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Insight into Coenzyme A cofactor 
binding and the mechanism of acyl-
transfer in an acylating aldehyde 
dehydrogenase from Clostridium 
phytofermentans
Laura R. Tuck1, Kirsten Altenbach1,*, Thiau Fu Ang1,*, Adam D. Crawshaw2, 
Dominic J. Campopiano3, David J. Clarke3 & Jon Marles-Wright1

The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium 
Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these 
carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a 
bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde 
intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce 
an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse 
the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with 
different short-chain fatty aldehydes and show that it has activity against substrates with up to six 
carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray 
crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this 
cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the 
structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides 
important insight into the differences within the active site that distinguish the acylating from non-
acylating aldehyde dehydrogenase enzymes.

Bacterial microcompartments (BMCs) are protein-walled metabolic compartments that sequester pathways for 
the catabolism of various carbon sources1,2. The protein shells of BMCs are formed through the interaction of 
thousands of copies of different proteins belonging to the BMC protein family3 to produce a pseudo-icosahedral 
container of around 150 nm in diameter. The enzyme contents of BMCs are directed to the interior of the com-
partment as it forms, through interactions between short peptides appended to their functional domains and the 
BMC shell proteins4,5.

BMCs are found in species with diverse ecological niches, from pathogenic strains of Escherichia coli and 
Salmonella6,7, to the cellulose degrading Clostridium phytofermentans8, and marine bacteria including Haliangium 
ochraceum and Rhodospirillum rubrum9. As a consequence of this wide species distribution, BMCs have diverged 
in substrate specificity and the enzyme activities that they encapsulate to be able to utilise carbon sources such 
as 1,2-propanediol7,10, ethanolamine11,12 fucose/rhamnose13, and choline14. A common feature of the metabolic 
pathways found within BMCs is the production of a toxic aldehyde intermediate in the breakdown of their sub-
strates6,10,15. In the well-characterised propanediol utilisation BMC, a vitamin B12 dependent lyase enzyme acts 
on the 1,2-propanediol substrate to produce propionaldehyde10; while the lyase in the ethanolamine utilisa-
tion BMC produces acetaldehyde and ammonia as its products16. A recently discovered family of BMCs use a 
glycyl-radical enzyme (GRE) to break down their primary substrates producing an aldehyde intermediate, such 
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as the production of acetaldehyde from the choline utilisation BMC found in Desulfovibrio desulfuricans14 and the  
C. phytofermentans fucose/rhamnose BMC13. To detoxify the aldehyde produced by these enzymes, and to 
ultimately generate ATP through substrate level phosphorylation, all BMCs identified to date possess an 
acylating-aldehyde dehydrogenase enzyme that produces an acyl-CoenzymeA and NADH15.

The aldehyde dehydrogenase enzymes (AldDH) encoded with BMC loci are invariably accompanied by an 
alcohol dehydrogenase enzyme17, the activity of which appears to be necessary to recycle the NADH produced by 
the activity of the aldehyde dehydrogenase. Genetic knockout of the aldehyde dehydrogenase in the propanediol17 
and ethanolamine18 BMC loci leads to reduced growth on their respective substrates. These results imply that 
BMCs contain private NAD+/NADH cofactor pools that are not exchanged with the bulk cytosol of the host cell 
and explain the requirement for both the aldehyde and alcohol dehydrogenase enzymes to be present within the 
BMC. As a consequence of the need to maintain the balance of the cofactor pool within the BMC, two substrate 
molecules are required to produce one acyl-CoA molecule, with the second substrate molecule used to oxidise 
the NADH produced by the AldDH through the action of the alcohol dehydrogenase to produce alcohol from 
the aldehyde (Supplementary Fig. 1). This is consistent with the production of almost equimolar amounts of the 
carboxylic acid product from substrate-level phosphorylation via an acyl-phosphate intermediate, and the alcohol 
product of the alcohol dehydrogenase13.

The aldehyde dehydrogenase superfamily are well studied and are active against a range of aldehydes, includ-
ing the short chain fatty aldehyde products of the lyase enzymes in BMCs19–21. These enzymes have a common 
architecture, with a Rossman-fold nucleotide-binding domain that positions the NAD(P)+ cofactor required for 
hydride transfer from the aldehyde substrate22; the catalytic domain has a substrate-binding tunnel with a cat-
alytic cysteine residue and glutamic acid residue that acts as a general base in the hydrolysis of the acyl-enzyme 
intermediate23. The acylating aldehyde dehydrogenase enzymes do not possess the glutamic acid general base res-
idue, presumably because the CoA cofactor acts to resolve the acyl-enzyme intermediate to produce the acyl-CoA 
product via a bi-uni-uni-uni-ping-pong mechanism24. Although a recent study of the kinetics of the PduP enzyme 
from Lactobacillus reuterii with its native substrate presented a model of CoA binding to the enzyme in the same 
binding pocket as NAD+, there are no experimental structures of acylating-aldehyde dehydrogenase enzymes in 
complex with CoA in the PDB25.

Here, we study the kinetics and substrate specificity of an AldDH enzyme from the Clostridium phytofer-
mentans fucose/rhamnose utilisation BMC, Cphy1178. We present the X-ray crystal structure of an N-terminal 
truncation of this enzyme and show by native mass spectrometry that the quaternary structure of the protein is a 
tetramer. We have determined the structure of the protein in complex with its cofactors NAD+ and CoA and show 
that the adenine nucleotides of these co-factors adopt different conformations within the Rossman fold domain.

Results
Aldehyde dehydrogenase activity of Cphy1178. Using recombinantly produced protein, we tested the 
NAD(P)+ dependent in vitro activity of the putative aldehyde dehydrogenase enzymes from the three Clostridium 
phytofermentans BMC loci (Cphy1178, Cphy1428, Cphy2642) and the Clostridium difficile ethanolamine uti-
lisation locus (CD630_19170). The full-length recombinant enzymes produced for this study were unstable in 
various common buffer systems and aggregated rapidly upon purification; therefore, we produced truncations to 
remove the proposed BMC localisation sequences (Supplementary Fig. 2). These truncated enzymes were more 
stable in solution than their full-length counterparts and were used in subsequent activity assays.

By monitoring the hydride transfer step of the aldehyde dehydrogenase enzyme reaction by spectrophoto-
metric measurement of the production of NADH in the presence of aldehyde substrates, we were only able to 
detect NAD+ dependent activity for Cphy1178. The other enzymes displayed no distinguishable activity with 
either NAD+, or NADP+, for the substrates used in this study. This may be due to issues with the instability of 
these proteins outwith their native environment within the BMC, or a requirement for some additional factor 
not present in our assays. The Cphy1178 aldehyde dehydrogenase displayed negligible activity with glyceral-
dehyde as a substrate. However, we were able to detect activity against short-chain fatty aldehydes with up to 
seven carbon atoms, although longer chain aldehydes were difficult to assay reliably due to their insolubility in 
biological buffers and we were unable to determine accurate kinetic parameters for C7 and higher aldehydes 
(Table 2 and Supplementary Fig. 3). Cphy1178 enzyme displayed the lowest KM and the highest kcat/KM values 
for the substrates tested. This data is consistent with the hypothesis that this protein acts as a propionaldehyde 
dehydrogenase within the C. phytofermentans fucose/rhamnose BMC. It is noteworthy that this enzyme displays 
substrate inhibition at high concentrations of aldehydes; interestingly this is more marked with aldehydes with 
an odd number of carbon atoms. This substrate inhibition is consistent with previous reports on the activity of 
yeast ALDH2 enzyme19.

Substrate kcat (s−1) KM (mM) kcat/KM (s−1 mM−1) Ki (mM)

Acetaldehyde 1.62 ±  0.02 5.16 ±  0.10 0.31 n/a

Propionaldehyde 3.45 ±  0.03 0.82 ±  0.02 4.21 17.31 ±  0.46

Butyraldehyde 3.44 ±  0.7 1.74 ±  0.07 1.98 144.3 ±  30.2

Pentanaldehyde 5.44 ±  0.10 2.2 ±  0.7 2.47 12.61 ±  0.46

Hexanaldehyde 5.61 ±  0.12 2.90 ±  0.10 1.93 23.52 ±  1.28

Table 1.  The catalytic activity of Cphy1178 against aldehyde substrates. (Values for kcat, KM and Ki shown 
calculated standard errors) (See Supplementary Fig. 3 for kinetics curves).
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Our observation that this enzyme displays good activity against longer chain aldehydes offers promise for 
engineering BMCs to produce alkanes and make use of the native aldehyde dehydrogenase enzymes found within 
them26. Based on identification of the catalytic cysteine by sequence alignment, mutagenesis of C269A completely 
abolished enzymatic activity, as did the mutagenesis of the putative base (H387)27. The structures of these two 
mutants were essentially unchanged compared to the wild-type enzyme, indicating that changes to their catalytic 
activity were not a consequence of protein misfolding (see below for detail of the structure of this protein).

It is important to note, that our spectrophotometric assay only monitors the production of NADH which 
occurs in the first step of the multistep reaction. In order to confirm the acyl-transfer from the acyl-enzyme 
intermediate to CoA we used mass spectrometry to detect the final product. This MS assay was performed using 
propionaldehyde as the substrate, with reaction mixtures containing NAD+ and CoA. LC-MS analysis confirmed 
the presence of the propionyl-CoA product (Fig. 1) at a mass consistent with the monoisotopic mass of the stand-
ard used as a control.

Structure of Cphy1178(20–462). To understand the co-factor binding properties of Cphy1178 we determined 
the structure of an N-terminal truncation, comprising residues 20–462, with bound NAD+ cofactor to 1.6 Å 
resolution. In these structures, the asymmetric unit contains a single chain with residues 28 to 462 visible in the 
electron density map. The overall structure corresponds to other members in the aldehyde dehydrogenase family 
(Fig. 2A), with a catalytic domain (residues 238–427, highlighted pink), a cofactor-binding domain with the 
Rossman-fold type nucleotide binding architecture (residues 28–108, 127–237, and 428–447, highlighted grey), 
and an oligomerisation domain (residues 109–126 and 448–462, highlighted green). The catalytic and nucleotide 
binding domains come together to form an extended nucleotide and ligand-binding tunnel that is open at both 
ends, with the catalytic cysteine (C269) at the centre of the tunnel and the NAD+ cofactor binding at one side 
(Fig. 2B). The ligand-binding tunnel is about 5 Å in diameter at its widest point and spans 16 Å from the solvent 
exposed entry point to the catalytic cysteine and is lined with hydrophobic residues. The tunnel is long enough to 
accommodate up to a C10 aldehyde, although in vivo the enzyme is unlikely to encounter such a substrate. The 
structures of Cphy1178 were also solved with mutations in active site residues, C269A with bound CoA (1.77 Å 
resolution) and H387A (2.08 Å resolution) to ensure that mutation of these residues did not destabilise the struc-
ture of the protein. Both of these proteins display essentially identical structures to the wild-type protein. In the 
structure of the Cphy1178C269A mutant the position of the loop between 335 and 339 was not clear in the electron 
density maps, so was omitted from the final structure refinement. This structure was determined with CoA bound 
in the active site and is discussed below in the section on cofactor binding.

Cphy1178 forms a tetrameric quaternary structure generated by crystal symmetry, with molecules related 
by D2 symmetry (Fig. 2C). A tetrameric assembly is also observed when analysing Cphy1178 by native (non-
denaturing) electrospray ion-mobility mass spectrometry (IM-MS)28; using this technique a single charge state 
distribution is observed which corresponds to tetrameric Cphy1178 in the + 26 to + 29 charge states (191.3 kDa 
assembly mass, in agreement with the predicted molecular mass of 4 ×  47,452 Da; Fig. 3A). Ion-mobility of 
the Cphy1178(20–426) tetrameric assembly reveals that the complex exists as a single conformer with a collision 
cross section (CCS) of ~11,000 Å2 (Fig. 3A). This gas-phase value is in agreement with the calculated CCS of 

Figure 1. Detection of propionyl-CoA assay product by LC-MS. Main Figure, Extracted ion chromatogram 
at 824 m/z. Top, the Cphy1178(20–462) assay mixture containing (50 nM Cphy1178(20–462), 75 μ M NAD+, 
100 μ M CoA, 10 mM propionaldehyde, 100 mM Tris.HCl pH 8.0, 100 mM KCl); middle, 10 ug propionyl-CoA 
control; bottom, negative control. Insert, mass spectrum of the Propionyl-CoA obtained by summing the 
spectra between 4.8 to 5.8 minutes. Top, Cphy1178(20–462) assay; bottom, propionyl-CoA control. (predicted 
monoisotopic mass [M+ H]+ C24H41N7O17P3S; 824.1487 Da).
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the tetrameric structure determined by crystallography (Cphy117828–426; CCS calculated as 9599 Å2 by IMPACT 
v 0.9.1); suggesting that the overall solution architecture of the enzyme is retained during MS analysis. This 
tetramer also corresponds to the most probable stable arrangement proposed by the PISA server29 and is consist-
ent with previously published structures of this family of enzymes23.

From the crystal structure it is apparent that intersubunit interactions are primarily mediated by contacts 
between the oligomerisation domain and the catalytic domain, which produces a dimer with 2350 Å2 buried sur-
face per monomer (out of a total solvent accessible surface of 18,229 Å2) and is stabilised by 15 hydrogen bonds 
and 14 salt bridges (interface between red/blue and grey/grey monomers in Fig. 2C). A second dimerisation inter-
face is found between symmetry related oligomerisation domains, this is stabilised by 3 hydrogen bonds and 4 salt 
bridges and buries 1148 Å2 of surface area per monomer (red/grey and blue/grey monomers in Fig. 2C). These 
dimers are further stabilised by contacts between an α -helix in the catalytic domain (residues 395–407) and the 
oligomerisation domain (500 Å2 buried SA, one hydrogen bond and two salt bridges); the C-terminus of the pro-
tein is buried within this interface and the terminal carboxylic acid group is visible in the electron density map. 

Further evidence for the existence of two interfaces of differing strengths within the Cphy1178 tetramer came 
from topology-mapping mass spectrometry studies30,31. Collision induced dissociation (CID) of the protein 
tetramer led to the appearance of a charge state distribution consistent with monomeric Cphy1178 (Fig. 3B) – an 
observation consistent with the typical mechanism of dissociation using this technique (i.e. ejection of a highly 
charged monomer from the assembly)32. In contrast, titration of increasing organic solvent to the protein solution 
prior to MS analysis, resulted in the appearance of both monomer and dimer charge state distribution in the mass 
spectrum (Fig. 3C). Solution-phase dissociation of protein complexes is known to occur via dissociation of the 

Figure 2. Structure of Cphy117820–462. (A) Secondary structure cartoon of a monomer of Cphy117820–462 
showing bound NAD+ as spheres coloured yellow for carbon, red for oxygen, blue for nitrogen and orange 
for phosphorus. The catalytic domain is highlighted in pink, rossman fold nucleotide binding domain in 
grey and oligomerisation domain in green. (B) Active site tunnel and nucleotide binding pocket. The surface 
of Cphy117820–462 is shown coloured by electrostatic potential (blue for positive, red for negative) and the 
secondary structure cartoon is shown in blue. The catalytic cysteine and histidine residues are shown as sticks. 
Bound cofactors, NAD+ and CoA are shown with yellow and pink carbons respectively. (C) Cphy1178 forms 
a dimer of dimers quaternary structure. Two subunits are shown as cartoons, with NAD+ shown as spheres to 
show the relative orientation of the nucleotide-binding cleft; two further subunits are shown as grey surface 
representations.
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weakest interface in the complex first. Therefore using this technique, subcomplexes of the protein assembly can 
be formed, their composition determined by MS, and relative interface binding strengths can be inferred33. We 
interpret our observation as cleavage of the second smaller interface, whilst the larger interface (area 2350 Å2; 
which includes extensive salt-bridge interactions) remains intact.

Co-factor binding. The structure of Cphy117820–462 was determined with NAD+ bound in the nucleotide 
binding cleft and active-site pocket after soaking apo-crystals with crystallization solution supplemented with 
10 mM NAD+. The ligand displayed excellent electron density (Fig. 4A) and was refined to an occupancy of 0.83 
in the final structure using phenix.refine. The NAD+ is found in the hydride transfer conformation34,35 and partic-
ipates in 4 direct hydrogen bonding interactions with the enzyme and a number of other interactions mediated by 
ordered solvent molecules. The adenine ring does not directly participate in any hydrogen bonding interactions, 
but is positioned between Leucine 198 and Valine 221. The N7 of the adenine ring accepts a hydrogen bond from 
an ordered solvent molecule that is also coordinated by an oxygen atom in the adenosine phosphate group and 
the backbone nitrogen of Valine 221. Both O2 and O3 of the adenosine ribose interact with an ordered water mol-
ecule that bridges them to the carbonyl oxygen of Proline 161. Similarly, two oxygen atoms from the phosphate 
groups are bridged to Histidine 162 via a solvent molecule. Glutamine 357 participates in hydrogen bonding 
interactions with O2 and O3 of the nicotinamide ribose. The nicotinamide ring is positioned next to the catalytic 
Cysteine 269 through hydrogen bonding interactions between N7 and O7 and the peptide backbone of Isoleucine 
433. The absence of enzymatic activity in the presence of the NADP+ co-factor is explained by the presence of a 
histidine and proline residue blocking the position that the 2′ -phosphate adopts in structures of aldehyde dehy-
drogenase enzymes determined with NADP+ bound (Supplementary Fig. 4A/B).

The structure of Cphy117820–462(C269A) was determined using crystals soaked with 10 mM CoA. The cofactor 
showed good electron density for the adenosine group, but poor density for the pantothenic acid group, par-
ticularly the terminal region with the sulphydryl group in the active site, which has no visible electron density 
(Fig. 4B). A comparison of the structure of the NAD+ and CoA bound forms of the protein show that the struc-
tures are essentially identical, with an rmsd Cα  of 0.24 Å over 431 residues. The two structures differ only in the 
position of the loop between residues 215 and 223, where P219, G220 and V221 are shifted toward the adenine 
ring in the NAD+-bound structure (Supplementary Fig. 5).

Figure 3. Native mass spectrometry analysis of Cphy1178. (A) Ion-mobility MS analysis of recombinant 
Cphy1178 displays a charge state distribution consistent with the + 26 to + 29 ions of a tetrameric assembly of 
Cphy1178 (Top, 191.3 KDa). Ion-mobility data, displayed as a greyscale heat map (bottom) reveals that each 
charge states exhibit a single drift time. When corrected for charge, the drift times of all charge states are all 
consistent with a collision cross section of 11,000 Å2 (hashed red line). (A, Insert) A topological cartoon of the 
Cphy1178 tetramer using ball-and-stick representations (ball, monomer; stick, interface). Interface areas in Å2 
(black) and number of salt bridges (red) are marked; and calculated collision cross section (Ω ) in Å2 is given.  
(B) Gas phase dissociation of the Cphy1178 using collision induced dissociation leads exclusively to the 
appearance of monomeric Cphy1178; a 1 KDa adduct is also observed (*) (C) Partial disruption of the 
Cphy1178 assembly by solution-phase dissociation prior to MS analysis (using 40% v/v MeOH) leads to the 
appearance of both monomeric and dimeric subcomplexes.
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In contrast to the models of CoA binding to the Pseudomonas DmpF aldehyde dehydrogenase36 and 
Lactobacillus reuteri PduP aldehyde dehydrogenase25 our crystal structure shows distinct adenine-binding modes 
for NAD+ and CoA (Fig. 4B and Supplementary Fig. 4C–F). The adenine ring is flipped by 180 degrees relative to 
its position in the NAD+ structure and makes hydrogen-bonding contacts with both the side chain and carbonyl 
oxygen of Asparagine 160, and the carbonyl oxygen of Threonine 134, placing the phospho-ribose group above 
both of the nucleotide binding pockets. The phosphate groups between the nucleotide and pantothenate group 
are held in place by hydrogen bonds formed between the side-chain nitrogen atoms of Histidine 162 and Arginine 
318. While there is clear electron density for the nucleotide and phosphate-proximal portion of the pantothenate 
group of the CoA, the β -mercapto ethylamine group is not visible, indicating that the distal arm of CoA is flexible 
in the absence of thio-acyl substrates bound to the catalytic cysteine for acyl transfer.

Discussion
Substrate Discrimination. Our initial enzyme assays indicate that Cphy117820–426 is active against a range 
of short chain aldehydes (C2–6). This observation can be rationalised by analysis of the structure of the enzyme, 
which reveals that the substrate-binding cleft of Cphy117820–426 is lined with hydrophobic residues and can com-
fortably accommodate an aldehyde substrate with up to six carbon atoms and could potentially fit a chain of up to 
nine or ten carbon atoms in the substrate tunnel (Fig. 5A). A phenyl alanine residue (F423) found at the solvent 
exposed side of the tunnel appears in multiple conformations in the crystal structure, this may indicate that it 
acts to control substrate access at this entry site. The tunnel is enlarged close to the catalytic cysteine, which may 
allow substrate rearrangement during acyl-transfer. The lack of activity against glyceraldehyde is explained by 
the presence of hydrophobic residues in this region (I421 and I433), which would make unfavourable interac-
tions with the hydroxyl groups of this substrate. Cphy1178 is present in the C. phytofermentans fucose/rham-
nose BMC, which has a fucose aldolase enzyme that produces lactaldehyde (2-hydroxypropanal) as its product, 
alongside a propanediol dehydratase that produces propionaldehyde13. Comparison of the ligand-binding tunnel 
of Cphy1178 with the lactaldehyde dehydrogenase enzyme from Escherichia coli (PDBID: 2HG2), shows that 
the two isoleucine residues in the substrate-binding tunnel of Cphy1178 are replaced by a glutamic acid and a 
histidine residue to accommodate the polar hydroxyl group of its lactaldehyde substrate23. These key amino acid 
differences and the preferential activity of Cphy1178 against short-chain fatty aldehydes indicate that propional-
dehyde is the most likely natural substrate for Cphy1178.

Figure 4. Electron density maps of bound NAD+ and CoA cofactors. (A) Structure of NAD+ soaked 
Cphy117820–462. NAD+ and protein residues within 4 Å shown as stick representations and 2mFo-DFc map 
shown as a blue mesh contoured at 1σ . (B) Structure of CoA soaked Cphy117820–462(C269A) displayed as in (A).
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Acylation. We have shown that h1178 shows a higher level of activity with propionaldehyde as a substrate 
compared to other aldehydes tested and is capable of acyl-transfer to CoA using this substrate. We have also 
determined the structure of this enzyme with CoA bound in the active site. The acylating aldehyde dehydro-
genase family enzymes do not possess the glutamic acid general-base that is required to activate the catalytic 
cysteine and to deprotonate water for deacylation of the acyl-enzyme intermediate37. In Cphy1178 this residue is 
replaced by an alanine (A235) (Fig. 5A) and is a small hydrophobic residue in all of the acylating aldehyde dehy-
drogenases in this study (Supplementary Fig. 2). Mutagenesis of a strictly conserved Histidine residue (H387), 
that is within 2.5 Å of the catalytic cysteine (Fig. 5B) completely abolishes activity of the enzyme. This residue is 
not found in any of the non-acylating aldehyde dehydrogenase enzymes20. The proximity of this residue to the 
catalytic cysteine is incompatible with the formation of the correct geometry for deprotonation of water for res-
olution of the acyl-intermediate to produce a carboxylic acid product34. In light of our biochemical data showing 
that the H387A mutant is inactive, we suggest that this residue acts as a base to activate the catalytic cysteine 
and to stabilise the acyl-transfer intermediate between the enzyme and CoA cofactor. Due to the proximity of a 
glutamic acid residue (E357) to the cysteine group of CoA (Fig. 5B) and the strict conservation of this residue, we 
propose a model in which this residue activates the CoA cofactor for acyl transfer from the acyl-enzyme inter-
mediate (Fig. 6). In our reaction scheme H387 deprotonates the catalytic cysteine to allow nucleophilic attack on 
the substrate to form tetrahedral intermediate. Consistent with previous reports the oxyanion would be N13834. 
After hydride transfer to NAD+, the NADH product leaves the cofactor-binding pocket in the rate-limiting step, 
followed by entry of CoA, which is deprotonated by E357 and subsequently attacks the acyl-enzyme intermediate 
to produce the thioester product and free enzyme (Fig. 6). The extra proton on E357 is likely transferred to bulk 
water via a proton-relay system comprising the conserved residues N138 and K9438.

In this study we have determined the activity of Cphy1178 against a range of aldehyde substrates and pres-
ent the first structure of CoA bound to an acylating aldehyde dehydrogenase and suggest a role for a conserved 
histidine found in place of the glutamic acid that acts as the general base in non-acylating aldehyde dehydroge-
nases. The capture of acyl-transfer intermediates in future crystal structural studies will shed further light on 
the mechanism of acyl transfer in this important class of enzymes that are essential to the function of bacterial 
microcompartments.

Materials and Methods
Cloning. Genes encoding aldehyde dehydrogenase enzymes from the Clostridium phytofermentans and 
Clostridium difficile bacterial microcompartments were amplified by PCR using the primers detailed in Table 2 

Figure 5. Cphy117820–462 active site architecture. (A) Surface slice through Cphy117820–462 showing 
the position of NAD+ and modelled hexanal substrate. Protein residues and substrates shown as stick 
representations with different coloured carbon atoms, the active-site histidine is shown in red for clarity. The 
ligand/substrate-binding tunnel is open at both ends and accommodates the NAD+/CoA cofactors at one end 
and the aldehyde ligand at the other. The aldehyde-binding portion of the tunnel is lined with hydrophobic 
residues and is gated by F423, which is present in multiple conformations in the crystal structure. (B) Binding 
of CoA in the active site showing distances between H387 and C269 and the sulphur of the CoA and E357. CoA 
shown in magenta.
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using the KOD HotStart DNA polymerase as described in the user protocol. PCR products were run on a 0.8% 
Agarose/TAE gel and visualised by SybrSafe staining (Life Technologies), bands of the appropriate size for each 
construct were excised and subjected to gel-cleanup using a Qiagen kit and following the protocol described in 
the user manual. Purified PCR products were digested with appropriate restriction enzymes (Fermentas) for liga-
tion into the pET28a vector (Novagen). Site directed mutagenesis was performed by the QuickChange method 
(Agilent) for the Cphy1178 active site mutants. All constructs were sequence confirmed by Sanger sequencing at 
the Edinburgh Genomics facility.

Protein production. Plasmids for recombinant aldehyde dehydrogenases were transformed into chemically 
competent Escherichia coli BL21(DE3) cells as follows, 1 μ l of plasmid (100 ng/ul) was mixed with 50 μ l cells and 
incubated on ice for 30 minutes. Cells were subsequently subjected to heat shock for 45 seconds at 42 °C and 
returned to ice for 2 minutes. 200 μ l LB media was added to cells before incubation at 37 °C for 1 hour. Cells were 
then plated onto LB agar supplemented with 10 μ g/ml kanamycin and incubated at 37 °C overnight.

Single colonies of transformed cells were transferred to 500 μ l LB medium supplemented with 10 ug/ml kan-
amycin and incubated with shaking to OD600 at 37 °C. Cells were induced with 1 mM IPTG and grown overnight 
at 18 °C. Cells were harvested by centrifugation at 4,000 × g for 30 minutes, pelleted cells were washed in PBS and 
pelleted by centrifugation at 4,000 × g for 15 minutes.

Protein purification. Purification of Hexa-histidine tagged proteins. Cells expressing hexa-histidine 
tagged proteins were resuspended in 10 ml/g (wet weight) buffer HisA (50 mM Tris.HCl, pH 8.0, 500 mM NaCl, 
50 mM imidazole). Cells were lysed by sonication on ice, with pulses of 10 μ m amplitude for 10 seconds with 
10 seconds between pulses for 5 minutes. The resulting cell lysate was clarified by centrifugation at 35,000 × g for 
30 minutes and the resulting supernatant was filtered with a 0.45 μ m syringe filter (Sartorius). Clarified lysate 
was loaded onto a 5 ml HisTrap column (GE Healthcare) equilibrated with buffer HisA on an Åkta FPLC sys-
tem (GE Healthcare). Unbound protein was washed from the column with HisA until the A280 returned to the 
baseline value. His6-tagged protein was eluted from the column with a step gradient of 5 column volumes of 50% 
HisA/ 50% HisB (50 mM Tris.HCl, pH 8.0, 500 mM NaCl, 500 mM Imadazole), followed by 5 column volumes of 
100% HisB. Protein fractions were analysed by 15% SDS-PAGE to identify the fractions containing the protein 
of interest. These fractions were loaded onto an S200 16/60 size-exclusion gel-filtration column (GE Healthcare) 
equilibrated with buffer GF (50 mM Tris.HCl, pH 8.0, 150 mM NaCl) on an Åkta FPLC system. Fractions corre-
sponding to recorded A280 peaks were analysed by SDS-PAGE and those containing the protein of interest were 
pooled for subsequent experiments. A protein purification summary is shown in supplementary table 1.

Purification of untagged proteins. Cells expressing untagged proteins were resuspended in 10 ml/g (wet weight) 
buffer Q-A (50 mM Tris.HCl, pH 8.0) and lysed and clarified as detailed above for His6-tagged proteins. Clarified 
lysate was loaded on a 12 ml Q-sepharose column (GE Healthcare) equilibrated with buffer Q-A. Unbound 

Figure 6. Proposed catalytic mechanism of Cphy1178. The catalytic cycle proceeds via a bi-uni-uni-uni-ping-
pong mechanism involving acylation of the catalytic cysteine (C269) and hydride transfer to NAD+, followed by 
trans-thioesterification between the enzyme and CoA to produce the Acyl-CoA product.
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protein was washed from the column with buffer Q-A until the A280 returned to the baseline value. Bound pro-
teins were eluted from the column with a 0–80% linear gradient of 25 column volumes of buffer Q-B (50 mM 
Tris.HCl, pH 8.0, 1 M NaCl), followed by 5 column volumes of 100% Q-B. Protein fractions were analysed by 
15% SDS-PAGE to identify those containing the protein of interest. Fractions containing the protein of interest 
were pooled and subjected to size-exclusion gel-filtration as described above for His6-tagged protein. Fractions 
containing protein of interest were pooled for subsequent experiments. A protein purification summary is shown 
in supplementary table 1.

Aldehyde dehydrogenase assay. Kinetic assays were performed using a multimode plate reader (Molecular 
Devices, M5), in flat bottomed 96 well plates (Corning) at 21 °C. Each 300 μ l reaction contained 100 mM Tris.
HCl, pH 8.0; 0.66 mM NAD+; 100 mM KCl; 10 mM 2-mercaptoethanol; 100 nM protein; and various concen-
trations of aldehyde substrates, using both 100 mM and 10 mM stock solutions to increase assay accuracy. The 
enzyme activity was monitored by measuring the formation of NADH at 340 nm using an absorption coefficient 
of 6.22 mM−1 cm−1. Enzyme activity is expressed as mM NADH produced per second. Steady state kinetic data, 
obtained with five technical repeats, were analysed by non-linear regression to the Michaelis-Menten equation 
using GraphPad Prism. Datasets for these assays are available at http://doi.org/10.6084/m9.figshare.2067375.

Detection of Propionyl-CoA product formation by LC-MS. To confirm formation of propionyl-CoA, assay mix-
tures (50 nM Cphy1178(20–462) (reduced with 4 times excess 2-mercaptoethanol and subsequently dialysed into 
4000 times excess buffer GF), 75 μ M NAD+, 100 μ M CoA, 10 mM propionaldehyde, 100 mM Tris.HCL pH8.0, 
100 mM KCl) were prepared and incubated at room temperature for 2 hours before analysis by LC-MS. Analysis 
was performed on an ESI Synapt-G2 Q-ToF mass spectrometer equipped with an Acquity UPLC system. For 
chromatography, samples were separated on a reverse phase Kinetixs C18 50 ×  2.1 mm column (Phenomenex), 
using a gradient of 5 to 95% methanol (0.1% formic acid) over 12 minutes and a flow rate of 250 ul/min. For detec-
tion of propionyl-CoA, single ion monitoring was employed with the mass resolving quadrupole set to 824 m/z. 
The resulting mass spectra were calibrated by applying a single point calibration using Leucine Enkephalin as a 
reference.

Protein mass spectrometry. All mass spectrometry (MS) experiments were performed on a Synapt G2 
ion-mobility equipped Q-ToF instrument (Waters). LC-MS experiments were performed using an Acquity UPLC 
equipped with a reverse phase C4 Aeris Widepore 50 ×  2.1 mm HPLC column (Phenomenex) and a gradient of 
5–95% MeOH (0.1% Formic Acid) over 10 minutes was employed. Samples were typically analysed at 5 μ M, and 
data analysis was performed using MassLynx v4.1 and MaxEnt deconvolution.

For native MS and ion-mobility mass spectrometry (IM-MS) experiments, nano-ESI ionisation was per-
formed using a Nanomate robot operating in infusion mode (Advion Biosciences). Immediately prior to analysis, 
protein samples were buffer-exchanged into 100 mM ammonium acetate (pH 7.0) using micro BioSpin 6 columns 
(Biorad). Instrument parameters were carefully tuned to preserve protein complexes and a backing pressure of 
4 mbar was used. For IM-MS helium was used as the drift gas. Typically, the IMS wave velocity was set to 300 m/s; 
wave height to 15 V; and the IMS pressure was 1.8 mbar. For collision cross section determination, IM-MS data 
was calibrated using denatured equine myoglobin and data was processed using Driftscope v2.5 and MassLynx 
v4.1 (Waters Corp., UK). For gas-phase disassembly experiments, collision induced dissociation (CID) was 
employed by applying a Trap collision cell voltage of 75 to 100 V. For solution phase disassembly experiments, The 
protein tetramer was disrupted in solution by addition of 40% methanol (v/v) prior to MS analysis. Theoretical 
collision cross sections (CCS) were calculated from PDB files using IMPACT software v. 0.9.1 39.

Protein crystallisation and data collection. Purified Cphy1178(20–462) and the C269A and H378A mutants were 
concentrated to between 8-12 mg/ml in 30 mM NaCl, 50 mM Tris.HCl pH8.0 and crystallised by sitting drop 
vapour diffusion in drops of 2 μ l protein plus 2 μ l crystallisation solution, over 1 ml of the latter. Crystals were 

Construct Forward primer Reverse primer Restriction sites Tag

Cphy1178(His) CTCCCATGGGCACAGTGAATGAACAATTG GGCCTCGAGTCGGATACACAAACTATC NcoI/XhoI C-His

Cphy1178(20–462) CTCCCATGGGCCAATTGACACAAACAAAT GGCCTCGAGTTATCGGATACACAAACT NcoI/XhoI n/a

Cphy1428(His) GGCCATATGGAAAACTTTGATTTTGAT GGCCTCGAGCTACTGACCTTTCATGGC NdeI/XhoI N-His

Cphy1428(1–448) GCGCCATGGGCTTTGATTTTGATCTGCGT GGCCTCGAGTTATTTCAGGCCAAAGGCAAC NcoI/XhoI n/a

Cphy2642(His) CTCCCATGGAGTTACAAGAGAAAGAT GGCCTCGAGTATTAGTTGTTTCATAAT NcoI/XhoI C-His

Cphy2642(1–452) GCGCATATGGAACTGCAAGAAAAAGATCTG GCGCTCGAGTTATTCTTTCACGCCAAAGGC NdeI/XhoI N-His

CD1917

 Cphy1178(20–462)(C269A) ATAATCTTCCA ATTGCAGAAAAAG CTTTTTCTGCAAT TGGAAGATTAT n/a n/a

 Cphy1178(20–462)(H387A) ATGGTAATCGA TCCGCACATAT ATATGTGCGGA TCGATTACCAT n/a n/a

Table 2.  Primers for constructs used in this study. Primer sequences for constructs used in this work. 
All primers are listed 5′  to 3′ , from left to right. Introduced restriction sites are shown underlined; regions 
complimentary to genomic DNA shown in bold; sequence mismatches in mutagenic primers are shown in red. 
All primers are listed 5′  to 3′ , from left to right.

http://doi.org/10.6084/m9.figshare.2067375
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obtained in 0.1 M sodium acetate pH 4.7, 1.8 M ammonium sulphate and grew as bi-pyramids of 50–100 μ m in 
size. Crystals were harvested from the well using a LithLoop (Molecular Dimensions), transferred briefly to a 
saturated ammonium sulphate solution and then paratone oil (Molecular Dimensions), excess oil was wicked 
off and the crystals were subsequently flash cooled in liquid nitrogen. Structures of Cphy1178(20–462) with NADH 
and CoA ligands were obtained by soaking harvested crystals in a solution of 0.1 M sodium acetate pH 4.7, 1.8 M 
ammonium sulphate, supplemented with 10 mM ligand and cryo-protected as described above. All crystallo-
graphic datasets were collected on beamlines I02 and I04 at Diamond Light Source (Didcot, UK) at 100 K and 
using ADSC CCD, or Pilatus 6 M detectors. Diffraction data were integrated and scaled using XDS40 and merged 
with Aimless41. Data collection and refinement statistics are shown in Table 3.

Structure solution and analysis. All structures were solved by molecular replacement using Phaser42, using 
PDBID:3K9D as the molecular replacement model. Refinement of the coordinates, TLS parameters and atomic 
temperature factors was carried out using Phenix.refine in the Phenix suite43. Rounds of iterative model building 
were performed using Coot44. The secondary structure and stereochemistry of the models were analysed using 
MolProbity45. Cofactors present in CoA and NAD+ soaked structures were subjected to occupancy refinement 
for the whole molecule and individual B-factors were refined to accommodate positional uncertainty, rather than 
using the alternative strategy of setting the occupancy of disordered regions to zero. The oligomeric states of the 
protein and corresponding buried surface areas were calculated using the PISA server29. Structural superimposi-
tions were calculated using Coot. Crystallographic figures were generated with PyMOL (www.pymol.org).

Cphy1178(20–462)

NAD+ C269A-CoA H387A

Data Collection

 Wavelength (Å) 0.9795 0.9795 0.9700

 Resolution range (Å) 32.64–1.64 (1.67–1.64) 49.89–1.77 (1.8–1.77) 40.53–2.083 (2.158–2.083)

 Space group I 41 2 2 I 41 2 2 I 41 2 2

 Unit cell (Å) 138.50, 138.50, 84.60 138.30, 138.30, 84.45 138.45, 138.45, 84.75

 Total reflections 299,010 (14,770) 518,921 (25,397) 24,2393 (23,123)

 Unique reflections 50,131 (24,674) 40,079 (2229) 24,570 (2,389)

 Multiplicity 6.0 (6.0) 12.9 (11.4) 10.0 (9.7)

 Completeness (%) 99.7 (99.9) 99.9 (98.5) 98.85 (99.25)

 Mean I/sigma(I) 17.8 (2.3) 22.4 (2.3) 18.94 (1.63)

 Wilson B-factor (Å2) 16.52 24.95 40.85

 Rmerge 0.062 (0.697) 0.073 (1.050) 0.081 (1.227)

 Rmeas 0.074 0.079 (1.152) 0.08496

 CC1/2 0.999 (0.744) 0.999 (0.738) 1 (0.649)

Diffraction images (DOI) 10.7488/ds/1307 10.7488/ds/1318 10.7488/ds/1319

Model Building and Refinement

 Rwork 0.1463 (0.2110) 0.1465 (0.2122) 0.1823 (0.2651)

 Rfree 0.1738 (0.2376) 0.1830 (0.2682) 0.2575 (0.3236)

 Number of non-hydrogen atoms 3795 3597 3376

  macromolecules 3293 3225 3245

  ligands 69 79 5

  water 433 293 126

 Protein residues 435 431 435

 RMS(bonds) (Å) 0.011 0.010 0.015

 RMS(angles) (°) 1.37 1.26 1.44

Ramachandran

 favored (%) 99 99 98

 outliers (%) 0 0 0

 Clashscore 2.66 0.45 4.42

 Average B-factor (Å2) 24.90 33.90 56.80

  macromolecules 23.90 32.50 57.10

  ligands 28.30 79.8 80.8

  solvent 32.10 37 46.50

PDBID 4C3S 5DBV 5DRU

Table 3.  Crystal parameters and data collection statistics for C. phytofermentans Cphy1178. Statistics for 
the highest-resolution shell are shown in parentheses.

http://www.pymol.org
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Bioinformatics analysis of BMC localisation sequences. Sequences of encapsulated aldehyde dehydrogenase 
enzymes homologous to Cphy1178 were aligned using Clustalω 46 and an alignment figure produced using 
ESPript47. Sequence regions falling outside the conserved domain of non-encapsulated aldehyde dehydrogenase 
enzymes were identified as putative BMC localisation sequences and omitted from the constructs used to produce 
the aldehyde dehydrogenase proteins for crystallization and activity assays.
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