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Background: Several members of the SLC26A family of transporters, including SLC26A3
(DRA), SLC26A5 (prestin), SLC26A6 (PAT-1; CFEX) and SLC26A9, form multi-protein
complexes with a number of molecules (e.g., cytoskeletal proteins, anchoring or adaptor
proteins, cystic fibrosis transmembrane conductance regulator, and protein kinases). These
interactions provide regulatory signals for these molecules. However, the identity of proteins
that interact with the Cl−/HCO3

− exchanger, SLC26A4 (pendrin), have yet to be determined.
The purpose of this study is to identify the protein(s) that interact with pendrin.

Methods: A yeast two hybrid (Y2H) system was employed to screen a mouse kidney cDNA
library using the C-terminal fragment of SLC26A4 as bait. Immunofluorescence microscopic
examination of kidney sections, as well as co-immunoprecipitation assays, were performed
using affinity purified antibodies and kidney protein extracts to confirm the co-localization and
interaction of pendrin and the identified binding partners. Co-expression studies were carried
out in cultured cells to examine the effect of binding partners on pendrin trafficking and activity.

Results: The Y2H studies identified IQmotif-containingGTPase-activating protein 1 (IQGAP1)
as a protein that binds to SLC26A4’s C-terminus. Co-immunoprecipitation experiments using
affinity purified anti-IQGAP1 antibodies followed by western blot analysis of kidney protein
eluates using pendrin-specific antibodies confirmed the interaction of pendrin and IQGAP1.
Immunofluorescence microscopy studies demonstrated that IQGAP1 co-localizes with
pendrin on the apical membrane of B-intercalated cells, whereas it shows basolateral
expression in A-intercalated cells in the cortical collecting duct (CCD). Functional and
confocal studies in HEK-293 cells, as well as confocal studies in MDCK cells,
demonstrated that the co-transfection of pendrin and IQGAP1 shows strong co-
localization of the two molecules on the plasma membrane along with enhanced Cl−/
HCO3

− exchanger activity.

Conclusion: IQGAP1 was identified as a protein that binds to the C-terminus of pendrin in
B-intercalated cells. IQGAP1 co-localized with pendrin on the apical membrane of
B-intercalated cells. Co-expression of IQGAP1 with pendrin resulted in strong co-
localization of the two molecules and increased the activity of pendrin in the plasma
membrane in cultured cells. We propose that pendrin’s interaction with IQGAP1 may play
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a critical role in the regulation of CCD function and physiology, and that disruption of this
interaction could contribute to altered pendrin trafficking and/or activity in pathophysiologic
states.

Keywords: kidney tubules, collecting duct, bicarbonate secretion, chloride absorption, intercalated cells

1 INTRODUCTION

Complex biological systems are composed of networks of
interacting proteins, which are crucial for all levels of cellular
function, including signaling, metabolism and communication.
Several members of the Slc26 family of anion transporters form
multi-protein complexes with the cytoskeleton, anchoring
proteins, PDZ adaptor proteins and certain protein kinases
(Lohi et al., 2003; Ko et al., 2004; Rossmann et al., 2005;
Thomson et al., 2005; Bertrand et al., 2009; Lee et al., 2012;
Kim et al., 2012; Zheng et al., 2010; Hillesheim et al., 2007;
Dossena et al., 2011). The formations of these complexes impart
regulatory signals on ion transport by members of the SLC26
transporter family. While several studies have identified binding
partners for SLC26A3 (DRA), SLC26A5 (prestin), SLC26A6
(PAT-1; CFEX) and SLC26A9 (Lohi et al., 2003; Ko et al., 2004;
Thomson et al., 2005; Rossmann et al., 2005; Hillesheim et al.,
2007; Bertrand et al., 2009; Kim et al., 2012; Lee et al., 2012;
Zheng et al., 2010; Dossena et al., 2011), little information is
available about the proteins that interact with SLC26A4/
pendrin.

SLC26A4 is a Cl−/HCO3
− exchanger located on the apical

membrane of non-A intercalated cells and plays an important
role in bicarbonate secretion and chloride absorption in the
kidney CCD (Soleimani et al., 2001; Royaux et al., 2001; Wall
et al., 2003; Vallet et al., 2006; Bonar and Casey, 2008; Sindić et al.,
2007; Amlal et al., 2010; Soleimani, 2013; Alper and Sharma,
2013; Wall and Weinstein, 2013; Mohebbi et al., 2013). The
purpose of the current studies was to identify the binding partners
of SLC26A4 in the kidney. Toward this end, yeast two hybrid
(Y2H) screening was utilized to identify the proteins that bind to
the C-terminal end of pendrin. The C-terminus was chosen as
bait for these studies because it contains the Sulfate Transporter
and anti-Sigma factor antagonist (STAS) domain, as well as
residues that are important in pendrin function (Dossena
et al., 2011; Alper and Sharma, 2013; Soleimani, 2013). Results
were further confirmed by immunoprecipitation experiments and
functional and confocal image analysis in cultured cells, kidney
sections, and proteins. We identify IQGAP1 as a binding partner
of pendrin in the kidney. The significance of the results will be
discussed.

2 MATERIALS AND METHODS

2.1 Yeast Two Hybrid Screening
In order to identify binding partners of mouse Slc26a4 in the
kidney, the Y2H screening (Joung, et al., 2000; Gietz et al., 1997)
was employed. The intracellular portion of the c-terminal
fragment of SLC26A4 (amino acids 508–780) was used as

bait (Figure 1A). Briefly, the pBD-Slc26a4 yeast two hybrid
expression vector was constructed by PCR amplification of the
cDNA fragment that codes for the SLC26A4 c-terminal
fragment using the following primers: KUP2Hyb, 5′-GAC
TGTGGTCCTGAGAGTTCAG-3′, and KLOW2Hyb, 5′ TCA
GGAAGCAAGTCTACGCATG-3′. The sequence of the PCR
amplified pendrin fragment was confirmed prior to initiation of
the yeast two hybrid studies. The fragment was ligated into the
SalI restriction endonuclease site of pBD-GAL4 (Stratagene, La
Jolla, CA, United States). A mouse kidney cDNA library
(HybriZapTM two hybrid library, Stratagene) was co-
transformed with pBD-Slc26a4 into YRG-2-competent yeast
cells. A total of 6 × 103 interacting clones were identified by
growth in selective media (Leu−, Trp−, His−), out of which 14
clones were determined to be positive when screened for β-gal
expression. Plasmids from these clones were purified and co-
transformed again with pBD-Slc26a4 and with control plasmids
in order to confirm the interaction. Cloned fragments were
sequenced to confirm that they were in frame and without
mutations.

2.2 Cloning of Full Length Human SL26A4
and IQGAP1
For expression studies in HEK293 cells, the open reading frames
of both SLC26A4 (NM_000441) encompassing nucleotides
225–2,567 and IQGAP1 (NM_003870) encompassing
nucleotides 102–5,075 were amplified by PCR. Purified PCR
products were sub-cloned into a pTarget ex-pression vector
(Promega, Madison, WI, United States). Sequences and
directionality of both sub-cloned fragments were confirmed.

2.3 Immunofluorescent Microscopic
Analysis of Pendrin and IQGAP1 in the
Kidney
The expression and localization of IQGAP1, SLC26A4 (pendrin),
and H+-ATPase were characterized by immunofluorescence
microscopic examination (Petrovic et al., 2006; Xu et al., 2011;
Xu, et al., 2006) on paraffin-embedded mouse kidney sections
using specific antibodies to SLC26A4, H+-ATPase B subunit, and
IQGAP1.

2.4 Co-Immunoprecipitation and Western
Analysis
For immunoprecipitation, 2 μg of mouse IQGAP1 antibody
(SCBT, Dallas, TX, United States) was diluted in 200 μl of PBS
with Tween-20 (PBS-T), and added to 50 μl of Dynabead Protein-
G slurry (Invitrogen, Waltham, MA, United States). The mixture
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was subjected to rotation for 10 min at room temperature. The
Dynabead-antibody complex was washed with PBS-T. Kidney
lysates (200 µg in 100 μl of PBS-T) from wild-type (WT) and
pendrin knockout (KO) (Amlal et al., 2010) were precleared by
incubation with Dyna- bead Protein-G slurry for 30 min. The
precleared lysates were added to the Dynabead-Ab complex. The
mixture was subjected to rotation for 10 min at room
temperature. The Dynabead-Ab-antigen complex was washed
3 times using 200 μl of PBS-T. The bound proteins were eluted by
addition of 40 μl of 1:1 mixture of reducing laemmli and elution
buffers and heating the samples for 10 min at 70 degrees C. The
eluted proteins were subjected to western blot analysis using a
mouse monoclonal anti-SLC26A4 antibody (LS Bio, Seattle, WA,
United States).

2.5 Co-Expression of Pendrin and IQGAP1 in
HEK293 and MDCK Cells
SLC26A4 (pendrin) and IQGAP1 expression vectors were used
for transient transfection of HEK293 or MDCK cells. Briefly, cells
were grown in 60 mm tissue culture plates or on coverslips.
Monolayers (~70% confluent) were transfected with 8 μg of
the full-length SLC26A4 (pendrin), IQGAP1 or both
expression vectors using Lipofectamine 2000, according to an

established protocol (Li et al., 2004; Li et al., 2007). Cells were
maintained at 37°C in a 5% CO2 atmosphere and were examined
48 h after transfection.

2.6 Confocal Microscopy
For confocal microscopy experiments, HEK293 or MDCK cells
were grown on glass coverslips and transiently transfected with
Iqgap1, Slc26a4 (pendrin), or both expression vectors. The
coverslips were fixed 48 h later with 4% paraformaldehyde
48 h after transfection. Fixed cells were labeled with IQGAP1
and SLC26A4 antibodies. The slides were observed using a Zeiss
confocal 710. Z-stack images were obtained with LSM 5 Image
software.

2.7 Intracellular pH Measurement
The intracellular pH (pHi) in HEK293 cells was determined by
microfluorometry using the pH-sensitive fluoroprobe BCECF
(Xu, et al., 2011; Petrovic, et al., 2003; Rahmati, et al., 2013).
The cells were first perfused with a Cl−- and HCO3

−-
containing solution of the following composition (in mM):
115 NaCl, 25 Na-HCO3, 3 KCl, 1.8 CaCl2, 1 MgCl2, and 5
HEPES, pH 7.4, gassed with 5% CO2-95% O2. Once the
baseline pHi was established, the perfusate was then
switched to a Cl−-free medium of the following composition

FIGURE 1 | Identification of IQGAP1 as a pendrin binding partner. (A) The C-terminus of pendrin was used as bait in Y2H in order to identify the protein(s) that
interact with pendrin. The C-terminus of mouse pendrin protein spanning amino acids 508–780 was used in Y2H studies in order to identify the proteins that interact with
pendrin. This region was used because it contains the STAS domain. The missense mutations (highlighted, bolded and underlined) correspond to those of that affect the
function of the human pendrin protein and are associated with Pendred Syndrome and DFNB4. (B)Our studies identified a total of 33 interactions between pendrin
and prey sequences. Of these only 22 interactions were shown to be specific while others we excluded due to out of frame translation, reversed direction of the cloned
sequence, or low affinity of the bait/prey interaction. The interaction with IQGAP1 represented 14 of the 22 significant interactions. Based on the Global PBS score,
IQGAP/pendrin interaction had a very high degree of confidence. The Global PBS score is automatically computed through algorithms with the following scoring system:
A) Very high confidence in the interaction; B) High confidence in the interaction; C) Good confidence in the interaction; D) Moderate confidence in the interaction; E)
Interactions highly connected prey domains, warning of non-specific interaction; and F) Experimentally proven technical artifacts. In addition to IQGAP1, the Y2H system
also identified CD97 as a protein with a “high confidence of interaction” giving it a Global PBS score of B. The relationship between pendrin and CD97 as a binding partner
needs further examination. The % Id 5p/3p indicates the degree of identity to the putative binding protein.
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(in mM): 115 Na+-gluconate, 25 NaHCO3, 3 KCl, 1.8 Ca2+-
gluconate, 1 Mg2+-gluconate, and 5 HEPES, pH 7.4, and gassed
with 5% CO2-95% O2. Upon pHi stabilization in Cl−-free
medium, cells were returned to the Cl−-containing solution.
Values of pHi were calculated from the fluorescence ratio
(F480/F430) measured at 530 nm. The system was calibrated
by the high-K+/nigericin technique.

2.8 Antibodies and Other Reagents
Polyclonal pendrin and H+-ATPase B1 subunit antibodies were
generated in our laboratory as described (Petrovic, et al., 2006;
Xu, et al., 2011; Xu, et al., 2006). Monoclonal H+-ATPase E
subunit was a generous gift from Dr. Shannon Holliday.
Monoclonal pendrin antibody was from LS Bio (Seattle, WA,

United States). IQGAP1 antibody was purchased from Santa
Cruz Biotechnology (Dallas, TX, United States). HRP-labeled
goat anti-rabbit Ig was from PharMingen (San Diego, CA,
United States). Dynabead protein-G immunoprecipitation kit
was purchased from Thermo Fisher Scientific (Waltham, MA,
United States). Western blot densitometry measurements were
performed using Image-J software (National Institutes of Health,
United States).

2.9 Statistical Analysis
The results for cell pH experiments are presented as means ± SE.
Statistical significance between two experimental groups was
determined by unpaired Student’s t-test. The statistical
significance of results comparing multiple experimental groups

FIGURE 2 | Co-localization IQGAP1, pendrin, and H+-ATPase in the kidney by immunofluorescence microscopy. (A) Top and bottom panels are
immunofluorescence double labeling of mouse kidney sections with anti-IQGAP1 and anti-pendrin antibodies (×40magnification). The expression of IQGAP1 is detected
on the basolateral membrane in the of majority of cells in the CCD (Left Panels, top and bottom rows; white arrows). In addition, IQGAP1 shows apical localization in a
subset of cells in CCD (Left Panels, top and bottom rows; orange arrows). The expression of pendrin is shown in right panels (orange arrows). Merged images
(middle panels) demonstrates a remarkable co-localization of IQGAP1 and pendrin on the apical membrane of pendrin-expressing cells (orange arrows). “G” signifies
glomerulus. (B) To determine the identity of tubular cells expressing IQGAP1, double immunofluorescence labeling with IQGAP1 and H+-ATPase antibodies was
performed. As shown, IQGAP1 was detected in several cortical collecting duct and connecting tubules based on the presence of H+-ATPase, tubular morphology, and
when the merged images were acquired (middle images in both top and bottom panels). There was occasional and faint expression of IQGAP1 on the basolateral mem-
brane of the proximal tubule cells. In cortical collecting duct (CCD), IQGAP1 shows predominant localization on the basolateral membrane of most cells (bottom panels;
white arrows). However, IQGAP1 also shows distinct localization on the apical membrane of a subset of intercalated cells (bottom panels; yellow arrows).
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was determined by ANOVA. A p < 0.05 was considered to be
statistically significant.

3 RESULTS

3.1 Identification of SLC26A4 Binding
Partners
Figure 1A shows the amino acid sequence of the C-terminus of
pendrin. This fragment encompasses the Sulfate Transporter and
anti-Sigma factor antagonist (STAS) domain (amino acids
515–734), the intervening sequence (amino acids 574–652),
and includes a number of disease-associated mutations (Bonar
and Casey, 2008; Sindić et al., 2007; Soleimani, 2013; Alper and
Sharma, 2013; Dossena, et al., 2011). The pendrin mutations
included in Figure 1A are responsible for a variety of
sensorineural hearing loss, including those found in patients
with Pendred syndrome, as well as patients afflicted with non-
syndromic hearing loss caused by enlarged vestibular aqueducts
(EVA) (Dossena, et al., 2011; Roesch, et al., 2021). Y2H studies
were used to identify the binding partners that interacted with the
C-terminus of SLC26A4 (amino acids 508–780). These studies
identified a total of 33 interactions, of these only 22 interactions
were shown to be specific while others we excluded due to out of
frame translation, reversed direction of the cloned sequence, or
low affinity of the bait/prey interaction. The interaction with
IQGAP1 represented 14 of the 22 significant interactions
(Figure 1B). Our studies identified IQGAP1 as a protein that
binds to the intracellular c-terminal portion of pendrin with a

very strong degree of confidence (Figure 1B). There were two
other proteins (Cluster of differentiation 97; Cd97 and beta-
glucuronidase; Gusb) that were identified; however, their binding
affinity was significantly less than IQGAP1.

IQGAP1 is a scaffolding protein with five identified protein
binding domains (White, et al., 2012; Nammalwar, et al., 2015;
Nauert, et al., 2003; Jacquemet, et al., 2013; Johnson, et al., 2013;
Hedman, et al., 2015). It binds and/or stabilizes ezrin, CDC42 and
RAC1, and interacts with a number of cytoskeletal and cell
adhesion molecules (e.g., mDia and Cadherin) (White, et al.,
2012; Nammalwar, et al., 2015; Nauert, et al., 2003; Jacquemet,
et al., 2013; Johnson, et al., 2013; Hedman, et al., 2015). As such,
IQGAP1 plays a role in the regulation of signal transduction,
cytoskeleton, cell adhesion and cell cycle (White, et al., 2012;
Hedman, et al., 2015).

3.2 Co-Localization of SLC26A4 (Pendrin)
and IQGAP1 in the Kidney
Given the results of Y2H system identifying IQGAP1 as a
SLC26A4 binding protein, we sought to examine the
localization of IQGAP1 vis-à-vis SLC26A4. Toward this end,
double immunolocalization studies with SLC26A4 and IQGAP1
antibodies were performed in the kidney. IQGAP1 shows a
predominant basolateral localization in various CCD cells
(Figure 2A, left panels, top and bottom rows, white arrows).
Certain cells also express IQGAP1 on their apical membrane (left
panels, top and bottom rows, orange arrows). Merged images
demonstrate a remarkable co-localization of SLC26A4 (pendrin)

FIGURE 3 | Confirmation of IQGAP1 and pendrin interaction by co-immunoprecipitation. The interaction of pendrin with IQGAP1 was confirmed by co-
immunoprecipitation. Kidney extracts from wildtype and pendrin knockout animals were incubated with IQGAP1 antibody coated beads, the bound proteins were
eluted, size fractionated and subjected to western blot analysis using anti-pendrin antibody. Lane 1) Binding of WT kidney extract with IQGAP1 antibody coated beads;
Lane 2) Binding of WT kidney extract with G-protein coated beads; Lane 3) Binding of pendrin KO kidney extract with IQGAP1 coated beads; Lane 4) Binding of
pendrin KO kidney extract with G-protein coated beads; and Lane 5) WT whole kidney extract. Blue arrow designates the 110 kDa band recognized by anti-pendrin
antibody.
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and IQGAP1 on the apical membrane of pendrin-expressing cells
in the CCD (Figure 2A, merged images in the middle panel; top
and bottom rows, orange arrows), consistent with the apical
localization of IQGAP1 in B-intercalated cells.

Additional images depicting the localization of H+-ATPase
vis-à-vis IQGAP1 are shown in the Figure 2B. In addition to
confirming the predominant localization of IQGAP1 on the
basolateral membrane of majority of CCD cells (Figure 2B;
left bottom and middle panels, white arrows), these images
clearly indicate the absence of IQGAP1 localization on the
apical membrane of A-intercalated cells (Figure 2B; middle
bottom panel, orange arrows). The images also show the
apical localization of IQGAP1 in a subset of cells distinct from
A-intercalated cells. Taken together with images in Figure 2,
these studies indicate the apical localization of IQGAP1 in B-, but
not A-, intercalated cells.

3.3 Co-Immunoprecipitation Studies
The interaction of SLC26A4 (pendrin) with IQGAP1 was further
confirmed by co-immunoprecipitation. Kidney extracts from
wildtype and pendrin knockout animals were incubated with
IQGAP1 antibody coated beads, the bound proteins were eluted,
size fractionated and subjected to western blot analysis using anti-
pendrin antibodies. Our western blot results (Figure 3) show the
presence of a band that corresponds in size (MW~110 kDa) and
reacts with anti-pendrin antibody in the whole kidney extract of
WT mice (Lane 5), as well as kidney extracts of WT mice
subjected to co-immunoprecipitation with anti-IQGAP1
antibody (Lane 1). This band was absent in the kidney
extracts of pendrin KO mice that were subjected to co-
immunoprecipitation using anti-IQGAP antibody (Lane 3).
Non-specific binding of extract proteins to the matrix in the
absence of anti-IQGAP antibody was minimal (Lanes 2 and 4).

FIGURE 4 | Effect of IQGAP1 on pendrin activity and expression in cultured cells. (A) Representative tracing demonstrating the Cl−/HCO3
− exchanger activity in

transfected HEK293 cells. The mock transfected HEK293 cells were not significantly different vs. IQGAP1 transfected cells. The pHi tracings in HEK293 cells transfected
with pendrin alone show significant Cl−/HCO3

− exchanger activity compared to mock or IQGAP1 only transfected cells. HEK293 cells co-transfected with pendrin and
IQGAP1 show significant enhancement in Cl−/HCO3

− exchanger activity vs. pendrin-transfected cells. (B) The summary of six separate experiments show
significant enhancement in pendrin-mediated Cl−/HCO3

− exchanger activity in cells co-transfected with pendrin and IQGAP1 vs. pendrin alone transfected cells. IQGAP1
transfection in cells did not elicit any Cl−/HCO3

− exchanger activity when compared to mock transfected. (C) Representative confocal images of HEK293 cells
transfected with IQGAP1, pendrin or IQGAP1 plus pendrin construct. Non-transfected cells (C; left top and bottom panels of non-transfected groups) did not show any
expression of either pendrin or IQGAP1. HEK293 cells co-transfected with SLC26A4 and IQGAP1 (C; right top and bottom panels of transfected groups) show sharp co-
localization of the two molecules on the plasma membrane of transfected cells (C; merged panel of transfected groups). (D) Representative confocal images of pendrin
localization in high (D; upper panels) and low (D; bottom panels) IQGAP1-expressing MDCK cells. Both X-Y and X-Z projections are provided. White boxes highlight the
cells that were analyzed. Cells with an elevated expression of IQGAP1 (D; top right and left panels, white arrow) have increased pendrin localization to the cell membrane.
Whereas, low expression of IQGAP1 is associated with reduced membrane and increased intracellular localization of pendrin (D; bottom right and left panels, yellow
arrow).
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3.4 Effect of IQGAP1 on Pendrin Activity and
Localization in Cultured Cells
3.4.1 Intracellular pH Studies
To determine if the interaction of IQGAP1 and SLC26A4 affects the
activity of the latter, cultured HEK293 cells were co-transfected with
IQGAP1 and SLC26A4 expression vectors and assayed for SLC26A4-
mediated Cl−/HCO3

− exchanger activity. For comparison, cells
transfected with pendrin or IQGAP1 expression vector alone
were examined. The results in Figure 4 depict a representative
intracellular pH (pHi) tracings (Figure 4A) and summary of
multiple experiments (Figure 4B). These results indicate that the
Cl−/HCO3

− exchanger activity in HEK293 cells transfected with the
IQGAP1 vector were not different than the mock transfected cells
(background activity). HEK293 cells transfected with SLC26A4
cDNA alone displayed significant Cl−/HCO3

− exchanger activity
(Figures 4A,B). However, when HEK293 cells were co-transfected
with both SLC26A4 and IQGAP1 expression constructs there was a
significant enhancement in their Cl−/HCO3

− exchanger activity
when compared to pendrin-transfected cells alone (Figures 4A,B).

3.4.2 Pendrin Expression in Cultured Cells
Confocal microscopy was performed to examine the impact of
IQGAP1 expression on SLC26A4 (pendrin) distribution in
cultured cells. As indicated, the non-transfected cells
(Figure 4C; left top and bottom panels of non-transfected
groups) did not show any expression of either pendrin or
IQGAP1 as verified by confocal microscopy. The results
further indicate that HEK293 cells co-transfected with
pendrin and IQGAP1 (Figure 4C; left top and bottom
panels of transfected groups) show sharp co-localization of
IQGAP1 and pendrin in the merged image of the transfected
panel (Figure 4C; merged panel of transfected groups).
Additional experiments were conducted to verify the
interaction between pendrin and IQGAP1 in a polarized
cell model and the role of this interaction in the
localization of pendrin. Towards this end, confocal images
of MDCK cells transiently transfected with both pendrin and
IQGAP1 expression vectors are shown in Figure 4D. One
limitation with expression studies in MDCK cells is a low or
variable transfection efficiency. Therefore, we examined cells
showing either high or low IQGAP1 expression. Our results
indicate that cells with high expression levels of IQGAP1
(Figure 4D; top right panel, white arrow) have increased
pendrin membrane localization (Figure 4D; top left panel,
white arrow). As indicated, cells showing a strong abundance
of IQGAP1 demonstrate discrete apical co-localization of
IQGAP1 and pendrin. In contrast, cells expressing low
levels of IQGAP1 show reduced membrane and increased
intracellular localization of pendrin (Figure 4D; bottom right
and left panels, yellow arrow).

4 DISCUSSION

In the current studies Y2H screening, co-immunoprecipitation,
double immunofluorescence labeling and functional studies were
performed to identify pendrin binding proteins in the kidney. Our

studies demonstrated that IQGAP1, a known scaffolding protein,
binds to pendrin in the kidney with strong affinity (Figure 1).
Immunofluorescence labeling studies demonstrated co-localization
of pendrin and IQGAP1 on the apical membrane of B-intercalated
cells (Figure 2A). In addition to the apical membrane, IQGAP1 also
shows basolateral distribution pattern in B-intercalated cells
(Figure 2A). Co-immunoprecipitation studies revealed that
pendrin binds and co-precipitates with IQGAP1 (Figure 3).
IQGAP1 shows a strong basolateral expression in a majority of
cells in the CCD. The co-localization studies with H+-ATPase and
IQGAP1 antibodies suggest that these cells are predominantly
A-intercalated cells (Figure 2B).

Previous immunohistochemical staining studies localized
IQGAP1 to the basolateral membrane of cells in the CCD and
several other nephron segments (Lai, et al., 2008). Our studies
clearly confirm this finding with IQGAP1 exhibiting abundant
expression in the CCD (Figure 2). There were 2 distinct
patterns of expression for IQGAP1 in the collecting duct.
IQGAP1 is predominantly localized to the basolateral
membrane of intercalated cells, and also on the apical
membrane of B-intercalated cells (Figure 2). The
localization of IQGAP1 in principal cells remains
conflicting, with previous studies showing a cytoplasmic
pattern and our studies indicating a mixture of cytoplasmic
and basolateral labeling (personal observation on AQP-2 and
IQGAP1 double-labeling). The specific expression pattern of
IQGAP1 in CCD cells suggest that this scaffolding protein,
through its differential localization in specific cell populations,
may play important roles in determining the cell specific
localization of transporters and tubular functions.

Published reports indicate that as a scaffolding protein,
IQGAP1 is important in cell differentiation, proliferation, cell
polarity and cell-cell adhesion (White et al., 2012; Hedman et al.,
2015). Through its IQmotifs, IQGAP1 binds to epidermal growth
factor receptor (EGFR), which is responsible for maintaining
IQGAP1 in the basolateral membrane domain (White, et al.,
2012; Nammalwar, et al., 2015; Nauert, et al., 2003; Jacquemet,
et al., 2013; Johnson, et al., 2013; Hedman, et al., 2015). EGFR is
known to play an important role in salt and water reabsorption
through the epithelial sodium channel (ENaC) and AQP-2 in
principal cells, where IQGAP1 is detected on their basolateral
membrane domain (Kwakkenbos, et al., 2004; Cheung, et al.,
2016). How much of these EGFR regulatory functions require its
interaction with IQGAP1 remains speculative. Further, the role of
apical IQGAP1 and its binding with pendrin in bicarbonate
secretion and chloride absorption in B-intercalated cells
requires further investigation.

The cytoplasmic C-terminus of pendrin and the other nine
members of SLC26 members is largely comprised of a STAS
domain (Bonar and Casey, 2008; Sindić, et al., 2007; Soleimani,
2013; Alper and Sharma, 2013). Mutations in some of the
SLC26 genes cause hereditary recessive disorders, including
chondrodysplasia (SLC26A2/DTD), chloride-losing diarrhea
(SLC26A3/DRA), and Pendred Syndrome (SLC26A4/pendrin)
(Bonar and Casey, 2008; Sindić, et al., 2007; Soleimani, 2013;
Alper and Sharma, 2013). Many of these mutations involve the
respective STAS domains. The C-terminus fragment used for
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our Y2H expression studies encompasses a number of
mutations that are associated with Pendred syndrome and
EVA/DFNB4 (Dossena, et al., 2011; Roesch, et al., 2021). This
fragment includes the entire STAS domain, strongly
suggesting that IQGAP1 is binding to the pendrin STAS
domain.

Functional studies in cultured cells indicated that co-
expression of IQGAP1 with SLC26A4 enhanced Cl−/HCO3

−

exchanger activity mediated via SLC26A4, and confocal
microscopy showed increased membrane expression of
pendrin in the presence of IQGAP1, consistent with
enhanced trafficking to the membrane (Figure 4D). While
the membrane localization of pendrin is enhanced by co-
expression of IQGAP1 and may lead to increased transport
function, the possibility that other signaling pathways may
contribute to enhanced pendrin activity could not be excluded.
Our studies suggest that the interaction of pendrin and
IQGAP1 may play an important role in the cell surface
localization of pendrin (Figure 4D). Previous studies have
shown that IQGAP1 is associated with the actin cytoskeleton
and enhances the cross-linking of actin (Bashour et al., 1997;
Fukata, et al., 1997). IQGAP1 interaction and crosslinking of
the actin cytoskeleton depends on its multimerization
mediated via binding with the RHO-GTPase family
proteins, RAC1 and CDC2 (Fukata et al., 1997). IQGAP1
interacts with other proteins such as ezrin, a membrane
F-actin linker protein, and nephrin, a component of slit
diaphragm of podocytes, both of which bind to the actin
cytoskeleton in polarized cells and may act as nucleation
hubs for the formation of signaling complexes (Liu et al.,
2015; Nammalwar et al., 2015). Studies by Russo et al.
(2017) also demonstrated the RhoA dependent interaction
of pendrin with F-actin in cultured bronchiolar cells. The
above studies indicate that both pendrin and IQGAP1
interact with the actin cytoskeleton. The latter observations,
as well as the direct binding of pendrin and IQGAP1
(documented in this manuscript), support a view that
IQGAP1 may play an important role in the regulation of
localization and function of SLC26A4.

In conclusion, IQGAP1 co-localizes with SLC26A4
(pendrin) on the apical membrane of B-intercalated cells.
IQGAP1 enhances the membrane expression and activity of
SLC26A4 in cultured cells. We propose that SLC26A4
interaction with IQGAP1 could play an important role in
the regulation of CCD function and physiology, and that
disruption of this interaction may contribute to altered
SLC26A4 trafficking and/or activity in pathophysiologic
states.
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