deficient hepatocytes were suggested to be 
responsible for this effect. Mice with TLR4-defi-
cient hepatocytes (Tlr4LKO C57BL/6) showed im-
provement in both insulin sensitivity and glucose 
tolerance in addition to steatosis amelioration af-
ter exposure to HFD [135].

Despite its central role, the lipotoxicity itself is 
not the  only mediator of  the  hepatic inflamma-
tion. The rate of hepatocyte cell death also plays 
a  role in the  resulting proinflammatory environ-
ment during obesity and NAFLD. As a consequen-
ce of lipotoxicity, a significant loss of hepatocytes 
due to cell death was observed in the liver [231]. 
In this context, DAMPS are released and activate 
inflammasomes [232] which are critical in the pro-
gression of  NAFLD to NASH. Liver inflammation 
that leads to disturbed hepatic insulin signaling 
was also described in wild type rats that after  
9 weeks fed a high fructose diet displayed incre-
ased inhibitory phosphorylation of  IRS-1, incre-
ased TNF-α gene expression, enhanced activation 
of NF-kB [233]. Finally, a recent study demonstra-
ted that liver macrophages produce a non-inflam-
matory factor named insulin-like growth factor-
-binding protein 7 (IGFBP7) that regulates liver 
metabolism [234]. It is suggested that activation 
of KC to a M1 phenotype does not seem to be re-
quired for the development of metabolic disease, 
indicating that the liver inflammation is, rather, re-
sulted from the monocyte-derived macrophages. 
These new data places the  liver macrophages as 

https://www.sciencedirect.com/topics/medicine-and-dentistry/liver-injury
https://www.sciencedirect.com/topics/medicine-and-dentistry/liver-injury
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strategic direct therapeutic targets in metabolic 
disease [234].

Pancreas 

Composed of various cell types, the pancreas is 
divided in two distinct functional parts: 1) the exo-
crine pancreas, which secretes digestive enzymes 
that break down carbohydrates, lipids and pro-
teins  [235], and 2) the  endocrine pancreas, that 
is a source of hormones such as insulin and glu-
cagon which regulate glucose homeostasis [236]. 
Endocrine cells form pancreatic islets that, in hu-
mans, comprise of around 30% of α-cells (gluca-
gon production), 60% β-cells (insulin production), 
and 10% of δ-cells (somatostatin production) and 
PP-cells (pancreatic polypeptide production [237, 238].  
Immuno-metabolic interactions affect and mod-
ulate several internal processes within the islets, 
particularly concerning β-cells. These cells can 
sense plasma glucose concentration changes. 
Glucose is the  major and sufficient stimulous 
for insulin secretion  [239]. Failure of  the  glu-
cose-stimulated insulin secretion is a  hallmark 
of  the  development of  T2DM and an  important 
event in obesity-related conditions [240].

During obesity and metabolic malfunction 
where insulin resistance is present, β-cells un-
dergo adaptations that stimulate their secretory 
activity in order to maintain metabolic homeosta-
sis [241]. When those adaptations are insufficient, 
the  excessive overload and demand for insulin 
lead to saturation and β-cell dysfunction  [242]. 
Different mechanisms have been suggested to 
explain the  β-cell failure in context of  metabol-
ic syndrome and T2DM, including, induction 
of  oxidative stress, ER stress and mitochondrial 
dysfunction as well as imbalance in arachidon-
ic acid metabolism  [243–249]. These stress re-
sponses were related to mild islet inflammation, 
that was detected in pancreatic section of T2DM 
patients  [250]. From the  immunometabolic point 
of view, the three following mechanisms may par-
ticipate in the  inflammatory response within is-
lets: 1) macrophage infiltration and/or activation 
of  the  tissue resident macrophages in pancreas 
and the  generation of  proinflammatory media-
tors  [251], 2) the  JNK activation and massive ER 
stress  [176, 252], and 3) intra-islet islet amyloid 
polypeptide (IAPP) deposits formation and acti-
vation of  inflammasomes [253–257]. All of them 
were excellently reviewed in  [258]. Exposure to  
30 mM glucose of human EndoC-βH1 β-cells did 
not stimulate IL-1β gene or protein expression  
[259, 260]. Therefore, it remains controversial wheth-
er or not pancreatic β-cells can produce IL-1β, though 
one cannot exclude the possibility that the T2DM 
environment with a  uniquely composed mixture 
of  various proinflammatory and nutrient factors 

may induce cytokine production or maturation 
within β-cells in vivo. Though the  anti-IL-1β tar-
geted therapeutic approaches for T2DM resulted 
in incons is tent outcomes in terms of pancreatic  
β-cell function protection  [261–263], they were 
shown to reduce serum CRP levels and to promote 
cardioprotection  [257]. Other anti-inflammatory 
interventions resulted in rather modest protection 
as discussed in detail in [250].

Similar to other tissues, macrophages infiltra-
tion was shown to be increased in islets during 
T2DM and obesity  [264, 265]. Evidence shows 
that the  number of  macrophages positively cor-
relates with the  severity of  pancreatic dysfunc-
tion [265, 266] and that infiltrating macrophages 
exhibit a proinflammatory phenotype [267], sug-
gesting a  role for these cells in the  progression 
of β-cell failure. At the same time, another study 
placed monocyte-derived macrophages as re-
sponsible for these events  [268], while yet other 
reports demonstrated that instead resident mac-
rophages play a role [269]. A recent study unrav-
eled the phenotypes and functional specifications 
of these immune cells in the islets [270]. The au-
thors state that during obesity the islet inflamma-
tion is dominated by macrophages, and empha-
size the  role of  the  islets-resident macrophages 
in the immunopathology of the β-cell failure. Im-
munostaining and RNA-sequencing of pancreatic 
islets from obese and lean mice showed intra- and 
peri-islet resident macrophages, being the  islets 
from obese animals rich in CD11c+ macrophages 
(intra-islet macrophages). Functionally, these in-
tra-islets macrophages were shown to diminish 
β-cell insulin production and to engulf insulin 
secretory granules contributing to insulin secre-
tion impairment  [270]. Although well-known by 
a  negative impact on glucose-stimulated insulin 
secretion, a  recent study showed that intra- and 
peri-islet macrophages populations from obese 
mice stimulated β-cell proliferation in a  mecha-
nism dependent on the  platelet-derived growth 
receptor (PDGFR)  [270]. Potential differences in 
the  subtypes of  islets-macrophages that might 
play this dual role have not yet been described, as 
well as whether this feature can be found also in 
human islets. 

Interestingly, the  classical inflammatory re-
sponse pathway of arachidonic acid metabolism is 
present in β-cells and undergoes significant chang-
es under diabetogenic conditions [246–249]. Pan-
creatic β-cells are characterized by an  imbalance 
in the  expression profile of  enzymes involved in 
the  arachidonic acid cascade with the  weak ex-
pression of prostacyclin synthase expression, re-
sponsible for the  generation of  the  anti-inflam-
matory prostacyclin (prostaglandin I2) [249–271]. 
The proinflammatory prostaglandin E2 was shown 
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to reduce glucose-induced insulin secretion [248]. 
In contrast, the  anti-inflammatory prostacyclin 
is a strong potentiator of  insulin secretion [249]. 
Prostaglandin synthesis inhibitors [272] as well as 
prostacyclin analog beraprost sodium  [273] were 
shown to ameliorate characteristics of  metabolic 
syndrome in obese Zucker fatty rats and to improve 
insulin secretion in diabetic patients, respectively. 

Recent studies evaluated the protective poten-
tial of omega-3 FFAs for lowering of inflammation 
via formation of SPMs in T2DM and obesity an-
imal models and diabetic patients with various 
outcomes [25, 274]. While the role of SPMs in is-
let inflammation in T2DM remains currently un-
known, SPMs have been shown to promote M2 
polarization of macrophages, reduce AT and muscle 
inflammation, increase insulin sensitivity and lower 
fasting blood glucose in diet-induced obese mice, 
ob/ob mice or obese-diabetic mice [26, 275–277].

Further investigations are needed to better elu-
cidate the  immuno-metabolic interactions within 
pancreatic islets and to explore the  therapeutic 
potential of anti-inflammatory metabolites of ar-
achidonic acid cascade. 

In conclusion, immunometabolism is an emerg-
ing field that investigates the relationship between 
metabolic and inflammatory processes. These in-
vestigations are of special interest to clarify how 
metabolic disorders develop and progress. Inter- 
and intra-organ interactions were presented using 
the most updated reports in the field and summa-
rized in Figure 1. The review indicates that many 
studies are still needed to uncover the molecular 
mechanisms behind this cross-talk that influenc-
es central organs responsible for the whole-body 
homeostasis.

T2DM and obesity are disorders in which inflam-
mation plays an important role in the pathogene-
sis. How does inflammation become so harmful to 
the  point of  causing or worsening metabolic dis-
orders? The discussed data brings the  innate im-
mune cells, especially macrophages, as big players 
in secreting proinflammatory factors that directly 
impair metabolic tissue functions. Besides some 
particularities, the  adaptive immune response 
(consequently activated) and proinflammatory 
pathways such as JNK and NF-κB are also import-
ant contributors to the inflammatory environment 
in multiple organs. In the AT, B-regs and cytokines, 
such as IL-37, represent potential therapeutic tar-
gets. In the  gut, the  modulation of  the  intestinal 
barrier permeability and clarifications of  the  im-
pact of dysbiosis will bring important discoveries. 
In the liver, much is still mysterious about the im-
pact of  its resident macrophages. In the  muscle 
the intriguing dysregulation of myokine production 
and formation of intramuscular fat depots require 
further investigations. Finally, mild, but persistent, 

and largely still under investigated inflammation 
of pancreatic islets may open new therapeutic pos-
sibilities to preserve proper β-cell function.

Besides many exciting and promising discover-
ies that unravel mechanisms particularly important 
to obesity and diabetes, it is important to empha-
size a challenge: the translation of the knowledge 
to the human situation and the arising limitations. 
Inter-individual variability in humans influenc-
es the  type of  immune response and its magni-
tude [278]. It translates into a major challenge in 
the  development of  therapies that do not harm 
the immune system as a whole. Cross studies, ge-
netic variations, and environmental considerations 
will be prerequisite to make the translation a re-
ality. Finally, the role of inflammation in the main-
tenance of  homeostasis and protection against 
infections and injuries should not be neglected. 
Despite the elucidation of new players and their 
interactions in the  immuno-metabolic crosstalk, 
translating them to therapeutic targets may com-
promise the body’s ability to defend itself. Future 
investigations should uncover not only new mech-
anisms involved but also provide answers on how 
to apply them in order to treat and cure metabolic 
diseases.
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