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Whole Blood Gene Expression Profiling Predicts
Therapeutic Response at Six Months in Patients With

Polyarticular Juvenile Idiopathic Arthritis

Kaiyu Jiang,1 Ashley D. Sawle,1 M. Barton Frank,2 Yanmin Chen,1

Carol A. Wallace,3 and James N. Jarvis1

Objective. To determine whether gene expression
profiles identified in peripheral whole blood samples
could be used to determine therapeutic outcome in a
cohort of children with newly diagnosed polyarticular
juvenile idiopathic arthritis (JIA).

Methods. Whole blood samples from the Trial of
Early Aggressive Therapy (TREAT) in JIA patients were
analyzed on Illumina microarrays, and differential gene
expression was compared to expression in healthy con-
trols. Microarray results were validated by real-time
quantitative polymerase chain reaction in an indepen-
dent cohort of samples. Pathway analysis software was
used to characterize gene expression profiles. Support
vector machines were used to develop predictive models
for different patient classes.

Results. Differential gene expression profiles for
rheumatoid factor (RF)–positive and RF-negative pa-
tients were remarkably similar. Pathway analysis re-
vealed a broad range of affected pathways, consistent

with current mechanistic theories. Modeling showed
that the prognosis at 6 months was strongly linked to
gene expression at presentation, irrespective of treat-
ment.

Conclusion. Gene expression is linked to thera-
peutic outcome, and gene expression in the peripheral
blood may be a suitable target for a prognostic test.

The completion of sequencing of the human
genome was lauded as the necessary first step toward
developing specific, patient-tailored treatments for
many complex diseases (1). The development of “per-
sonalized medicine” is considered highly desirable be-
cause, for many of the most vexing diseases in industri-
alized societies, there is a broad spectrum of individual
therapeutic responses to any given empirically derived
treatment approach. We know, for example, that some
patients with rheumatoid arthritis (RA) will have an
excellent and sustained response to methotrexate
(MTX), while others will fail to have satisfactory func-
tional outcomes until biologic agents, usually anti–tumor
necrosis factor (anti-TNF) therapies, are initiated (2,3).
It would be highly desirable to know which patients are
going to need more-aggressive therapies from the outset
so that we can minimize the human and economic toll
that diseases such as RA carry with them.

To date, numerous attempts have been made to
develop predictive biomarkers of therapeutic response
in human illnesses, that is, to develop strategies for
implementing the “personalized medicine,” which has
been a 10-year goal of physicians and scientists. Among
the most promising tools that have been used toward this
goal is gene expression profiling, the survey of genes
expressed or suppressed in a particular cell type, tissue,
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or clinical sample. While there has been some success in
developing specific chemotherapeutic strategies for can-
cer using this approach (4,5), similar attempts for rheu-
matic diseases (typically using mixed cells from the
peripheral blood) have yielded disappointing results,
largely because the initial findings were not corrobo-
rated in independent cohorts.

Until now, no attempt has been made to develop
therapeutic biomarkers for the childhood forms of ar-
thritis using gene expression profiling. The importance
of doing so is illustrated by the fact that these diseases
are among the most common chronic ones in children
(6–8) and continue to result in serious functional limi-
tations. Like adult RA, which it resembles phenotypi-
cally, the polyarticular form of juvenile idiopathic arthri-
tis (JIA) displays considerable heterogeneity in terms of
response to standard therapies (9–11). Thus, in the field
of pediatrics, finding biomarkers that can predict thera-
peutic response at presentation or early in therapy is
expected to have an important effect on our ability to
treat the disease and restore/preserve function and
normal childhood activities.

The Trial of Early Aggressive Therapy (TREAT)
in JIA patients is a recently completed, NIH-funded
clinical trial (12) comparing 2 therapeutic regimens for
the treatment of newly diagnosed polyarticular JIA: one
arm used subcutaneous (SC) MTX as initial therapy,
and the other arm used a combined regimen of subcu-
taneous MTX, a TNF inhibitor (etanercept), and oral
prednisolone (tapered to 0 by 17 weeks). As part of the
TREAT in JIA trial, whole blood was collected from
consenting participants for RNA expression studies at
specific time points during the course of the first year of
therapy. We report here the results of the expression
profile analysis using whole-genome microarrays, as
confirmed by the study of an independent cohort derived
from the Children’s Rheumatology Clinic at the Univer-
sity of Oklahoma.

PATIENTS AND METHODS

Samples from patients in the TREAT in JIA study.
Eighty-five patients were recruited into the TREAT in JIA
trial between October 2007 and November 2009 (12). All
children met the international criteria for polyarticular-onset
JIA (13). Sixty-two parents of these children gave written,
informed consent for providing these samples for translational
uses, and children 7 years of age or older gave assent to
participate in the study. Approval for use of the specimens was
given by the TREAT in JIA study oversight committee. The
patients submitting samples for this current study consisted of
19 boys and 43 girls, ages 2–14 years. Four of the boys and 17
of the girls were rheumatoid factor (RF) positive. At the time

of enrollment (month 0) and prior to treatment, 2.5 ml of
blood was collected into a PAXgene tube (PreAnalytiX).
Samples were stored at �80°C. (A summary of patient char-
acteristics is available upon request from the corresponding
author.)

Patients were randomly assigned to 1 of 2 blinded,
aggressive treatment arms of the study. Arm 1 consisted of
treatment with MTX 0.5 mg/kg/week SC plus etanercept 0.8
mg/kg/week SC (maximum dosage 50 mg/week) in combina-
tion with oral prednisolone (0.5 mg/kg/day; maximum dosage
60 mg/day) for 16 weeks. Arm 2 consisted of MTX 0.5
mg/kg/week SC (40 mg maximum) plus placebo etanercept SC
weekly and placebo oral prednisolone tapered to 0 by 17
weeks. At 4 months, patients who did not achieve American
College of Rheumatology (ACR) Pediatric 70 (Pedi 70) im-
provement from baseline were treated (or retreated) with
open-label MTX, etanercept, and prednisolone. At 6 months,
patients who did not achieve clinically inactive disease were
changed to treatment with open-label MTX, etanercept, and
prednisolone, if they were not already receiving this treatment.

Further specimens were collected during visits at 4
months, 6 months, and 12 months after enrollment (month 0).
For purposes of the TREAT in JIA study, inactive disease was
defined as no evidence of synovitis, absence of fever, rash,
lymphadenopathy, and splenomegaly, no active uveitis, normal
erythrocyte sedimentation rate or C-reactive protein level, and
a physician’s global assessment score indicating no active
disease.

Samples from healthy control subjects. Controls con-
sisted of 8 healthy female and 11 healthy male children
between the ages of 7 and 13 years who were recruited from
the University of Oklahoma Children’s Physicians General
Pediatrics Clinic. The protocol for obtaining these specimens
was approved by the University of Oklahoma Institutional
Review Board (no. 13205). Anesthesia for the phlebotomy was
provided using topical lidocaine/prilocaine solution.

RNA processing. RNA was purified from whole blood
PAXgene specimens using a PAXgene blood RNA kit (Qia-
gen) as recommended by the manufacturer, including a DNase
(Qiagen) step to remove genomic DNA. Globin transcripts,
which reduce labeling efficiency of whole blood cell RNA and
decrease signal-to-noise ratios on microarrays (14), were re-
duced using GlobinClear (human; Ambion). Final RNA prep-
arations were suspended in RNase-free water, quantified
spectrophotometrically, and analyzed for RNA integrity by
capillary gel electrophoresis (Agilent 2100 Bioanalyzer).

Due to technical issues such as RNA degradation, not
all 62 samples from the TREAT in JIA study were available for
microarray analysis at both month 0 and month 4. Figure 1
shows a schematic representation of the study, including which
samples were analyzed at each time point. A total of 44
samples were available for microarray analysis at month 0 and
49 samples at month 4.

Microarray analysis. Complementary RNA was pro-
duced from reverse-transcribed complementary DNA using an
Illumina TotalPrep RNA amplification kit (Ambion), hybrid-
ized to Illumina WG-6 v3 or Illumina HT-12 v4 human whole
genome microarrays, and stained according to the manufac-
turer’s directions. Microarray hybridizations were undertaken
in 2 separate batches. The first batch consisted of samples from
the 19 healthy controls as well as samples from the JIA
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patients: 26 obtained at month 0, 2 at month 4, and 1 at month
12. These samples were hybridized on Illumina WG-6 v3
arrays. The second batch consisted of the remaining 18 JIA
patient samples from month 0 and 47 JIA patient samples from
month 4. These samples were hybridized on Illumina HT-12 v4
arrays. Complementary RNA preparation and hybridizations
of the second batch were carried out 12 months after the first
batch.

Validation of differential gene expression by real-time
quantitative reverse transcription–polymerase chain reaction
(qRT-PCR) in an independent patient cohort. An additional
cohort of samples was collected for qRT-PCR analysis in order
to provide independent validation of the results of gene
expression analyses carried out with the TREAT in JIA
samples. These whole blood PAXgene specimens were ob-
tained from an independent cohort of 8 children with un-
treated, RF� polyarticular JIA recruited from the University
of Oklahoma Health Sciences Center Pediatric Rheumatology
Clinic. These children ranged in age from 2 to 11 years and
consisted of 2 boys and 6 girls. These samples were collected at
month 0, prior to treatment. Nine genes that showed signifi-
cant differential expression in the microarray results and that
are known to be associated with rheumatoid disease were
analyzed by qRT-PCR.

Total RNA (0.9 �g) was reverse transcribed with the
use of an iScript cDNA synthesis kit (Bio-Rad) according to
the manufacturer’s instructions. Relative levels of target gene
transcripts were assayed in triplicate using real-time qRT-PCR
with SYBR Green reagents and a StepOne Plus PCR system
(Applied Biosystems). The temperature profile consisted of an
initial step at 95°C for 10 minutes, followed by 40 cycles of 95°C

for 15 seconds, 60°C for 1 minute, and then a final melting
curve analysis with a ramp from 60°C to 95°C over 20 minutes.
Gene-specific amplification was confirmed by a single peak in
the ABI Dissociation Curve software. The relative abundance
of transcript expression data was normalized to GAPDH
expression. Results are presented as the ratio of the concen-
tration of messenger RNA (mRNA) relative to GAPDH
mRNA (2–�C

t). Statistical analysis was performed on the �Ct
value using unpaired t-tests. Primers were synthesized by
Integrated DNA Technologies.

The nucleotide sequences of the primers were as
follows: for CD44, 5�-CATCCAACACCTCCCAGTATG-3�
(sense) and 5�-CTGCTCACGTCATCATCAGTAG-3� (anti-
sense); for exocyst complex component 4 (Exo-4), 5�-TTGA-
TGTTACAAACCTCCCTACTC-3� (sense) and 5�-CCAAG-
CCCTTAATGAGGATACC-3� (antisense); for macrophage
migration inhibitory factor (MIF), 5�-GTCCCGGACCAGCT-
CAT-3� (sense) and 5�-GCCGCGTTCATGTCGTAATA-3�
(antisense); for NF-�B1, 5�-CTGCTGTGCAGGATGAGAA-
T-3� (sense) and 5�-AAATCCTCCACCACATCTTCC-3�
(antisense); for peptidylarginine deiminase 4 (PADI-4), 5�-C-
CAGGTCTGAGATGGACAAAG-3� (sense) and 5�-AGGG-
AGATGGTGAGGGTAAT-3� (antisense); for poly(ADP-
ribose) polymerase (PARP-1), 5�-GTAGCAACAAACT-
GGAACAGATG-3� (sense) and 5’-GGACTTGGTGCCAG-
GATTTA-3� (antisense); for protein tyrosine phosphatase
receptor type C (PTPRC), 5�-CGTAATGGAAGTGCTGCA-
ATG-3� (sense) and 5�-TGCGACTCATTTCTAACCAGA-
G-3� (antisense); for serpin A, 5�-AATGCCACCGCCATCT-
T-3� (sense) and 5�-CCCATTGCTGAAGACCTTAGT-3�
(antisense); and for STAT-6, 5�-CAAGTTTAAGACAGGCT-

Figure 1. Schematic representation of treatment regimens at month 0 (baseline) and month 4, with clinical outcomes at month 6 and month 12,
in patients with juvenile idiopathic arthritis (JIA), according to the presence or absence of rheumatoid factor (RF). Each column of symbols
represents a single patient at different stages of the Trial of Early Aggressive Therapy (TREAT) in JIA study. Study arm 1 consisted of treatment
with methotrexate (MTX) plus etanercept (ET), as well as prednisolone. Study arm 2 consisted of MTX only. At months 6 and 12, patients were
assessed for the presence of clinically inactive disease (CID) or active disease (AD).

GENE EXPRESSION PROFILING AND 6-MONTH THERAPEUTIC RESPONSE IN POLYARTICULAR JIA 1365



TGCG-3� (sense) and 5�-TCTTCAGCACTAGGGCTTTG-3�
(antisense). All primers were tested to display an efficiency of
�95% (�SD 2%).

Support vector machine (SVM). Models were con-
structed to predict clinically inactive disease (CID) or active
disease (AD) at 6 and 12 months from gene expression at
presentation (month 0) or gene expression at 4 months (month
4). Models were built using data for all patients and separately
for RF� patients only. Specifically, for each model, the
relevant samples were randomly divided into a training group
(two-thirds of available samples) and a test group (one-third of
available samples), using a randomized block method to
ensure even division between the groups of CID and AD
samples. The test groups were then reserved for testing
models, which were trained using only data from the training
groups. Linear models were applied to each training group as
described above and used to identify genes that were differen-
tially expressed between the AD and CID groups in the
training groups. Subsets of these differentially expressed gene
lists were used to train the models to predict AD or CID in
patients based on differential expression between patients and
controls. The e107 package (15) in R was used as an interface
for the LIBSVM library (16). Optimization of SVM para-
meters and the gene subset was done using a 10-fold cross-
validation method on the training group. The subsets of each
gene list to be used in each model were determined by starting
with the 10 most significantly differentially expressed genes (by
adjusted P value) in the relevant training group and sequen-
tially adding genes up to a total of 200 genes. The performance
of each model was assessed using receiver operator character-
istic curves. Optimized SVM parameters and gene lists were
then used to build models. The resulting models were then
used to predict outcome (CID or AD) for the test groups, and
the predictions were analyzed for accuracy and rates of false-
positive results.

Statistical analysis. All statistical analyses were carried
out in R (www.r-project.org). To facilitate statistical analyses
relative to healthy controls, it was necessary to combine data
from different hybridization batches. Due to the difference in
the microarrays, it was necessary to create combined datasets
using only the probes that were present on both array formats.
Illumina probe identification numbers were used to identify
39,426 common probes. Datasets were variance-stabilized and
normalized using robust spline normalization via the Lumi
software package (17,18). Batch effects were removed using
the ComBat algorithm in the SVA software package (19). Prior
to statistical analysis, nonresponding probes were filtered out
of the datasets using the detection P value provided by the
Illumina quality control metrics to eliminate probes not re-
sponding at higher than background levels. Analysis of differ-
ential gene expression patterns between patients and controls
was performed using the Limma software package (20,21). The
false discovery rate (FDR) was estimated using the method
described by Benjamini and Hochberg (22). Statistical signifi-
cance of gene expression was determined at an FDR of �0.05.
Gene lists of interest were exported from R and uploaded to
Ingenuity IPA software for further functional analysis.

RESULTS

Segregation of JIA patient samples from healthy
control samples. Principle components analysis (PCA)
of normalized signal data for month 0 in JIA patients
and healthy controls showed that the gene expression
profiles clearly separated the patients from the controls.
However, although RF� and RF� samples show some
separation on PCA, they were not perfectly segregated
(Figure 2A). A strong batch effect between the first and

Figure 2. Scatterplots of data from principal components analyses (PCAs), showing the distribution of the healthy control (HC) samples and the
Trial of Early Aggressive Therapy (TREAT) in juvenile idiopathic arthritis (JIA) patient samples, whether positive or negative for rheumatoid factor
(RF), through the first 2 principal components. A, After normalization of raw data, the healthy controls and patient samples show a good degree
of separation, but a strong batch effect is apparent between the 2 array batches in the patient samples. B, After the ComBat algorithm was applied
to the data, the batch effect was removed.
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second batches of the TREAT in JIA samples is also
noted in Figure 2A. PCA of data after application of the
ComBat algorithm shows that this procedure success-
fully removed the batch effect (Figure 2B).

Differential gene expression analysis. A heatmap
of genes selected at an FDR of 0.05 and a minimum fold
change of 1.4 for differential expression in either the
RF� or RF� groups for each patient sample at month
0 and for the healthy control subjects is shown in Figure
3. Differential gene expression was relatively homoge-
nous across the patient samples, and there was no
striking difference in differential gene expression be-
tween RF� and RF� patients. The maximum fold
change was 10-fold in either direction, but with the
majority of genes differentially expressing no more than
3-fold in either direction. (A full list of genes differen-
tially expressed between all month 0 samples and the
healthy controls at an FDR of 0.05 irrespective of RF
status or fold change is available upon request from the
corresponding author).

For further functional analysis, gene lists were
selected at an FDR of 0.05 and a minimum fold change
of 1.4. While large numbers of genes were significant at
a low FDR, absolute fold change levels were low, and
filtering by fold change drastically reduced the numbers
of gene that were declared significant. At month 0, 125
genes were differentially expressed in RF� JIA samples,
while 237 genes were differentially expressed in the

RF� JIA samples. At month 4, 123 genes were differ-
entially expressed in the RF� samples, while 110 genes
were differentially expressed in the RF� samples.

Of the genes differentially expressed at month 0
relative to the healthy controls, 90 genes represented by
98 probe sets were significantly differentially expressed
in both RF� and RF� patients.

Given the complex composition of whole blood
specimens, it is difficult to make testable inferences
about disease pathogenesis from the expression profiling
patterns. When functional associations of the genes
differentially expressed between JIA patients and
healthy controls were explored using the Ingenuity soft-
ware package, predictable numbers of genes associated
with immunologic disease (n � 18), inflammatory dis-
ease (n � 16), and connective tissue disorders (n � 15)
were identified, including 12 genes associated with rheu-
matoid arthritis (CD3D, CD97, CYP4F3, FOXO3,
GNLY, GRN, HSPA1A/HSPA1B, MMP9, PADI4,
SORL1, UBE2H, and WNK1). It was interesting to note
the number of genes associated with cancer, in light of
the emerging data regarding inflammatory signatures in
cancer (23,24) and the cancer-like behavior of rheuma-
toid synovial cells (25). Consistent with recent reports of
an “inflammatory signature” in the gene expression
profile of many tumors (23,24), 21 differentially ex-
pressed genes were related to cancer, while others fell

Figure 3. Heatmap showing gene expression levels at month 0 in juvenile idiopathic arthritis patients positive or negative for rheumatoid factor
(RF) and in healthy controls, using 250 probes for significantly differentially expressed genes. Data shown are the log ratio for differential expression
relative to the mean of the healthy controls (false discovery rate �0.05; absolute fold change �1.4). The dendrogram shown is a hierarchical
clustering of patient samples using Euclidean distance on the 250 probes.
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into categories of connective tissue disorders, immuno-
logic disease, and inflammatory disease.

Validation of the gene expression results. To
confirm the differences in gene expression between
patients and healthy controls observed in the microarray
experiments, real-time qRT-PCR was performed. Nine
genes known to be associated with rheumatoid disease
and shown to be significantly differentially expressed
(FDR �0.05) between the RF� patients and the healthy
controls in the microarray analysis (CD44, EXOC4, MIF,
NFKB1, PADI4, PARP1, PTPRC, SERPINA, and
STAT6) were analyzed by real-time qRT-PCR in an
independent cohort. Figure 4 shows that 7 of 9 genes
differentially expressed in the microarray analysis were
also differentially expressed in the real-time qRT-PCR.
For MIF the real-time qRT-PCR results showed a
relative increase in gene expression in the independent
cohort, while the microarray results showed a decrease
in the expression of MIF in the TREAT in JIA cohort,
though it was differentially expressed on qRT-PCR.

Prediction of disease status at 6 and 12 months.
A schematic representation of the treatment regimens
and outcomes in the JIA patients is shown in Figure 1.
Consistent with the overall findings in the TREAT in
JIA study (12), the findings in the subset of samples
analyzed herein strongly suggested that for the RF�
patients, there was a relationship between early use of
combined treatment and the attainment of a positive
outcome at 12 months. However, this pattern was not
apparent in the RF� patients.

Eight models were built with support vector
machines to predict disease status (CID or AD) at

month 6 or month 12 using the gene expression data in
patients at month 0 or month 4 and using either all of the
samples or only the RF� samples. A total of 28 RF�
and 16 RF� arrays were available at month 0, and 32
RF� and 17 RF� arrays at month 4. For each model, a
different number of genes was found to give the opti-
mum predictive power; this ranged from 12 for the
model using month 4 data in RF� patients to predict the
month 12 outcome, to 120 for the model using month 0
data in all patients to predict the month 12 outcome.
(Details of the genes selected for each model are
available upon request from the corresponding author.)

Figure 5 shows the receiver operating character-
istic curves, where CID is considered the positive out-
come, for the 4 models built with month 0 data, and
Table 1 gives the areas under the curve for all 8 models.
The model using month 0 gene expression to predict
CID at 6 months for RF� patients was able to perfectly
classify the 9 samples in the test group (Table 1). The
equivalent model for all patients (RF�/RF�) correctly
classified 11 of the 14 samples tested, with a false-
positive rate of 0.12. The 2 models using month 0 data to
predict CID at month 12 were able to achieve accuracies
of �70%; however, the RF� model had a false-positive
rate of 0.33, while the RF�/RF� model had a false-
positive rate of 0.80. Models using month 4 data were
not able to significantly improve on chance, with accu-
racies between 40% and 60%.

Table 1 also shows the accuracies and false-
positive rates achieved when treatment with the com-
bined MTX plus etanercept regimen was used as the
predictive feature. Gene expression was the better pre-

Figure 4. Validation of the microarray results by real-time quantitative reverse transcription–polymerase chain reaction analysis of 9 genes in an
independent cohort of 8 children with untreated, rheumatoid factor (RF)–negative polyarticular juvenile idiopathic arthritis (JIA) and in 8 healthy
controls from the initial cohort. Statistical analysis was performed on �Ct values using unpaired t-tests. Values are the mean � SEM. * � P � 0.05;
** � P � 0.01 versus healthy controls.
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dictor of outcome at month 6 based on month 0 data for
both the RF�/RF� group and the RF� only group. For
the prediction of month 12 outcome based on month 0
data in RF�/RF� patients, gene expression provided a
more accurate predictor than did MTX plus etanercept
therapy. However, for the analysis of only the RF�
patients, the accuracies were similar, but using MTX
plus etanercept as the predictor resulted in a much lower
false-positive rate. As with gene expression, prediction
based on treatment at month 4 was no better than
chance.

DISCUSSION

The completion of the Human Genome Project
was heralded as the beginning of a new era of “person-
alized medicine.” Technological spin-offs from the proj-
ect, including gene expression profiling, have further

added to the promise that individualized therapies can
be developed based on genomic data (26). In this study,
we used whole blood gene expression profiles to deter-
mine whether we could predict therapeutic response in
children enrolled in the TREAT in JIA study. We used
an independent cohort of patients from Oklahoma to
validate the statistical methods used to analyze the
TREAT in JIA study samples.

We found that, while it might be feasible to
develop such predictive assays, the number of samples
available from the TREAT in JIA study and the multiple
different phenotypes (e.g., RF� and RF�, as well as the
2 different arms of the protocol with crossover to the
“aggressive” side of the protocol for treatment failures
at 4 months and at 6 months) made it difficult to develop
statistically robust predictive models. Nevertheless,
within these constraints, we were able to predict, based
on expression profiling alone, the achievement of CID at
6 months in the RF� patients. At 12 months, however,
initial therapy with etanercept was a better predictor of
disease response than was gene expression in the RF�
patients (Table 1). While both treatment arms of the
TREAT in JIA protocol demonstrated therapeutic effi-
cacy (12), the use of etanercept as initial therapy, at least
in the samples available to us for analysis, exerted the
strongest influence on outcome at 12 months. However,
the results from the support vector machine indicate that
there is also a genomic component to prognosis.

Our findings do not preclude the possibility of

Table 1. Accuracy rates and FPRs for the prediction of clinical
outcome at month 6 and month 12, based on either the gene
expression model or the combined therapy with MTX plus etanercept
initiated at month 0 or month 4*

Patient group,
initiation 3 outcome

Gene expression model

MTX plus
etanercept

therapy

Accuracy FPR AUC Accuracy FPR

RF�/RF� (all patients)
Month 0 3 month 6 0.79 0.12 0.90 0.62 0.37
Month 4 3 month 6 0.56 0.30 0.48 0.36 0.82
Month 0 3 month 12 0.64 0.80 0.60 0.60 0.36
Month 4 3 month 12 0.44 0.71 0.44 0.47 0.82

RF� patients
Month 0 3 month 6 1.00 0 1.00 0.66 0.36
Month 4 3 month 6 0.60 0.17 0.50 0.34 0.92
Month 0 3 month 12 0.70 0.33 0.76 0.68 0.28
Month 4 3 month 12 0.50 1.00 0.48 0.51 0.89

* Predictions were made for the entire cohort of 62 patients, including
those positive and those negative for rheumatoid factor (RF), as well
as for the subset of 41 RF� patients. The area under the curve (AUC)
provides a quantitative measure of the performance of the model.
FPRs � false-positive rates; MTX � methotrexate.

Figure 5. Receiver operating characteristic (ROC) curves for 4
models built using gene expression data obtained at month 0 from
juvenile idiopathic arthritis (JIA) patients and healthy controls. Data
obtained at month 0 from the entire group of JIA patients, whether
positive or negative for rheumatoid factor (RF), were used to predict
outcome at month 6 (A) and at month 12 (B). Data obtained at month
0 from only the RF� JIA patients were used to predict outcome at
month 6 (C) and month 12 (D). The ROC curves show the relationship
between changes in the true-positive rate and the false-positive rate as
the classification threshold is varied. The better the performance of the
classifier the greater the area under the curve. An entirely random
classifier would generate a line at y � x. A perfect classifier is typified
by the ROC curve shown in C.
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developing a longer-term predictive model of sustain-
ability of therapeutic response based on gene expression
patterns if a larger patient cohort, one with more
samples from patients in each arm of the protocol, were
available. Particularly helpful in this regard was the
analysis of the baseline samples. While there are some
distinct phenotype differences between RF� and RF�
children with JIA, the expression profiles between RF�
and RF� children with JIA were remarkably similar,
with overlap between the groups on hierarchical cluster
analysis (Figure 3). These findings seem to support those
of earlier studies showing that RF expression in children
is more ubiquitous than is typically considered and is
dependent more on the assay used to detect RFs than on
their actual prevalence in the JIA population (27,28).
Under any circumstances, although the TREAT in JIA
study may have experienced some recruitment bias in
favor of RF� patients (35% of the TREAT in JIA study
subjects were RF�), it appears to be feasible to group
RF� with RF� patients in future attempts to develop
expression-based predictive models or assays. Further-
more, it was interesting to note the degree of homoge-
neity among and between the patient groups at the gene
expression level (Figure 2). These findings suggest that a
broad range of interpatient variability will not be a
serious impediment to developing expression-based pre-
dictive assays in the future.

It should also be noted that both arms of the
TREAT in JIA protocol were more aggressive than
protocols that have previously been used in the routine
clinical setting. The MTX dosage of 0.5 mg/kg/week
(with a maximum dosage of 40 mg/week) is higher than
the more standard dosages of 10–20 mg/m2 orally with a
weekly maximum of 25 mg. Whether the models would
be more predictive in the setting of current clinical
practice is unknown. Furthermore, the findings of the
TREAT in JIA study, and particularly the degree to
which the higher doses of MTX were tolerated in
children, may provide an impetus to change clinical
practice and, thus, obviate the need to test predictive
models using lower oral doses of MTX.

As is commonly seen in gene expression profiling
in rheumatic diseases, a broad spectrum of functional
associations were seen among the differentially ex-
pressed genes, including genes associated with inflam-
mation (NFKB, MAPK), cancer (BCL2), and adaptive
immunity. The expression profiles do suggest complex
interactions between innate and adaptive immunity that
are not subsumed under any single prevalent theory
concerning the pathogenesis of JIA.

In conclusion, we have provided evidence that it

is feasible to develop models of disease pathogenesis
based on patterns of gene expression for the purpose of
predicting outcome at 6 months. However, in the subset
of samples from the TREAT in JIA study with which we
worked, the use of etanercept was as good as or better
than gene expression as a predictor of a patient’s
achieving CID by 12 months. Future translational stud-
ies will likely require larger numbers of patients in order
to develop clinically usable predictive assays.

AUTHOR CONTRIBUTIONS

All authors were involved in drafting the article or revising it
critically for important intellectual content, and all authors approved
the final version to be published. Dr. Jarvis had full access to all of the
data in the study and takes responsibility for the integrity of the data
and the accuracy of the data analysis.
Study conception and design. Jiang, Frank, Wallace, Jarvis.
Acquisition of data. Jiang, Frank, Chen, Wallace, Jarvis.
Analysis and interpretation of data. Jiang, Sawle, Frank, Wallace,
Jarvis.

REFERENCES

1. Guttmacher AE, Collins FS. Genomic medicine—a primer.
N Engl J Med 2002;347:1512–20.

2. Weinblatt ME, Kremer JM, Bankhurst AD, Bulpitt KJ, Fleisch-
mann RM, Fox RI, et al. A trial of etanercept, a recombinant
tumor necrosis factor receptor:Fc fusion protein, in patients with
rheumatoid arthritis receiving methotrexate. N Engl J Med 1999;
340:253–9.

3. Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH,
Keystone EC, et al. A comparison of etanercept and methotrexate
in patients with early rheumatoid arthritis. N Engl J Med 2000;
343:1586–93.

4. Mansour JC, Schwarz RE. Molecular mechanisms for individual-
ized cancer care. J Am Coll Surg 2008;207:250–8.

5. Van ’t Veer LJ, Bernards R. Enabling personalized cancer medi-
cine through analysis of gene-expression patterns. Nature 2008;
452:564–70.

6. Lawrence RC, Helmick CG, Arnett FC, Deyo RA, Felson DT,
Giannini EH, et al. Estimates of the prevalence of arthritis and
selected musculoskeletal disorders in the United States. Arthritis
Rheum 1998;41:778–99.

7. Manners PJ, Bower C. Worldwide prevalence of juvenile arthritis:
why does it vary so much? J Rheumatol 2002;29:1520–30.

8. Sacks JJ, Helmick CG, Luo YH, Ilowite NT, Bowyer S. Prevalence
of and annual ambulatory health care visits for pediatric arthritis
and other rheumatologic conditions in the United States in
2001–2004. Arthritis Rheum 2007;57:1439–45.

9. Wallace CA, Sherry DD. Preliminary report of higher dose
methotrexate treatment in juvenile rheumatoid arthritis. J Rheu-
matol 1992;19:1604–7.

10. Reiff A, Shaham B, Wood BP, Bernstein BH, Stanley P, Szer IS.
High dose methotrexate in the treatment of refractory juvenile
rheumatoid arthritis. Clin Exp Rheumatol 1995;13:113–8.

11. Lovell DJ, Giannini EH, Reiff A, Cawkwell GD, Silverman ED,
Nocton JJ, et al, for the Pediatric Rheumatology Collaborative
Study Group. Etanercept in children with polyarticular juvenile
rheumatoid arthritis. N Engl J Med 2000;342:763–9.

12. Wallace CA, Giannini EH, Spalding SJ, Hashkes PJ, O’Neil KM,
Zeft AS, et al. Trial of early aggressive therapy in polyarticular
juvenile idiopathic arthritis. Arthritis Rheum 2012;64:2012–21.

1370 JIANG ET AL



13. Petty RE, Southwood TR, Manners P, Baum J, Glass DN,
Goldenberg J, et al. International League of Associations for
Rheumatology classification of juvenile idiopathic arthritis: second
revision, Edmonton, 2001. J Rheumatol 2004;31:390–2.

14. Cobb JP, Mindrinos MN, Miller-Graziano C, Calvano SE, Baker
HV, Xiao W, et al. Application of genome-wide expression
analysis to human health and disease. Proc Natl Acad Sci U S A
2005;102:4801–6.

15. Meyer D, Dimitriadou E, Hornik L, Weingessel A, Leisch F,
Chang CC, et al. Package e1071: Misc functions of the department
of statistics (e1071), TU Wien. R package version 1.6-1. URL:
http://cran.r-project.org/web/packages/e1071/index.html.

16. Chang CC, Lin CJ. LIBSVM: a library for support vector ma-
chines. ACM Trans Intell Syst Technol 2011;2:27.1–27.

17. Du P, Kibbe WA, Lin SM. Lumi: a pipeline for processing Illumina
microarray. Bioinformatics 2008;24:1547–8.

18. Lin SM, Du P, Huber W, Kibbe WA. Model-based variance-
stabilizing transformation for Illumina microarray data. Nucleic
Acids Res 2008;36:e11.

19. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in
microarray expression data using empirical Bayes methods. Bio-
statistics 2007;8:118–27.

20. Smyth GK. Linear models and empirical Bayes methods for
assessing differential expression in microarray experiments. Stat
Appl Genet Mol Biol 2004;3:article 3.

21. Smyth GK. Limma: linear models for microarray data. In: Gen-
tleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors.

Bioinformatics and computational biology solutions using R and
Bioconductor. New York: Springer; 2005. p. 397–420.

22. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J R Stat Soc
Ser B 1995;57:289–300.

23. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving
NF-�B, Lin28, Let-7 microRNA, and IL6 links inflammation to
cell transformation. Cell 2009;139:693–706.

24. Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M,
et al. A transcriptional signature and common gene networks link
cancer with lipid metabolism and diverse human diseases. Cancer
Cell 2010;17:348–61.

25. Lefevre S, Knedla A, Tennie C, Kampmann A, Wunrau C, Dinser
R, et al. Synovial fibroblasts spread rheumatoid arthritis to unaf-
fected joints. Nat Med 2009;15:1414–20.

26. Jarvis JN, Frank M. Functional genomics and rheumatoid arthritis:
where have we been and where should we go [review]? Genome
Med 2010;2:44.

27. Moore TL, Osborn TG, Dorner RW. 19S IgM rheumatoid fac-
tor-7S IgG rheumatoid factor immune complexes isolated in sera
of patients with juvenile rheumatoid arthritis. Pediatric Res 1986;
20:977–81.

28. Jarvis JN, Pousak T, Krenz M. Detection of IgM rheumatoid
factors by enzyme-linked immunosorbent assay in children with
juvenile rheumatoid arthritis: correlation with articular disease
and laboratory abnormalities. Pediatrics 1992;90:954–9.

GENE EXPRESSION PROFILING AND 6-MONTH THERAPEUTIC RESPONSE IN POLYARTICULAR JIA 1371


