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Experimental Trapped-ion Quantum 
Simulation of the Kibble-Zurek 
dynamics in momentum space
Jin-Ming Cui1,2,*, Yun-Feng Huang1,2,*, Zhao Wang1,2, Dong-Yang Cao1,2, Jian Wang1,2,  
Wei-Min Lv1,2, Le Luo3, Adolfo del Campo4, Yong-Jian Han1,2, Chuan-Feng Li1,2 &  
Guang-Can Guo1,2

The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system 
across a continuous phase transition. Its study in the quantum regime is hindered by the requisite 
of ground state cooling. We report the experimental quantum simulation of critical dynamics in the 
transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can 
be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the 
quantum regime in the momentum space and find the measured scaling of excitations is in accordance 
with the theoretical prediction.

Phase transitions are ubiquitous in physics, and account for the fundamental change of the state of a system when 
a control parameter is driven across a critical point. Continuous phase transitions are characterized by the diver-
gence of the correlation length and relaxation time. As a result of the critical slowing down, the dynamics induced 
by a finite-time quench across the critical point is generally nonadiabatic and results in the formation of topolog-
ical defects. The implications of the nonadiabatic nature of the critical dynamics during symmetry breaking were 
discussed by Kibble1,2 in a cosmological setting. Soon after, Zurek pointed out that condensed matter systems 
provide a test-bed for this scenario3,4, and predicted that the density of the topological defects scales with the 
transition rate 1/τQ as a universal power law of the form τ∝ β−n Q , where β >​ 0 is a function of the critical expo-
nents of the phase transition and the dimensionality of the system. The so-called Kibble-Zurek mechanism 
(KZM) shows that the equilibrium critical exponents can be used to predict the density of defects formed in the 
non-equilibrium critical dynamics and constitutes a prominent paradigm in non-equilibrium physics5.

The applicability of the KZM is expected to extend from low-temperature physics to cosmology. Experimental 
efforts in a variety of systems including liquid crystal6,7, superfluid helium 38 and 49, low temperature 
Bose-Einstein condensates10,11, trapped ions12–14, multiferroic hexagonal magnanites15 and colloidal systems16 
have verified aspects of the mechanism, while the scaling of excitation as a function of the quench rate across the 
quantum critical point remains elusive17. The situation is even more uncertain in the quantum regime. Theoretical 
studies18–21 and moderate experimental progress22–24 support the tenets of the mechanism, but a direct test is still 
missing. Despite the development of cooling techniques in optical lattice25 and trapped ion systems26, the exper-
imental study of the KZM across a quantum phase transition remains challenging. This is due to the fact that 
the system of interest should be cooled to its ground state, and that an accurate control of the parameter driving 
the transition over a large range of values is required. In addition, the resulting non-equilibrium state should be 
probed with high-efficiency. Regarding the choice of the system, the transverse field Ising model (TFIM) is the 
paradigmatic model to study quantum phase transitions27, and constitutes an ideal test-bed to investigate the 
KZM in the quantum regime. However, simulation of this spin system in optical lattice can only be realized in 
some special situation28. By contrast, it has been realized in trapped ion systems29–32, but with a limited system 
size preventing the test of the KZM.
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In this work we report the quantum simulation of the critical dynamics in the TFIM with a well controlled 
trapped ion in momentum space. We exploit the mapping of the TFIM critical dynamics to a set of independent 
Landau-Zener (LZ) crossings in pseudo-momentum space19. Firstly, we study an essential ingredient of the KZM 
in our setup, the so-called adiabatic-impulse (AI) approximation, that successfully accounts for the dynamics 
of a single LZ crossing33,34. By comparison to previous experiments35, trapped ion qubit exhibits long coherence 
times36. After exploiting this fact, we study the universal scaling of excitation as a function of the quench rate 
across the quantum critical point of the TFIM. Our experimental results show that the measured density of the 
excitations is in accordance with the theoretical prediction of the KZM in the quantum regime.

Results
Theory.  In one dimension, the Hamiltonian of the TFIM with linear quench is defined by
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where N is the number of spins, g(t) is the amplitude of the magnetic field, Δ​I is the quenching rate, σx and σz are 
Pauli matrices, and J sets the energy scale of the system. In what follows we consider periodic boundary condition 
such that σ σ→ =→+N 1 1 and denote by |→​〉​ the eigenvector of σx with eigenvalue 1 and by |↑​〉​ and |↓​〉​ the eigenvec-
tors of σz with eigenvalues 1 and −​1, respectively. As the parameter g(t) is changed from +​∞​ to 0, the Ising chain 
exhibits a quantum phase transition in which the ground state changes from a paramagnetic state, |→​ →​ ··· →​〉​ to 
a doubly degenerate ferromagnetic ground state, with all spins pointing up |↑​↑​ ···↑​〉​ or down |↓​↓​ ···↓​〉​. The critical 
point is located at gc =​ 1. When varying g(t) across this value, adiabatic driving is not possible due to the closing of 
the gap between the ground state and the first excited state as g(t) →​ gc. As a result, the dynamics of the phase tran-
sition is intrinsically nonadiabatic and formation of kinks at the interface between different domains is expected. 
These excitations, quantum in nature, can be pictured as coherent superpositions of the form |↓​↓​ ···↓​↑​↑​ ···↑​↓​↓​ ···↓​〉​. 
Consider the preparation of the system in the paramagnetic ground state of the Hamiltonian with g(t) ≫​ gc =​ 1, 
followed by crossing of the phase transition by ramping down the magnetic field g(t) to a final zero value. The 
time-dependence of g(t) can be linearized in the proximity of the critical point as g(t) =​ −​t/τQ, where τQ sets the 
quench time scale in which the transition is crossed and the time of evolution varies from t/τQ ≪​ −​1 to 0. 
According to KZM, the density of the kinks after the transition scales as a universal power-law with the quench rate
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Generally, the exact form of the density of the topological defects in a many-body system is difficult to deter-
mined. However, as pointed out by Dziarmaga19, the density of kinks in the TFIM can be exactly computed. 
Using the Jordan-Wigner and Bogoliubov transformations, the TFIM can be mapped to a set of independent 
quasi-particles. The resulting density of kinks at the end of the quench t =​ 0, can be measured via the expectation 
value of the operator
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where γk is the annihilation operator of the quasi-particle with pseudo-momentum k at t =​ 0 and the 
pseudo-momentum k take N different values ± ... ± −π π{ }( ), ,

Na
N

Na
1
2

2
2

1
2

2 , where a is the lattice spacing. The 
operator γk is related to the initial Pauli matrices by the Bogoliubov-de Gennes and Jordan-Wigner transforma-
tion19. Therefore, different modes decouple in Fourier space and the density of the kinks at t =​ 0 can be calculated 
as the sum γ γΨ ∑ Ψ†(0) (0)k k k /N, where Ψ​(0) is the finally state of the quench at t =​ 0. The dynamics of inde-
pendent quasiparticles is described by the time-dependent Bogoliubov-de Gennes equation, whose solution 
determines the excitation probability in each mode, γ γ= Ψ Ψ†p (0) (0)k k k

19. The dynamics in each mode can be 
cast in the form of a Landau-Zener (LZ) problem,
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where μk and νk are time-dependent Bogoliubov parameters for pseudo-momentum k, τk =​ 4τQsin(ka)
(t/τQ + ​ cos(ka)),  τ∆ =− ka4 sin ( )k Q

1 2  and τQ = ​ 1/Δ ​I.  Comparing with the standard LZ model 
σ σ= ∆ +H t J t( ) ( )LZ z x

1
2

, the parameters τk and Δ​k play the role of t and Δ​, respectively. As a result, each prob-
ability pk can be found by carefully controlling the parameters Δ​k, varying τ from −​∞​ to τk,f =​ 2τQsin(2ka) (cor-
responding to g(t) =​ 0), and measuring the probability of the excited state in the final state. Using the LZ formula 
for pk

37, the density of the kinks can be calculated as19:
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This agrees with the universal power-law scaling predicted by the KZM (2), and further shows that the prefactor 
is overestimated by KZM.
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To experimentally study the density of the kinks in the TFIM resulting from a sweep through the critical point, 
an accurate control of the LZ model is necessary over a large range of values of the control parameter. In ref. 38, 
a special situation of the LZ supporting the AI approximation has been demonstrated in linear optics. However, 
that setup could not be used to implement a LZ crossing for the long evolution times required to study critical 
dynamics. By contrast, a trapped ion allows for a long coherence time and a high fidelity initializing, manipulat-
ing, and detecting the ion quantum state39, making it an ideal platform to complete the full evolution in the LZ 
model and investigate the KZM in the TFIM.

The LZ model is realized with a single 171Yb+ ion confined in a Paul trap, consisting of six needles placed on 
the x-z and y-z planes, as shown in Fig. 1A. The hyperfine clock transition in the ground state S1/2 manifold is 
chosen to realize the qubit, with energy levels denoted by ≡ = =F m0 0, 0F  and ≡ = =F m1 1, 0F

36. In 
zero static magnetic field, the splitting between 0  and 1  is 12.642812 GHz. We applied a static magnetic field of 
4.66 G to define the quantization axis, which changes the 0  to 1  resonance frequency to 12.642819 GHz and 
creates a 6.5 MHz Zeeman splittings for 2S1/2, F =​ 1. In order to manipulate the hyperfine qubit with high control, 
the coherent driving is implemented by a microwave with IQ modulation, see the scheme in Fig. 1C. A two chan-
nel Arbitrary Function Generator (AFG) creates signals around 2 MHz to modulate 3.0 GHz microwave from 
SG384, a 9.64 GHz microwave is mixed with the modulated 3.0 GHz signal to get an arbitrary microwave near 
12.642 GHz, and then the signal is amplified to 2 W and irradiated to the trapped ion by a horn antenna. We first 
use Doppler cooling and initialize the qubit into the 0  state by optical pumping as in ref. 36, then send the micro-
wave sequence to the ion, and finally measure the population of the bright state  1  by fluorescence detection 
scheme36. (The performance of the qubit is shown in supplementary).

LZ dynamics and the AI approximation.  For the quantum simulation of the KZM, we first character-
ize the LZ dynamics. According to Damski33 a LZ crossing can be well described by the adiabatic-impulse (AI) 
approximation which plays the central role in the KZM.

Consider the time-dependent Hamiltonian σ σ σ σ= ∆ + = + ΩħH J t vt( ) ( )z x z x
1
2

1
2 0 , where v is the energy 

detuning rate and Ω0 is the Rabi frequency of the system when detuning vt =​ 0. The AI approximation splits the 
time evolution during a LZ crossing into three sequential stages during which the dynamics is adiabatic, effec-
tively frozen, and adiabatic again. The three regions can be separated by the freeze-out time scale ± t̂ , at which the 
equilibrium relaxation time τ =​ ħ/gap(t) set by the inverse of the instantaneous gap matches the time measured 
from the avoided crossing, e.g. τ =ˆ ˆt t( ) . The impulse region extends over the interval (− t̂ , t̂), when the system 
can not follow the external quench and is effectively frozen. Considering the difference between the LZ and 
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Figure 1.  Experimental setup using an ion-trap. (A) Configuration of six needles of the trap used in 
experiment. (B) 171Yb+ energy spectrum: the hyperfine energy levels (|0⟩ and |1⟩) of the ground state are used as 
the qubit. (C) Microwave control scheme of the driving field around 12.642 GHz: the frequency is generated by 
mixing microwaves between 9.64 GHz and 3 GHz, while 3 GHz microwave is IQ modulated by a dual channel 
AFG around 2 MHz.
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second order phase transition near t =​ 0 (the gap closes at the critical point), the energy gap finite as 
τ τ= Ω + = +ħ t vt t/gap( ) 1/ ( ) / 1 ( / )Q0

2 2
0

2  (where τ0 =​ 1/Ω0 and τQ =​ 1/Δ​), the equation determining the 
freeze-out time should be modified in a LZ crossing with a linear parameter α as34: α=ħ ˆ ˆt t/gap( ) .

Using the AI approximation, the probability of the excited state in LZ can be predicted as the overlap between 
the instantaneous ground state at − t̂  and the excited state at + t̂33. For the generic scheme A, the initial state is 
prepared at the ground state of the system which is far away from the critical point. The probability of the excited 
state at the end time tf →​ ∞​ is then given by = αx2/ ( )D P , where  = + + +α α α αx x x x( ) 4 22 2 , xα =​ ατQ/τ0.

Experimentally, after Doppler cooling and initializing the ion state into 0 , a microwave sequence is applied to 
the ion. For case A, the microwave is a phase continuous frequency sweep waveform near the spin transition. The 
time dependence of a typical LZ transition probability to 1  is shown in Fig. 2B, where t =​ 0 is set by the micro-
wave frequency resonating with the clock transition. Ω0 =​ 18.3 KHz, v =​ 2.0 GHz/s, and the time evolution starts 
from ti =​ −​500μs. We measured the probability in the excited state for different values of the quench time τQ, by 
changing the frequency sweeping rate. Data and fitting results are plotted in Fig. 2C. The fitted scaling parameter 
α =​ 1.58 ±​ 0.01 is in agreement with the theoretical value π/234.

In the scheme B, the initial state is prepared in the ground state of the system at anticrossing center, ti =​ 0. As 
tf →​ ∞​, = − − αx(1 1 2/ ( ) )1

2
D P . A typical transition probability as a function of time is shown in Fig. 2F. In 

order to prepare the initial state in the ground eigenstate, which is | 〉 + | 〉( 0 1 )2
2

, we implement a π( )RY 2
 qubit 

rotation microwave pulse before the microwave frequency sweep. The fitted scaling parameter to the measure-
ment data for different quench times, α =​ 0.78 ±​ 0.03, is in accordance with the theoretical prediction π/434.

Quantum simulation of the KZM in TFIM.  We have shown that a trapped ion can be used to simulate 
the LZ process with high accuracy. The exquisite control of this system renders the study of the KZM in TFIM 
feasible. To this end, we implement the following experimental scheme with a trapped ion:

1.	 The Rabi frequency of the system Ω0, that corresponds to the energy scale J =​ ħΩ0 in the simulated Ising 
model, is measured and kept stable during the whole experiment. For a given quench time τQ, the experi-
mental values of τk,f and Δ​k required to control the microwave at different k-modes are found via the 
equations τk,f =​ 2τQsin(2ka) and τ∆ =− ka4 sin ( )k Q

1 2 .
2.	 Waveforms of first momentum parameter (k1) are computer-generated and set to AFG channels; the 

Figure 2.  LZ transition and density of detects for different cases. (A,D) schematic energy level and initial 
condition of two evolution case, respectively. (B) A typical plot of measured probability of 1  state of 171Yb+ 
during the LZ crossing with evolution time starting from t =​ −​500 μs for (A), experimental parameter: 
Ω0 =​ 18.3 KHz, v =​ 2.0 GHz/s; (E) a typical plot of measured probability of 1  with starting time at t =​ 0 with 
experimental parameters: Ω0 =​ 13.8 KHz, v =​ 5.0 GHz/s, black dots: data, blue lines: numerical simulation.  
(C,F) Density of defects for (A,D), respectively, black dot: measured data, red dot line: the fitting line, blue dash 
line: theory curve in ref. 34.
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experiment is run repeatedly to estimate the mean density of excitations, according to the experiment 
control process shown in Fig. 3A. Photon counts from the bright state are recorded after 1  is prepared in 
the reference pulse, which is used to normalize photon counts of the excitation pulse, to get the excitation 
probability.

3.	 This procedure is repeated to get the excitation probability in each mode, pk.

The k-mode control sequence consists of a wave with sweeping rate of vk =​ Δ​kΩ0 and an operation pulse RX(π) 
RY(θk). The Rabi frequency of the system is typically 20 KHz; we start to sweep microwave with 2 MHz detuning, 
so that the initial condition is located far away from anticrossing point. The RX(π)RY(θk) operation pulse trans-
forms the excited state of the Hamiltonian at τk,f to the ion bright state 1 , with a rotation angle θk =​ Δ​k ⋅​ τk,f.

Implementing this scheme, the excitation probability in the broken-symmetry phase of a quantum Ising chain 
of 50 spins is measured, see Fig. 3B. Black, red and blue dots denote data measured with relative quench time at 
1.85, 0.85 and 0.35, respectively. The solid lines correspond to the numerical simulations. Applying equation 
P =​ ∑​ pk/N, kink densities for different quench times can be obtained. Figure 3C depicts the variation of the kink 
density with ħ(JτQ)−1. The scaling behavior becomes apparent in a double logarithmic plot, and a fit to the data 
leads to τ− . ± .~nex Q

0 59 0 03 that accords with the power-law predicted by the KZM across the quantum phase 
transition.

Discussion
We have demonstrated that a well-controlled trapped ion offers a quantum platform to study the KZM in TFIM 
in pseudo-momentum space by exploiting the mapping of the critical dynamics to a set of independent LZ pro-
cesses. Our experiment test the validity of the AI approximation in the LZ and the quantum KZM in the TFIM. 
The power-law exponent measured in our experiment is 0.59 ±​ 0.03 matches the numerical simulation in ref. 18 
which reported the value 0.58 for the quantum Ising chain. In addition, the prefactor of the density of excitations 
in our experimental results is 0.136 ±​ 0.004 which agrees with the 0.16 estimated from numerical simulations  
in ref. 18. As a result, our experimental quantum simulation reveals the signature of universality in the quantum 
critical dynamics, the main prediction of the KZM. We notice that our scheme can be readily applied to test a 
variety of protocols, including the critical dynamics under inhomogeneous driving40, nonlinear quenches41,42, 
and the simulation of multiple-body interactions required for counterdiabatic driving and the suppression of 
the KZM across a quantum phase transition43–45. As a result, it constitutes an ideal experimental platform for the 
quantum simulation of nonequilibrium many-body systems in momentum space. The limitations of our setup is 
that it can only simulate the KZM dynamics in momentum space and cannot probe topological defect formation 
in real space.

Methods
Ion trap setup.  The size of the needle trap depends mainly on the distance between the two needles tips near 
the trap center, which is set to 120 μm in the experiment. The needle trap is installed in an ultrahigh vacuum 

Excitation Reference
Cooling Detection Cooling DetectionInitial Sweeping Operation Initial Operation

A

B

C

Figure 3.  Quantum simulation of the critical dynamics in the TFIM with a series of uncoupled LZ 
crossings. (A) Control process for measurement as a function of time; (B) Excitation probabilities in each of  
the k modes, black dots, red squares and blue triangles are data measured with JτQ/ħ at 1.85, 0.85 and 0.35, 
respectively. Corresponding lines are numerical calculation; (C) Density of kinks (nex) for different quench  
time, the fitted scaling parameter is τ− . ± .~nex Q

0 59 0 03.
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below 10−11 torr, and a helical resonator provides the RF signal with frequency of 27 MHz and amplitude of 150 V 
to the trap, that sets the ion secular motion frequencies to 1.45 MHz, 1.66 MHz and 2.96 MHz. Ion fluorescence is 
collected by an objective lens with 0.4 numerical aperture (N.A), and detected by a photomultiplier tube (PMT). 
Total fluorescence detection efficiency is ηtotal =​ ηlens ⋅​ ηtrans ⋅​ ηdetect =​ 4% ×​ 90% ×​ 30% =​ 1.1%

Waveform of the driving microwave.  In principle, any required waveform of the microwave field can 
be generated by setting the waveforms of dual channel AFG for IQ modulation. We consider the carrier micro-
wave Bc(t) =​ Asin(ωct), with amplitude A and frequency fc =​ ωc/2π. The waveforms generated by AFG for IQ 
modulation are I(t) =​ cos(φ(t)) and Q(t) =​ sin(φ(t)) respectively. After IQ modulation, the microwave field will 
be B(t) =​ Asin(ωct +​ φ(t)), where the phase function φ(t) can be expressed in a section function for the micro-
wave composed of a series of frequency sweeping waveforms and qubit rotation pulses. With a qubit resonance 
frequency f0 =​ ω0/2π, we sweep the microwave frequency at ω1 from t =​ 0, with sweeping rate v to t =​ t1. Then the 
qubit is manipulated with Ry in (t1, t2) and Rx in (t2, t3). The expression of φ(t) can be derived
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where φ ω ω= + −vt t( )c1
1
2 1

2
1 1, φ2 =​ φ1 +​ (ω0 −​ ωc)(t2 −​ t1).

In actual experiment, there is a residual carrier wave with small amplitude εc, resulting from the imperfection of 
the IQ modulation ε ω=B t t( ) sin( )c c c . While the ratio of amplitudes εc and A is small, εc/A <​ 0.01, when the 
scheme works in resonance modulation ω0 =​ ωc the residual carrier wave can change the qubit state inducing an 
error over one percent after several Rabi flips. In order to reduce this error, we set ωc such that ω0 −​ ωc =​ (2π)2.0 MHz, 
which is largely detuned from resonance compared to the Rabi frequency Ω0 =​ (2π)20 KHz, and renders the  
residual wave drive negligible.
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