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High-Resolution Agent-Based Modeling of COVID-19
Spreading in a Small Town

Agnieszka Truszkowska, Brandon Behring, Jalil Hasanyan, Lorenzo Zino, Sachit Butail,
Emanuele Caroppo, Zhong-Ping Jiang, Alessandro Rizzo, and Maurizio Porfiri*

Amid the ongoing COVID-19 pandemic, public health authorities and the
general population are striving to achieve a balance between safety and
normalcy. Ever changing conditions call for the development of theory and
simulation tools to finely describe multiple strata of society while supporting
the evaluation of “what-if” scenarios. Particularly important is to assess the
effectiveness of potential testing approaches and vaccination strategies. Here,
an agent-based modeling platform is proposed to simulate the spreading of
COVID-19 in small towns and cities, with a single-individual resolution. The
platform is validated on real data from New Rochelle, NY—one of the first
outbreaks registered in the United States. Supported by expert knowledge and
informed by reported data, the model incorporates detailed elements of the
spreading within a statistically realistic population. Along with pertinent
functionality such as testing, treatment, and vaccination options, the model
accounts for the burden of other illnesses with symptoms similar to
COVID-19. Unique to the model is the possibility to explore different testing
approaches—in hospitals or drive-through facilities—and vaccination
strategies that could prioritize vulnerable groups. Decision-making by public
authorities could benefit from the model, for its fine-grain resolution,
open-source nature, and wide range of features.

A. Truszkowska, B. Behring, J. Hasanyan, Prof. M. Porfiri
Department of Mechanical and Aerospace Engineering
Tandon School of Engineering
New York University
Six MetroTech Center
Brooklyn, NY 11201, USA
E-mail: mporfiri@nyu.edu
L. Zino
Faculty of Science and Engineering
University of Groningen
Nijenborgh 4, 9747 AG Groningen, The Netherlands
S. Butail
Department of Mechanical Engineering
Northern Illinois University
DeKalb, IL 60115, USA
E. Caroppo
Mental Health Department
Local Health Unit ROMA 2
00174 Rome, Italy

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adts.202000277

DOI: 10.1002/adts.202000277

1. Introduction

In December 2019, COVID-19 was first
observed in humans in Wuhan, the Hubei
Province’s capital in China. The World
Health Organization (WHO) declared this
outbreak as a Public Health Emergency
of International Concern on January 30,
2020, and later named it a pandemic on
March 11, 2020. As of December 23, 2020,
the WHO has reported 76 382 044 cases
globally, with 1 702 128 deaths.[1] In the
United States, the number of infected indi-
viduals keeps rising, with tens of thousands
of newly infected cases discovered every
day. The Centers for Disease Control and
Prevention (CDC) has reported 17 974 303
cases as of November 23, 2020.[2] Following
an unprecedented containment campaign
based on lockdowns, most countries seek
a delicate balance between safety and nor-
malcy, aiming for a safe return to normal
activities amidst less restrictive conditions.
Timely case detection through efficient

testing and contact tracing is among the
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key components required for lowering the COVID-19 spread be-
fore a vaccine becomes available.[3–6] Important questions on test-
ing pertain to the identification of infected individuals and their
contacts. Addressing these questions calls for an improved un-
derstanding of community structure, outbreak locations, and in-
dividual lifestyles.[7,8] Due to the scale of the COVID-19 epidemic,
an additional burden has been placed on traditional testing sites,
such as hospitals, emergency rooms, and walk-in clinics, thereby
challenging their safety.[9–11]

Computational models are powerful tools for understanding
novel epidemics and evaluating the effectiveness of potential
countermeasures.[12–16] Agent-based models (ABMs) are a class
of computational models that provide a high-resolution—both
temporal and spatial—representation of the epidemic at the in-
dividual level.[4,17–21] These models afford consideration of mul-
tiple physical locations, such as businesses or schools, as well as
unique features of communities, like human behavioral trends
or local mobility patterns.
Once validated, ABMs can be used to test competing “what-if”

scenarios that would otherwise require impractical and, poten-
tially, unethical experiments. For example, Ferguson et al. devel-
oped an ABM to investigate the impact of non-pharmaceutical
interventions for COVID-19, such as nation-wide confinement
in the United Kingdom and the United States.[22] Aleta et al. pro-
posed an ABM for the entire Boston metropolitan area to elu-
cidate the role of different types of contact tracing measures in
maintaining low levels of infection.[4] Gressman and Peck cre-
ated an ABM of a university campus to examine strategies for the
safe reopening of higher education institutions.[23] Hinch et al.
formulated an open-source agent-based modeling framework to
support the analysis of select non-pharmaceutical interventions
and contact tracing schemes.[24] The merits of ABMs have been
recognized by a large number of studies, which have shed light
on technical aspects of their implementation as well as their scal-
ability across scenarios.[25–29]

The focus of existing ABMs is either small micro-
environments or entire countries and large metropolitan
areas, where the population is purposefully coarsened to enable
numerical simulation. Medium-size and highly resolved com-
munities constitute an important, yet unconsidered, modeling
scale for COVID-19. America is a “nation of small towns,” as
described by the US Census,[30] and after the initial wave of
spreading in the New York metropolitan area, we see that small
and medium-size towns are increasingly hit by the pandemic. A
high-resolution ABM can closely capture real-world communi-
ties and interaction patterns at this intermediate scale, thereby
allowing them to carefully reflect town-specific lifestyles without
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requiring coarsening to performmassive simulation campaigns.
Thus, the synthetic generation of a one-to-one virtual population
with its own individual buildings (residential and public) opens
a wide range of new possibilities in epidemiological analysis,
which may inform public health authorities to design accurate
and targeted interventions. The analysis could include lock-
downs of different parts of the town and afford to quantify the
effect of testing practices, treatment prevalence, and vaccination
strategies.
Toward the study of these medium-size populations, we

develop an agent-based modeling platform of COVID-19 for the
entire town of New Rochelle, located in Westchester County in
New York. This location was chosen as it was one of the earliest
COVID-19 outbreaks in theUnited States and is representative of
a typical small town. The ABM replicates, geographically and de-
mographically, the town structure obtained from the US Census
statistics.[31] The model is based on the earlier ABM developed
by Ferguson’s research group to study pandemic influenza,[19–21]

which has been recently adapted to study COVID-19.[22] The pro-
posed ABM expands the original model by Ferguson et al.[19–21]

along several directions. First, we incorporate two testing strate-
gies: traditional, in-hospital testing with a non-negligible risk of
infection, and a “safe” drive-through testing.[32–35] Second, we
account for temporal variations in time-dependent testing capac-
ity to reflect the change in resource allocation during the course
of the pandemic. Third, our model explicitly includes multiple
COVID-19 treatment types, such as home isolation, hospitaliza-
tion, and hospitalization in intensive care units (ICUs). Fourth,
we separately track individuals with COVID-19-like symptoms
due to other diseases like seasonal influenza or the common
cold. These individuals are expected to play an important role
in the epidemic by imposing an additional burden on testing
resources. Fifth, we individually model employees in schools,
hospitals, and retirement homes, enabling a dedicated con-
sideration of these professions. Finally, the model permits the
selective study of important interventions, such as business and
school closures and their reopening and vaccination strategies.
After validation against real data, we explore alternative “what-if”
vaccination scenarios, which may be relevant in the next several
months. We consider a foreseeable situation in which a limited
number of vaccines will be available. In addition to random
vaccination, we explore the possibility of prioritizing vaccination
for groups of individuals whose status or profession makes
them particularly vulnerable to COVID-19 infection: healthcare,
school, and retirement home workers, as well as residents.
Along with selective vaccination of hospital employees, we as-
sess the potential benefit of schools and businesses’ concurrent
closures.

2. The Database of New Rochelle, NY

2.1. Geography and population data sources

We collected and organized a database of geographical co-
ordinates, type, capacity, residential buildings, and public
spaces in the town of New Rochelle, NY. The database was
created by manually collecting geographical coordinates and
characteristics of each residential and public building in the
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Figure 1. Map of New Rochelle, NY, which highlights the residential and
public buildings included in the database.

town using OpenStreetMap[36] and Google Maps.[37] The
database and the code for creating the town and its popula-
tion are available through our repository (https://github.com/
Dynamical-Systems-Laboratory/NR-ABM-population). The pop-
ulation data were collected in March and April 2020 from US
Census using 2018 5-year average tables for New Rochelle.[31]

Since then, some of the data changed slightly, and the reader is
referred to our repository for the exact datasets. Data regarding
the number of students and employees in local schools was
obtained from the National Center of Education Statistics,[38]

while the hospital staff and patient number estimates were based
on the records from the New York State Department of Health[39]

and the American Hospital Directory.[40] Figure 1 shows the
locations considered in the model.

2.2. Household, Schools, and Workplace Assignment of Agents

Householdswere assigned to agents usingCensus data on house-
hold and family structure, vacancy rate, and the number of sub-
units and floors in multi-unit buildings. Figure 2a) shows the
population distribution of the model set at the start of the sim-
ulation (see Section S3, Supporting Information), which mir-
rors the increased density registered toward the southern part
of the town.[41] As demonstrated in Figure 2b), the distribution
of household sizes and the mean size is in good agreement with
Census data. As evidenced in Figure 2c,d, we closely match the
distribution of employed familymembers and the overall age dis-
tribution, accurately resolving several age groups. As reported in
Table 1, we are successful in maintaining similar percentages of
households with agents who are above 60 years old. This aspect
is particularly important for realistic predictions of COVID-19,

which is significantly more severe and fatal among the older pop-
ulation. Aside from age, the modeled community preserves the
ratio of families with children and of single-parent households,
as shown in Table 1.
All children aged 5–17 were assigned to schools of appropriate

levels. The number of students in a school was proportional to
school size based on the data from the National Center for Educa-
tion Statistics.[38] Accordingly, the initial distribution of students
in the model, representing time before the pandemic, was set so
that a portion of children younger than 5 years old was placed
in daycare, and similarly, 35% of individuals between 18 and 21
years old attended the town’s higher education institutions.
A portion of agents older than 16 were allowed to work and

study according to a set of rules based on the estimated work-
place and school sizes (see Section S3, Supporting Information).
Agents’ workplace distribution was generated using the US Cen-
sus data on the percentage of the population working in a given
industry while the number of employees at hospitals, schools,
and retirement homes was estimated. The initial numbers of re-
tirement homes residents were estimated based on institution
size. The initial number of hospital patients with a condition
other than COVID-19 was set to occupy one-sixth of the total
available beds. The exact steps for creating the population from
building information and census data are outlined in Section S3,
Supporting Information.

2.3. COVID-19 Data Sources

The number of total and active New Rochelle cases were collected
manually from official reports and videos available for Westch-
ester County.[42] Themortality and testing statistics were obtained
from the Official Twitter account of the Westchester County,[42]

and the NewYork State Department ofHealth,[43] respectively, for
Westchester County as a whole, and were then scaled to the pop-
ulation of New Rochelle. All the data are available through our
repository (https://github.com/Dynamical-Systems-Laboratory/
NR-ABM-population).

3. COVID-19 ABM with Testing and Treatment

3.1. Model Overview

During a day, agents transition between different locations (iden-
tified in the New Rochelle database: households, workplaces,
schools, retirement homes, and hospitals). In each of these loca-
tions, they can interact with other agents, thereby supporting the
transmission of COVID-19. Agents can be healthy, undergoing
testing, or be under treatment. We assume that the town is iso-
lated, such that the agents cannot leave the town, and new agents
cannot enter during the simulation.
Motivated by refs. [19, 20, 22], the COVID-19 progression

model consists of five states: susceptible (S), exposed—which
includes infectious individuals who have not yet developed
symptoms—(E), infectious-symptomatic (Sy), removed-healed
(R), and removed-dead (D); with a detailed outline of states,
their variants, and transitions as shown in Figure 3. Upon in-
fection, susceptible agents become exposed (E) and remain so
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Figure 2. Select characteristics of the created (virtual) households: a) sizes of residential buildings across town; b) percentage of households of a given
size (census data in brackets); c) distribution of employed members per family (census data in brackets); and d) age distribution of the population.

for a latency period. Following the COVID-19 infectiousness pro-
file, we assume that exposed agents are not infectious during
the initial part of the latency period. When the latency period is
over, exposed agents develop symptoms and become infectious-
symptomatic (Sy).[4] Some exposed agents may recover without
ever developing symptoms (that is, they are asymptomatic); in
this case, their latency period is extended to match the expected
COVID-19 recovery period.
Exposed agents and agents showing symptoms —whether

from COVID-19 or another condition— have the possibility of
being tested which can be performed either in a hospital (THs) or
a car (TC). Testing in a hospital carries the possibility of infecting
hospital staff and patients with a condition other than COVID-19.
Additionally, if the agent is COVID-19-negative, then the agent
is at risk of becoming infected during testing. We assume that
drive-through testing does not carry the risk of infection based
on the work of Upham.[34] The outcomes of a test can be true
positive or negative or false positive or negative.
After testing, agents are assigned treatment from one of the

following three treatment types: home isolation (IHm), routine

hospitalization (HN), and hospitalization in an ICU (HICU). An
exposed agent who has tested positive for COVID-19 will always
undergo home isolation until developing symptoms, at which
point their treatment can potentially change to HN or HICU . In
contrast, a symptomatic agent can be assigned to one of the three
treatments. A symptomatic agent can transition between differ-
ent treatment types during the course of the disease. All infected
agents are removed through either recovery (R) or death (D). A
removed agent no longer contributes to the spread of the infec-
tion.
A symptomatic agent who is untested will not undergo treat-

ment, and their removal is determined following similar rules
to the tested agents. However, an untested agent requiring ICU
treatment has an increased probability of dying, to account for the
higher mortality in the absence of a diagnosis. While the agents
undergoing testing are routinely quarantined, those who are not
deemed to be tested retain their normal activities. However, when
developing symptoms, these agents will refrain from going to
work or school, thereby reducing the contribution to contagion
in public areas.
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Table 1.Modeled properties of the population andUS Census data for New
Rochelle, NY.

Category Model US Census
value

Mean household size 2.77 2.71

Households with one or more
individuals 60 years and older

47.0% 42.3%

Families with children 39.1% 34.2%

Single parent families 18.7% 25.0%

Susceptible agents can have symptoms similar to COVID-
19 due to non-COVID-19 diseases, such as a common cold
or seasonal influenza.[44] We assume that this population is
constant throughout the duration of the simulation. Since
these susceptible agents are suspected of having COVID-19,
they can undergo testing and thus introduce two additional
elements in our model: i) they increase the count of people
being tested, and therefore the burden on testing sites, and
ii) they can contract COVID-19 upon interacting with infected
people at the testing site. Finally, such agents can be erroneously
tested positive during their recovery from the non-COVID-19
disease. However, after recovery, these agents are still susceptible
to COVID-19.
To simulate realistic COVID-19 epidemic conditions, we

introduce school closures, a state-wide lockdown, and the three
reopening phases I, II, and III. School closure is modeled
by omitting the contribution of schools to the transmission
of COVID-19. Similarly, lockdown and reopening phases are
characterized by tuning the contributions of the workplaces to

the transmission. The number of tests performed per day can be
time-dependent, following real practices.[43]

3.2. COVID-19 Transmission Dynamics

The proposed epidemiological model consists of COVID-19
transmission through agents interacting at their residences
and public places. The agents reside in households, retirement
homes, or hospitals when being treated for conditions other
than COVID-19. They can also attend schools and go to work;
employees of schools, retirement homes, and hospitals are mod-
eled explicitly for their high-risk and critical role. Following the
original work of Ferguson, there is no distinction between times
of the day, for example day versus night. At each simulation
step, Δt, an agent may contract the disease or infect other agents
at home, school, workplace, or hospital.[19,20] For example, if
a susceptible agent is a high school student who also works
part-time, their probability of being infected with COVID-19 is
computed based on their contacts at their school, workplace,
and household. When agents are being tested or hospital-
ized, they do not infect those in their households, schools, or
workplaces.
The model comprises a set of agents = {1,… , n} and a set

of locations  = {1,… , L}. According to the town database, an
agent is associated with a subset of locations determined by the
model input. Formally, we define a set of functions fq :  → ,
with q ∈ {H,W,S,Rh,Hsp}, so that function fq associates each
agent i ∈  to the corresponding location 𝓁 ∈  of type q. The
types of locations are households (H), workplaces (W), schools
(S), retirement homes (Rh), and hospitals (Hsp). Note that each
agentmay not be associated to all the types of locations. To denote

Figure 3. Schematic representation of modeled agent states and their possible transitions. Agent in the model can be in one of the following states:
susceptible (S); exposed (E); symptomatic (Sy); removed - dead (D); removed - healthy/recovered (R); Agents in different states can undergo testing in
a test car (TC), or a hospital (THs) after which they can be treated through home isolation (IHm), normal hospitalization (HN), or hospitalization in an
intensive care unit, ICU (HICU). In addition to symptomatic agents, exposed agents and agents who have COVID-19-like symptoms but are not infected
can also be tested. Except for the symptomatic agents, all positive test results, including false positives, will lead to home isolation.
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that agent i is not associated to a location of type q, we write fq(i) =
∅. We denote by n𝓁 the number of agents associated with location
𝓁.
At every simulation step (of duration Δt), infected agents as-

signed to location 𝓁 contribute to the probability of infection for
susceptible agents at that location. Specifically, the probability
that an agent i that is susceptible at time t becomes infected in
the following time-step is equal to

pi(t) := 1 − e−ΔtΛi(t) (1)

where the non-negative time-varying parameter Λi(t) quantifies
the contagion risk at all the locations associated with the agent
and it is equal to

Λi(t) := 𝜆H,fH(i)
(t) + 𝜆W,fW(i)

(t) + 𝜆S,fS i(t) + 𝜆Rh,fRh(i)(t) + 𝜆Hsp,fHsp(i)(t)

(2)

where each contribution represents the so-called infectiousness
function of each type of location associated with agent i, with the
understanding that 𝜆q,∅ = 0, that is, if agent i is not associated
with any location of type q, than locations of type q do not con-
tribute to the agent’s contagion risk.
The infectiousness function of a location 𝓁 of type q at time

t, 𝜆q,𝓁(t), due to all the agents (indexed by k) at that location, is
defined as

𝜆q,𝓁(t) :=
1

n
𝛼q

𝓁

n𝓁∑
k=1

(
Ek𝜌k𝛽q,k + Syk𝜓𝓁ck𝜌k𝛽q,k

)
(3)

The sum is performed over the n𝓁 agents who are associated with
location 𝓁 and it represents a weighted ratio between the number
of exposed and infected agents and all the agents at the location;
Ek is an indicator function that is equal to 1 if agent k is in the ex-
posed (E) and has become infectious and 0 otherwise; Syk is equal
to 1 if agent k is symptomatic (Sy) and 0 otherwise. The parame-
ter 𝜌k ≥ 0 models variability in infectiousness among the agents;
ck > 1 is a factor that measures the increased infectiousness of a
symptomatic agent compared to an exposed one; 𝛼q ≤ 1 is a size
scaling parameter (less than one for households and one other-
wise);𝜓𝓁 ∈ [0, 1] is an absenteeism correction for workplaces and
schools, which is used tomodel reduction of agent presence upon
developing symptoms; 𝛽q,k ≥ 0 is a transmission rate that gener-
ally depends on the type of location q and on the activity of agent k
at that particular location (e.g., the transmission rate for an agent
who is being tested at a hospital is different from an agent who
works there). Further details of themodel are provided in Section
S1, Supporting Information.
When an agent becomes exposed, they undergo an incubation

period. The latency of the incubation is drawn from a log-normal
distribution, which allows for the possibility of some agents to not
spread the virus until they develop symptoms. Once the incuba-
tion ends, an agent transitions from exposed to symptomatic. The
model allows for a portion of exposed agents to recover without
symptoms (commonly referred to as asymptomatic individuals)
by including their recovery time within their incubation period.

3.3. Testing

Both exposed and symptomatic agents can undergo testing for
COVID-19 according to two different probabilities. When an
agent is scheduled to be tested, they are placed under home
isolation and randomly assigned to a testing location—a drive-
through or a hospital. We assume that the test is performed for
a fixed amount of time after the decision to be tested, and simi-
larly that the result of a test appears after a fixed delay following
the test. The test result can be either positive (true or false) or
negative (true or false), with negative results causing the agent
to return from home isolation to the community. An exposed
agent confirmed positive for COVID-19 remains in home isola-
tion, while a symptomatic one is given an initial treatment.
Testing is performed differently for exposed hospital employ-

ees and patients originally admitted for non-COVID-19-related
diagnosis (such as a car accident or cancer treatment). These
agents do not undergo home isolation, and their testing is al-
ways performed in the hospitals they work or reside in, without
the option of a test car. The symptomatic hospital staff is home
isolated prior to receiving the test results, while the non-COVID-
19 patients stay in the hospital and, upon developing COVID-
19 symptoms, they are counted among hospitalized COVID-19
cases. This fine level of detail is needed to capture evidence of ex-
tensive COVID-19 spreading in the early stage of the pandemic
in hospitals.[45–47] After confirming COVID-19, agents are as-
signed treatment.
With the exception of hospital employees and patients who de-

velop disease symptoms, the model does not apply any explicit
contact tracing. Instead, case detection is implemented in an av-
erage sense. Whether an agent will be tested is determined by
stochastic sampling of a uniform distribution, followed by a com-
parison with testing prevalence at that time.

3.4. Treatment

When a symptomatic agent is confirmed COVID-19 positive,
they are assigned to one of the three formal treatments according
to a probabilistic mechanism: home isolation, regular hospital-
ization, and hospitalization in an ICU.[22,24] Afterward, the agent
can change treatment types depending on their recovery status
and clinically observed COVID-19 progression. The agent’s
initial treatment is chosen based on the probability of normal
hospitalization and hospitalization in an ICU obtained from clin-
ical data depending on their age.[22,48] In both cases, agents are
assigned to a random hospital. If hospitalized in an ICU, their
recovery status is recomputed based on an agent’s probability of
dying in an ICU.[22] All other agents are placed in home isolation.
Treatment changes include all possible transfers except direct

transfer from an ICU to home isolation, as outlined in Figure 3.
In our model, whether an agent dies or recovers is determined
upfront when the agent develops symptoms of the disease.
Treatment transitions are closely related to an agent’s future
recovery outlooks. An agent originally determined to die and
treated in an ICUwill die in the ICU.[49] Upon recovering, agents
will be transferred to normal hospitalization after an amount of
time decided a priori.[22] Any dying agent who was previously
confirmed COVID-19 positive would be placed in an ICU for
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a predetermined number of days before death.[50] A recovering
agent initially hospitalized outside an ICU can become home
isolated if their recovery time exceeds their hospital stay.[49]

Finally, an agent recovering while isolated at home can become
hospitalized for a certain amount of time, a commonly observed
course for the disease.[49,51]

3.5. Initialization and Vaccination

At the beginning of the simulation, we initialize the entire popu-
lation as susceptible, assuming no prior immunity in a virtually
COVID-19-free population. Then, a predefined number of agents
are assigned the exposed health state. These agents can only be
tested after developing symptoms.
Part of the susceptible population can also be vaccinated and

thus becomes immune. The vaccines are distributed by two
modes: i) randomly throughout the entire population, or ii) to
a specific type of agent, such as healthcare workers or retirement
home employees.

3.6. Agent Removal

Disease progression can have two possible outcomes: recovery
or death. The outcome is determined using age-based mortal-
ity data, the agent’s treatment requirements, and current testing
prevalence. An agent’s mortality also depends on whether they
are tested and receive proper medical attention.[50,52–55] Specifi-
cally, while asymptomatic agents always recover, we distinguish
between two events that can occur to symptomatic agents and
influence their probability of dying.
Themodel decides if an agent needs ICU care upon exhibiting

symptoms. An agent who needs an ICU will be admitted upon
being tested. Not all the agents who need an ICUwill be admitted
to one; those who are not tested, and therefore not diagnosed,
will die. Among the agents who do not need an ICU, a fraction
may still die, for example, due to heart failure, stroke, or a rapid
decline in condition; some of these individuals will die in their
homes, but some others will formally be admitted to ICU, despite
not needing it, based on the agent’s expected lifetime.
All these probabilities are available from empirical observa-

tions except the probability of dying without the need of an ICU.
In order to estimate this quantity, we perform the following cal-
culations. We expand the overall probability that a symptomatic
agent dies, P(D|Sy), using the law of total probability with respect
to the conditioning on whether the symptomatic agent needs
ICU treatment,N, and the event that the symptomatic agent does
not need an ICU, N,

P(D|Sy) = P(D|N)P(N) + P(D|N)P(N) (4)

By rearranging Equation (4), we obtain the following closed-form
expression for the required probability

P(D|N) = P(D|Sy) − P(D|N)P(N)
1 − P(N)

(5)

In the following, we derive the three expressions for P(D|Sy),
P(D|N), and P(N), which are needed to compute the formula.

First, the probability of dying for symptomatic agents, P(D|Sy),
is inferred from the infection fatality ratio (IFR) available in the
literature.[22] Since the IFR is based on serology-informed esti-
mations, it reflects the probability of dying for an infected agents
(regardless of whether the agent is symptomatic or not). Assum-
ing that asymptomatic agents do not die, we can compute the
overall time-averaged probability that a symptomatic agent dies
by re-scaling the IFR by the probability of developing symptoms
once contracting COVID-19, P(Sy|CoV), obtaining

P(D|Sy) = IFR
P(Sy|CoV) (6)

Second, the probability of dying if an agent needs an ICU,
P(D|N), in Equation (5) is computed depending on whether they
are tested once they become symptomatic. Specifically, by means
of the law of total probability with respect to the conditioning on
the event T , we have

P(D|N) = 1 −
(
1 − P(D|N, T))P(T|Sy) (7)

where P(T|Sy) is the probability that a symptomatic agent is
tested. Since the IFR used in Equation 6 is a temporal average
over the entire duration of the pandemic, the probability P(T|Sy)
is also estimated as an average over the entire duration of the pan-
demic, from data reported in Table S9, Supporting Information.
Third, the probability that a symptomatic agent needs ICU

care, P(N), is computed from empirical data on the probability
that an agent needs to be hospitalized, P(H), and the probabil-
ity that symptomatic hospitalized agents need ICU care, P(N|H),
yielding

P(N) = P(N|H)P(H) (8)

where these empirical data are reported in Table S7, Support-
ing Information.
Finally, the required probability is computed by substituting

Equations (6)–(8) into Equation (5).
When an agent dies, they are removed from all public places,

hospitals, or current residences. Recovered agents become active
in public locations, and if hospitalized, return to their households
or retirement homes. Recovered agents who were previously hos-
pitalized for a condition other than COVID-19 are readmitted to
the hospital.

3.7. Susceptible Agents with COVID-19-Like Symptoms

Susceptible agents with COVID-19-like symptoms do not exist
in the model until the onset of testing. Once testing efforts be-
gin, these agents are assigned as a fraction of those who are still
susceptible. A portion of these agents will undergo testing and
receive either a false positive or a true negative result. Therefore,
the probability of a susceptible agent with COVID-19-like symp-
toms to be tested, p(T, Sy,CoV), is given as

p(T, Sy,CoV) =
(
p
(
true negative|Sy) + p(false positive|Sy))p(T)

(9)
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We assume that the probability of getting a false nega-
tive among COVID-19-infected symptomatic agents when the
epidemic prevalence is low is negligible.[56,57] We can then ap-
proximate the probability of a true negative by the probability of
receiving a negative result.
If scheduled to be tested, the agent is assigned a test time and a

testing site (either a randomly chosen hospital or a drive-through
test). When the test occurs, the time is selected from a Gamma
distribution to avoid these agents undergoing home isolation and
testing simultaneously. Similar to the procedure for an infected
agent undergoing testing, the agent displaying COVID-19-like
symptoms is placed under home isolation for a certain amount of
time before testing occurs. Home isolation lasts until the agent
is confirmed negative or reaching “recovery” after a false-positive
result. The duration of the home isolation before the test and the
subsequent wait time for results is the same for these agents as
for the infected ones.
If an agent with COVID-19-like symptoms contracts COVID-

19, they become an exposed agent. To maintain a fixed fraction
of such agents in the population, a new susceptible agent is then
randomly chosen to take their place, provided such agents are
still present in the population.

3.8. Lockdown and Reopening Events

Our model provides options to simulate school closure, lock-
down, and three reopening phases, 1, 2, and 3. School closures
are simulated by zeroing the transmission rates of students
and employees. The business closure and reopening are imple-
mented through user-defined reduction or increase of the initial
workplace transmission rates, respectively. Themodel also allows
for adjusting the absenteeism correction of a workplace, that is,
𝜓𝓁 in Equation (3), to a lockdown value, valid through the re-
opening phases. The transmission parameters for households,
hospitals, and retirement homes remain unchanged throughout
the simulation.

3.9. Model Parameters

Parameters originate from several sources: established litera-
ture data used in other ABMs,[19–22] clinical data on COVID-
19,[22,49,51,58] and information from a clinical consultant who is
part of the team. In addition, due to the lack of concrete data,
some of our parameters are informed estimates, in line with
the current understanding of COVID-19 from scientific literature
and themedia. Furthermore, some parameter types are identified
from reported data through model calibration. These latter pa-
rameters are the number of initially infected agents, time-varying
testing prevalence, COVID-19 transmission changes following
closures and reopening phases, and asymptomatic agents’ age
distribution. Parameters, data sources, and assumptions are
listed and indicated in Section S2, Supporting Information.
There are four groups of model parameters: COVID-19 trans-

mission dynamics parameters, testing parameters, parameters
related to closure and reopening events, and other parameters,
all listed as Tables in the Supporting Information. Transmis-
sion dynamics originates from the COVID-19 agent-basedmodel

in Ferguson et al.[22] While not explicitly stated, the transmis-
sion dynamics parameters used therein mirror those previously
developed for influenza by the same research group. Such a
choice is justified since COVID-19 is a respiratory disease that
spreads[19,20] similarly to influenza. However, to make the trans-
mission rates more representative, we further scale them by the
ratio of reproductive numbers, R0, for these two diseases. R0
represents the average number of secondary infections directly
caused by a single infected individual.[59] Following analogous
models and procedures, R0 for COVID-19 was estimated to be
2.4,[22] while for influenza it was reported as R0 = 1.7, resulting
in a scaling factor of 1.41.[20]

Hospital-related transmission rates are calculated by scaling
equivalent non-hospital rates with data from our clinical consul-
tant in Italy. Specifically, we use the fact that there was a 7.2%
increase in infection among hospital employees in a given week
in Italy compared to a 3.7% increase in the general population.
Thus, we use a ratio of these percentages as our scaling factor to
multiply a base rate of choice. The base rate for a hospital em-
ployee is the workplace rate, and for an agent hospitalized as a
non-COVID-19 patient, it is the household rate. Other hospital
rates are set relative to these following personal communication
with the clinical consultant in Italy.
Hospitalization duration in the model is derived from the

literature,[22] and linearly scaled by a factor of 0.39 according to
the data in the paper by Richardson et al.[49] which are specific to
the geographic region considered in this work. Specifically, the
study by Richardson et al.[49] provides actual hospitalization du-
ration in New York City, though without distinguishing between
ICU and non-ICU treatment, and relative lengths of these two.
Hence, we use the ratio of the total hospital treatment duration
reported in Richardson et al.[49] and Ferguson et al.[22] to obtain
locally realistic hospitalization periods.

4. Model Validation

To demonstrate our platform’s viability, we simulated the spread
of COVID-19 from February 22 to July 14, 2020, from the onset
of the epidemic to phase three of the reopening. In particular,
this window includes the period in which all the schools in the
town of New Rochelle were closed (March 13, 2020), followed by
the restrictive state-wide lockdown during which only essential
businesses, such as grocery stores, were allowed to operate.
In our calibration, we used officially reported data on the total

number of detected infections, number of people currently in-
fected with the disease, and the total number of fatalities. From
the cumulative number of cases and mortality, we extracted the
number of new cases and deaths reported each week. To calibrate
upon this dataset, we varied the initial number of infected agents,
the percentage of tested population, the reduction in workplace
transmission rates during the lockdown and its subsequent in-
crease during the reopening periods, and age-dependent frac-
tions of asymptomatic agents as is summarized in Section S2,
Supporting Information. Parameters were manually initialized,
while the testing percentages were later refined using simplex
optimization in MATLAB via the fminsearch function. Testing
prevalence was set to vary with time,mimicking the actual testing
practices in the region.[43] In other words, the fraction of infected
individuals who could be tested was time-dependent. To match
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Figure 4. Comparison of the modeled COVID-19 epidemic and officially reported data: a) The cumulative number of infections; b) New infections
detected within a week; c) Active cases averaged over each week; d) The total number of deaths; e) Number of deaths in each week. The gray lines
represent each of the simulation’s 100 realizations, the blue line is the average value, and black circles are the reported data.

Figure 5. Comparison of modeled and reported testing practices: a) The total number of performed tests; b) Fraction of positive test results, including
false positives: the gray lines represent each of 100 realizations of the simulation, the blue line is the average value, and dashed black line is the reported
data.

it, we used the data on newly confirmed cases every week dur-
ing the simulation period, computed from total detected cases.
We performed 100 realizations of the simulation, randomly se-
lecting a fixed number of initially infected agents each time. All
the parameters used in the simulations are listed in Section S2,
Supporting Information. The computational performance of the
model is summarized in Section S4, Supporting Information; the
implementation is fairly efficient and approachable for general
use, with 600 steps (150 days) of the simulation taking less than
30 s on a standard laptop.

Figures 4 and 5 show the results of the validation. Figure 4
compares the model output with real data along with five differ-
ent metrics: i) the total number of cases, ii) the number of new
cases, iii) the weekly average of active cases, iv) the total number
of deaths, and v) the number of deaths in a week. The total num-
ber of cases was calculated as the number of agents who tested
positive, including false positives and those who died without
treatment. The number of new weekly cases was calculated
as the weekly increase in the total number of cases. Working
with weekly averages facilitates comparisons by filtering out
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Figure 6. The number of agents undergoing each of the three treatment types at different time points in the simulation. The gray lines represent 100
realizations of the simulation; the blue line is the average value.

spurious oscillations from uneven reporting and data collection
by the authorities. In our model, the number of active cases was
computed as the number of agents undergoing treatment con-
firmed positive or false positive. These were compared directly
to the reported weekly average. The number of deaths includes
both treated and undetected, untreated agents, assuming that
COVID-19 would be confirmed in individuals who have died,
regardless of their testing status. The number of deaths per week
was computed as the weekly rise in total fatalities.
A comparison of the total number of cases shows good agree-

ment between the model and real data obtained from official
outlets of Westchester County.[42] Similarly, the number of new
cases is well predicted by our model. Looking closely, however,
the model has a smooth progression of the disease compared to
a sudden high number of initial cases in the real data. We note
that our model imparts a simplistic scenario of the testing prac-
tice, whereby an aggressive contact tracing followed the town’s
initial case detection.[60] This likely resulted in a large difference
in the number of initial cases in our model versus the real data.
Simulating this particular scenario is currently outside the scope
of our model.
In the case of weekly averages of active cases, the model rea-

sonably matches real data trends. At the same time, the mean
value predicted by the model is slightly lower than the reported
values, likely due to longer recovery times of COVID-19 patients
than utilized in the model. We note that compared to the total
number of reported cases, which provide information about new
infections, the number of active cases also includes the process
of recovery. Regarding the number of deaths, the reported val-
ues were obtained for the entire Westchester County and scaled

down to New Rochelle, proportionally to its population. Here too,
we find a close agreement between simulated and real data.
Figure 5 compares the total number of tests and positivity in

our simulations with the available data from local testing prac-
tices. Similarly to the number of deaths, this data was reported
at the county level and was scaled down to match the population
of New Rochelle for a meaningful comparison. Our results in-
dicate reasonable agreement in the early phases of the epidemic
with discrepancies later on. The lower number of total tests in our
model is due to the rule used for testing, which is based on the to-
tal number of exposed and symptomatic individuals. In contrast,
in reality, testing was ramped up to include the general popula-
tion. The only susceptible agents who can be tested in the model,
in its present incarnation, are those exhibiting COVID-19-like
symptoms. The fraction of these individuals is low and chosen
upfront in the model. This trend is also visible in the positivity
values, whereby we find an inflated positivity in our simulations
by a factor of four compared to the real data, again due to limited
testing in our model. This difference shows that negative testing
outcomes do not affect the general number of cases, as evidenced
by the model agreement on the number of cases and deaths.
Figure 6 shows the number of agents who were undergoing

a given treatment type. The number of agents isolated at home
comprised individuals who were waiting for a test or test results.
The prevalence of each type of treatment qualitatively matches
the general distribution of cases. Home isolated individuals con-
stituted the bulk of infected agents, followed by hospitalized in-
dividuals, and finally, a few hospitalized in ICUs.
According to the New York State Department of Health, the

New Rochelle hospital has 211 general and 12 ICU beds at its
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Figure 7. These figures show the spread of COVID-19 epidemics across a range of “what-if” scenarios, when no lockdowns or closures were set in place,
and vaccinations were administered selectively. Only means are reported for visual clarity; also, officially reported data (black circles) are presented
for reference. In the scenario where the only vaccinated agents were ones from specific high-risk groups the vaccination covered on average 2,201
hospital employees (±11), 7577 school employees (±11), 494 retirement home employees (±2), and 1397 retirement home residents (±5).The number
in parentheses indicates the standard deviation. In the fifth scenario, the number of people in the general population vaccinated was equivalent to the
number of vaccinated hospital employees. A tenfold increase in the number of vaccinated individuals among the general population was considered in
the third scenario.

disposal under normal circumstances.[39] In all realizations of
our model, the number of hospitalized agents was always below
the reported normal bed volume. In the model, the ICU demand
was on average within standard hospital capacities, but in many
simulations exceeded it two or even threefold. Given the expan-
sion of hospital capacity as a response to COVID-19[61] and in the
absence of reliable data, we consider this agreement reasonable.

5. Vaccination Study

To demonstrate the value of our platform, we performed a com-
parative analysis of different vaccination strategies. Specifically,
we evaluated the effect of vaccinating only high-risk groups of
individuals, hospital, school, or retirement home employees, or
retirement home residents and compare the results to a random
immunization across the entire population.
The time period of this prospective study was aligned with

the first wave of the epidemic, making the previously calibrated
model the basis for the prediction. None of the parameters were
changed in this study with respect to the earlier validation. The
only differences in this vaccination study were the absence of
school closures and any form of lockdown. In this context, the
study also investigated the consequences of leaving schools and
non-essential businesses open throughout the first wave of the
epidemic upon the availability of a vaccine.
Vaccination was implemented in the simulation onMarch 2nd,

simultaneously with the beginning of testing in New Rochelle.

All the vaccines were distributed simultaneously, granting full
protection against the disease. By then, some of the agents were
already infected and were therefore excluded from vaccination.
Susceptible agents with COVID-19-like symptoms were not vac-
cinated either, in an attempt to maintain an approximately fixed
number of such agents in the simulation. We performed six sets
of simulations with vaccinations of: i) hospital employees only,
ii) school employees only, iii) retirement home employees only,
iv) retirement home residents only, v) randomly selected fraction
of the population, with the same size as the number of hospital
employees, and vi) about a quarter of the town, corresponding to
ten times the number of hospital employees.
Figure 7 shows the predictions from these six “what-if” sce-

narios. The importance of closures is evident, with numbers of
infections and fatalities exceeding reality many times. The vacci-
nation of hospital employees resulted in only minor differences
compared with the vaccination of an equivalent number of in-
dividuals among the general population. Similar observations
can be made about targeted immunization of other vulnerable
groups of agents. Significant differences only occur in mortality
when vaccinating the elderly residents of retirement homes. Al-
though both, targeted and random, approaches had some effect
on COVID-19 spread, massive immunization was the only truly
impactful strategy. This finding is consistent with “herd immu-
nity” predictions where effective containment of COVID-19 can
only be achieved with the large majority of the population acquir-
ing immunity.[62]
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6. Conclusions

Until widespread vaccination efforts are underway,maintaining a
balance between safety and normalcy during the current COVID-
19 crisis requires the use of non-pharmaceutical preventionmea-
sures as well as efficient detection strategies. The large number of
testing strategies, unknowns, and high levels of uncertainties of
this epidemic calls for the principled use of predictive computa-
tional models, potentially informing policy-making with respect
to widespread vaccination efforts.
In this work, we proposed a high-resolution ABM of COVID-

19, developed for granular simulations of a small city or town,
where each individual is explicitly modeled. We introduced sev-
eral elements of novelty with respect to state of the art on ABM,
including i) different testing strategies in hospitals and drive-
throughs; ii) time variations in testing prevalence; iii) multiple
types of treatment, from home isolation to hospitalization in an
ICU; iv) the presence of susceptible agents who have COVID-
19-like symptoms due to other infections; v) explicit modeling of
employees of hospitals, schools, and retirement homes; vi) school
and business closures and reopenings; vii) comprehensivemodel
calibration with officially reported data; and viii) incorporation of
expert knowledge from the field.
We applied our model to the US town of New Rochelle, where

one of the first COVID-19 outbreaks in the country took place.
Using an in-house, detailed database of building locations, pub-
lic and residential, and Census data, we created a geographically
and statistically accurate representation of the town and its pop-
ulation. We demonstrated the possibility of accurately capturing
the first wave of the COVID-19 epidemic in the town.
As New Rochelle is a representative US small town, we believe

that our validated model can serve as an analysis platform for
numerous similar towns across the entire country, many cur-
rently facing the COVID-19 crisis. To illustrate the model’s value
in analyzing prospective “what-if” questions, we performed an
immunization study in which we evaluated several vaccination
strategies of future importance. In particular, we compared the
impact of vaccination of select group of vulnerable individu-
als, including school employees, retirement home employees
and residents, and the totality of the two thousand hospital
employees in the town, a randomly selected group of 2000
individuals, and 20 000 randomly selected individuals out of the
80 000 people living in New Rochelle. Our results suggest that
prioritizing vaccination of high-risk individuals has a marginal
effect on the count of COVID-19 deaths. Predictably, a much
more significant improvement is registered when a quarter of
the town is vaccinated. Importantly, the benefits of the restrictive
measures in place during the first wave greatly surpass those
from any of these selective vaccination scenarios.
While undoubtedly useful, our model bears several limita-

tions. First, the model lacks explicit agent mobility and random
contacts, which manifest in a faster decline of the epidemic
near the end of the simulation. The original model by Ferguson
et al.[19,20], serving as the basis for our own, had an additional
term to the model disease spreading through random contacts
in the community. However, these contacts were based on com-
mute and travel data at the level of the entire country, which is
not directly applicable to the problem at hand of a small town.
Simulating truly random interactions using a contact network ap-

proach similar to Hinch et al.[24] may offer an alternative, which
will be part of our future work. Along these lines, the impact of
local travel and commute can further be included in the model
by integrating traffic flow simulations.[63–65]

In addition to mobility and random contacts, our model does
not include testing the general population, leading to possible
under-detection of cases in later reopening stages. While the
model allows for testing uninfected individuals with symptoms,
massive community testing is needed to align its outcomes with
reality in later phases of the epidemic. Testing of general popula-
tion along with random interactions is also expected to highlight
the effects of different testing strategies already encoded within
themodel. Combinedwith contact tracing options, testing of gen-
eral population is part of the next step in our platform’s develop-
ment.
Another limitation of our approach is in the modeling of

hospitals in terms of their workforce and capacity. Specifically,
we assume that infections of hospital employees do not trigger
changes in the treatment of hospital patients and that hospitals
have infinite beds and ICUs. Finally, we do not explicitly account
for the use of personal protective equipment (PPEs), such as face
coverings, and social distancing of agents. While these measures
are included indirectly through reduction of disease transmis-
sion during the lock-down and reopening phases, the ability of
specific agents to protect themselves from the contagion would
improve the granularity of the model and add a further realistic
element, at the expenses of the computational burden. Advanta-
geous impact of PPEs and distancing can be introduced to both
susceptible and infected agents in a similar way to agent’s cur-
rent infectiousness variability, and this will be one of our goals in
the nearest future.
Despite these limitations, our model matched real data very

closely as the epidemic progressed through its initial stages. This
correspondence allowed us to prospect and analyze alternative
scenarios for COVID-19, in which vaccination was accessible
right at the onset of the first wave. Beyond the timely study of
vaccination strategies, our model can be adapted to explore a
range of pressing problems that are ahead of us by interested
users who can directly modify our open-source platform. For
example, the model can be swiftly adapted to describe the con-
current spread of influenza with COVID-19, which is expected
to exacerbate the impact of second and third waves. Likewise,
the model can provide clear and quantitative support to the
long-debated recommendations regarding the need to avoid
large gatherings and always use masks.
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the author.
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