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Abstract: A number of disorders, such as Alzheimer disease and diabetes mellitus, have in 
common the alteration of the redox balance, resulting in an increase in reactive oxygen 
species (ROS) generation that might lead to the development of apoptosis and cell death. It 
has long been known that ROS can significantly alter Ca2+ mobilization, an intracellular 
signal that is involved in the regulation of a wide variety of cellular functions. Cells have a 
limited capability to counteract the effects of oxidative stress, but evidence has been 
provided supporting the beneficial effects of exogenous ROS scavengers. Here, we review 
the effects of oxidative stress on intracellular Ca2+ homeostasis and the role of antioxidants 
in the prevention and treatment of disorders associated to abnormal Ca2+ mobilization 
induced by ROS. 
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1. Calcium Homeostasis 

In eukaryotic cells, Ca2+ is the most versatile signal involved in the control of cellular processes and 
functions [1-3]. This versatility derives from the fact that Ca2+ signalling works in a variety of ways, 
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and the processes involved in Ca2+ mobilization are widely dynamic in range and amplitude. For 
example, in the cardiac myocyte, Ca2+ entering through L-type Ca2+ channels leads to a signal known 
as ‘spark’ that triggers contraction within microseconds; on the other hand, the duration of processes 
like gene transcription or cell proliferation ranges from minutes to hours.  

Cytosolic Ca2+ concentration ([Ca2+]c) is determined by a balance between the mechanisms that 
introduce Ca2+ into the cytoplasm, termed “on”, and those that remove it, termed “off”. These 
processes combine the action of a variety of channels, both in the plasma membrane and in the 
membrane of the intracellular stores, such as the endoplasmic or sarcoplasmic reticulum, including 
Ca2+ pumps, exchangers, and buffers. Many components of this large set of molecules have different 
isoforms with different characteristics and properties, which gives them the ability to make the system 
extremely versatile [4]. In the extracellular medium, the free Ca2+ concentration is about 1 mM, while 
in resting cells [Ca2+]c is approximately 100 nM and in certain intracellular organelles, such as the 
endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR), the free luminal Ca2+ concentration 
([Ca2+]L) is around 0.2–1 mM; therefore, there is a clear concentration gradient between compartments 
that is essential for the regulation of the cellular processes in which Ca2+ participates [5]. In order to 
maintain these Ca2+ gradients, a strong homeostatic mechanism acts in the cell.  

Agonist-induced changes in [Ca2+]c is determined by the balance between the Ca2+ “on” 
mechanisms, including Ca2+ influx from the extracellular medium and the output from intracellular 
stores, and Ca2+ “off” mechanisms, involving Ca2+ extrusion across the plasma membrane and 
sequestration into the stores or mitochondria [4]. The Ca2+ “off” mechanisms involve four different 
transporters: the plasma membrane Ca2+ ATPase (PMCA), that mediates Ca2+ extrusion across the 
plasma membrane, the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), which reintroduce Ca2+ 
into the ER/SR, the Na+/Ca2+ exchanger (NCX) that participates in cytosolic Ca2+ clearance through its 
exchange by Na+ and the mitochondrial Ca2+ uniporter (MCU), which that transports Ca2+ across the 
inner mitochondrial membrane. The two ATPases (PMCA and SERCA) carry out such transport using 
the energy provided by ATP hydrolysis. Four PMCA isoforms have been described in humans, all with 
similar molecular structure, consisting of ten membrane-spanning segments and five extracellular 
domains while their amino and carboxyl termini are located within the cell [6]. There are three 
different types of SERCA genes identified, giving rise to three SERCA isoforms [7]. These isoforms 
can be co-expressed in the same cell type, which could be related to the co-existence of different types 
of Ca2+ pools in the same cell [8]. Phosphorylation of an aspartic acid residue results in SERCA 
conformational changes that leads the enzyme to capture in a first step two Ca2+ per ATP molecule 
hydrolyzed, and then release them inside the ER/SR lumen [9]. In addition, when [Ca2+]c reaches the 
micromolar range, both NCX and MCU can also transport Ca2+. NCX is a bidirectional transporter that 
combines the movement of three Na+ ions towards the cytosol with the transport of one Ca2+ in the 
opposite direction. NCX participates in the regulation of [Ca2+]c in a number of cell types acting either 
in forward mode, as explained above, or in reverse mode, introducing Ca2+ in the cell when the Na+ 
concentration at the inner face of the plasma membrane substantially increases. Mitochondrial 
membrane potential confers the driving force necessary for the activity of the MCU. The threshold 
[Ca2+]c for the activation of these four transporters is different as well as the transport rate. The lowest 
threshold is for the PMCA, which, by the way, has the lowest transport rate. This characteristic confers 
to PMCA an important role in maintaining resting [Ca2+]c [10]. SERCA has lower affinity for Ca2+ but 
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higher transport rates than PMCA [11]. On the other hand, the threshold [Ca2+]c for NCX and MCU is 
the highest but they also display much higher transport rates than the ATPases.  

Agonist-activated Ca2+ “on” mechanisms includes Ca2+ release from the intracellular pools and 
entry through plasma membrane channels. There are three major types of intracellular Ca2+ channels 
responsible for Ca2+ release from the ER and the SR: the inositol 1,4,5-trisphosphate receptor (IP3R), 
the ryanodine receptor (RyR) and the nicotinic acid-adenine dinucleotide phosphate (NAADP) 
receptor. Mammalian cells possess three different isoforms for IP3R and RyR. Occupation of 
phospholipase C (PLC)-coupled membrane receptors by agonists results in the activation of 
phosphoinositide-specific PLC. As a result, inositol 1,4,5-trisphosphate (IP3) is generated and activates 
IP3R leading to Ca2+ efflux from the ER [12]. Ca2+ stored in the ER can also be released through RyR. 
The RyR is structurally and functionally similar to IP3R and is activated by cyclic ADP-ribose. These 
two channels are sensitive to Ca2+ itself, a phenomenon that underlies Ca2+-induced Ca2+ release and 
contributes to the rapid rise in [Ca2+]c upon agonist stimulation and the development of regenerative 
Ca2+ waves. Finally, NAADP-mediated Ca2+ efflux from intracellular stores involves endolysosomal 
two-pore channels (TPC), especially TPC1 [13]. 

Agonist-induced Ca2+ entry from the extracellular medium occurs through a variety of Ca2+ 
channels in the plasma membrane depending on the cell type, which are gated by voltage (only in 
electrically excitable cells), agonists or second messengers [14,15]. In addition to these signals, other 
physical stimuli, such as mechanical stretch, are able to induce Ca2+ entry [16]. Special attention 
deserves a Ca2+ entry mechanism regulated by the filling state of the Ca2+ stores known as store-
operated Ca2+ entry (SOCE) or capacitative Ca2+ entry. In 1986, Putney proposed that depletion of the 
intracellular Ca2+ stores lead to a sustained influx of Ca2+ through the plasma membrane independently 
of the elevation of [Ca2+]c [17]. Subsequently, using biophysical techniques such as patch clamp, the 
existence of store-operated Ca2+ channels has been demonstrated, which can be opened in response to 
store depletion by various agents [18]. These channels, known as CRAC (Ca2+ release-activated Ca2+) 
channels, those mediating the highly Ca2+ selective current ICRAC, and SOC (store-operated channels), 
those conducting the non-selective cation current ISOC, have been characterized electrophysiologically 
[19-22]; however, their molecular identities have remained elusive for almost two decades. The Orai1 
protein is the most relevant candidate to form the pore of the CRAC channels [23]. This protein has 
been demonstrated to form multimeric ion channel complexes in the plasma membrane [24]. The 
multimeric structure of the channel has recently been demonstrated as a tetramer. The pore structure 
consists of four separate units of Orai1, where charged residues are essential for Ca2+ selectivity [25]. 
Transient receptor potential proteins, alone or in combination with Orai1, have been reported to form 
the SOC channels, with lower Ca2+ selectivity than CRAC channels [26-29]. Especial attention has 
been given to the members of the canonical transient receptor potential (TRPC) subfamily, some of 
them can be activated by Ca2+ store depletion [30,31]. Orai1 and TRPC proteins can independently 
regulate ion current through CRAC channels and SOCs (ICRAC and ISOCs) or might interact to form 
SOCs with different biophysical properties, thus providing the cell of some valuable tools to regulate 
specific Ca2+ signals (this has been extensively reviewed in [5]). SOC and CRAC channels have been 
reported to be sensitive to Ca2+ store depletion through the cooperative intraluminal Ca2+ sensor, 
STIM1 [32-35]. STIM1 is a transmembrane protein located in the Ca2+ stores that has been identified 
as the intraluminal Ca2+ sensor that communicates the amount of stored Ca2+ to plasma membrane 
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channels [32,36]. This protein has a single transmembrane domain with an EF hand motif near the N-
terminus, which is located in the lumen of the ER (or extracellularly when STIM1 is located in the 
plasma membrane [37]). A number of studies have demonstrated that the EF hand domain of STIM1, 
senses [Ca2+]L and inhibits STIM1 activity when stores are filled. When a decrease in [Ca2+]L occurs, 
Ca2+ dissociates from the EF hand motif and STIM1 activates Ca2+ channels [32,36,38,39]. 

2. Calcium Homeostasis Abnormalities Induced by Reactive Oxygen Species 

ROS are small molecules that can be formed as a result of the normal aerobic metabolism [40], the 
activity of the immune system [41-42], the xenobiotic metabolism [43], or environmental pollution 
[44]. The sources of physiological ROS production are, among others, mitochondrial activity and the 
activity of enzymes such as xanthine oxidase, NADPH oxidase, cyclooxygenase and lipoxygenase. 
ROS were early classified as toxic; however, they have more recently been reported to act also as 
signalling molecules, in processes like transcription, gene expression or cell death [45-47]. At low 
concentrations ROS have been reported to act as secondary messengers in intracellular pathways 
involving Ca2+ mobilization, but at high concentrations they produce oxidative stress and cell  
damage [48-51]. 

The interrelationship between ROS production and Ca2+ homeostasis was first reported in the 70s. It 
is known that the involvement of the redox state in Ca2+ homeostasis is mediated by the modification 
of disulfide bonds between cysteine residues of some Ca2+ “off”-handling proteins, including PMCA, 
NCX and SERCA. Most studies reveal that ROS inactivates these transporters, leading to a rise in 
[Ca2+]c and subsequent cell dysfunction. PMCA can be reversibly inactivated by ROS by an unclear 
mechanism that is suggested to be a reversible cysteine modification [52-54]. Current hypotheses 
propose that ROS alter the PMCA Tyr589, Met622 and Met831 residues [55]. Furthermore, there is 
evidence indicating that PMCA inactivation by ROS can be a protective system to avoid high 
consumption of ATP under stress conditions [56]. As a result of PMCA inactivation [Ca2+]c rises over 
the resting value.  

ROS can also alter NCX function although the effect of ROS on NCX activity remains 
controversial. Hydrogen peroxide formed by the xanthine/xanthine oxidase system and superoxide 
anion increase the activity of NCX in myocytes [57]. However, in the same cells, oxidative stress 
induced by xanthine oxidase plus hypoxanthine inhibits the exchanger [58], and this exchanger has 
also been shown to be inhibited by the oxidant HOCl [59]. 

The effects of ROS on the activity of SERCA is also controversial. SERCA contains between 22 to 
28 cysteine residues; therefore, the redox state is very important for its activity. ROS are capable of 
attenuating the activity of this pump in vitro by modifying sulphydryl groups [60-62]. Distinct SERCA 
isoforms show different susceptibility to ROS [51,60-61], which might be attributed to the different 
location of cysteine residues [63]. It has been hypothesized that small concentrations of ROS can 
stimulate this pump, whether high concentrations can inhibit SERCA [64], which has been reported to 
be more sensitive to ROS than PMCA [65].  

Ca2+ “on” mechanisms are also susceptible to be altered by oxidative stress. Intracellular Ca2+ 
channels responsible for Ca2+ release from the intracellular stores are sensitive to ROS. IP3R function 
has been reported to be affected by ROS through the modification of cysteine residues. ROS increase 
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the sensitivity of IP3R to cytosolic IP3 levels, thus IP3R might be sensitive to resting IP3 levels [66,67]. 
RyR can also been altered by changes in the redox state. The relationship between RyR channels and 
ROS production is probably the most widely investigated. In skeletal muscle, it has been suggested 
that the residue that confers ROS sensitivity to type 1 RyR (RyR1) is Cys3635. ROS play a dual role in 
RyR1 activity, being activated by concentrations of H2O2 between 100 μmol/L and 1 mmol/L [68] and 
inhibited by high concentrations of hydrogen peroxide (10 mmol/L) [69]. In cardiomyocytes, ROS 
produced by the activity of NOX enzymes increases type 2 RyR (RyR2) activity, interfering with its 
association with calmodulin (necessary to inhibit the channel) or FKBP12.6 (which stabilizes the 
channel) thus suggesting that binding of these two proteins to RyR2 channel is sensitive to the redox 
state [70]. Furthermore, studies in neurons have reported that ROS increase Ca2+ release mediated by 
type 3 RyR (RyR3) channels [70,71]. Modulation of RyR by ROS may be a mechanism of interaction 
between Ca2+ and the redox signalling pathways, and also a mechanism to increase or decrease Ca2+ 
signals as needed (for example, in neurons, ROS generation alters the activity of RyR channels, that 
causes long-term potentiation or depression, processes that depend on Ca2+ release through RyR) [54]. 

Finally, oxidants can also modulate the function of a number of Ca2+ permeable plasma membrane 
channels. ROS alter the activity of voltage-gated Ca2+ channels, specially the activity of L-type Ca2+ 
channels [72], which has been associated to the oxidation of SH groups resulting in altered Ca2+ entry 
in guinea pig ventricular myocytes [73]. A recent study has reported that exposure of cardiac myocites 
to hydrogen peroxide produces an increase of intracellular ROS and basal L-type channel activity [74]. 
Moreover, studies in human embryonic kidney 293 cells revealed that hydrogen peroxide increases 
basal L-type channel gating [75]. The effect of ROS on other voltage-gated Ca2+ channels has been 
less investigated. It has been shown that external application of hydrogen peroxide is able to activate 
voltage-dependent P/Q-type channels in neurons [76]. Evidence has also been provided in favour of an 
inhibitory role of ROS on voltage-dependent Ca2+ channel gating [73]. Although speculative, these 
discrepancies may be attributed to the different oxidants or the concentrations used. 

In addition to voltage-gated Ca2+ channels, ROS can also affect the activity of other Ca2+ permeable 
channels, such as the channels conducting SOCE, receptor- or second messenger-operated Ca2+ entry. 
It has been reported that hydrogen peroxide decreases SOCE in thyroid cells through the activation of 
protein kinase C and not by a direct effect on SOCs and CRAC channels [77,78]. In human platelets, 
where ROS have been reported to play a physiological role in Ca2+ signalling, including SOCE [79], 
hydrogen peroxide plays a dual role in the activation of SOCE, with a stimulating effect at low 
concentrations (10-100 nM) and inhibitory effects at high concentrations (1 mM) [50]. Transient 
receptor potential channels have been shown to be sensitive to ROS [80]. Transient receptor potential 
canonical-3 (TRPC3)-forming channels are activated by ROS through the modulation of tyrosine 
phosphorylation [80] and transient receptor potential melastatin-2 (TRPM2), melastatin-7 (TRPM7) 
and ankyrin1 (TRPA1) channels are also sensitive to ROS. In neurons, TRPM7 and TRPM2, are 
activated by oxidative stress and participate in the pathophysiology of neurodegeneration [81,82]. In 
contrast, transient receptor potential polycystin-2 (TRPP2) channels are inhibited by oxidative stress in 
human syncytiotrophoblast [83]. The different effect of oxidative stress on TRP function might depend 
on the type of channel investigated and has been involved in the pathogenesis of a number of 
disorders. Other channels, such as Orai1, but not Orai3, have been shown to be inhibited by hydrogen 
peroxide-mediated oxidation. The differential redox sensitivity of these proteins has been attributed to 
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the presence of an extracellularly located reactive cysteine, which is absent in Orai3 [84]. Oxidative 
stress also alters the ER Ca2+ sensor STIM1 and Ca2+ effectors such as Ca2+/calmodulin-dependent 
protein kinase II (for a review see [64]). 

In summary, Ca2+ signalling is very sensitive to oxidants or reducing agents and changes in the 
redox state results in relevant changes in Ca2+ homeostasis, either altering Ca2+ mobilization from the 
internal stores and Ca2+ entry from the extracellular medium or modulating the activity of Ca2+ “off” 
mechanisms, including Ca2+ pumps and exchangers. The variable effects of ROS on Ca2+-handling 
mechanisms can be inhibitory or stimulatory, depending on the type of oxidant, its concentration and 
the time of exposure [85-87]. 

3. Disorders Caused by Reactive Oxygen Species and Therapeutic Strategies Based on the Use of 
Antioxidants 

ROS have divergent effects on cellular function. At low concentrations, ROS have been reported to 
contribute to vascular tone regulation, mediate vasodilation, and regulate cell growth and 
differentiation, activation of platelet aggregation and stimulation of many kinases and proinflammatory 
genes [88-92]. On the other hand, oxidative stress promotes the development of a number of diseases, 
such as neurodegenerative, cardiovascular and metabolic diseases and certain types of cancer [90,93-101]. 

The controlled generation of ROS is necessary for many vital cellular functions. For instance, the 
response of macrophages to external agents leads to production of ROS and bioactive lipids derived 
from the metabolism of arachidonic acid [102-104]. A number of studies have shown that the 
imbalance between ROS generating and scavenging systems leads to oxidative stress which can cause 
oxidative damage to biomolecules, followed by various apoptotic pathways that lead to cell death 
[105-107]. In recent years, there has been an increasing use of antioxidants with the aim to regulate the 
redox balance [108,109] despite of only a few antioxidant are in use now in patients [110]. There are 
two disorders that illustrate the cellular dysfunction induced by abnormal Ca2+ homeostasis due to 
oxidative stress: diabetes mellitus and Alzheimer disease.  

Diabetes mellitus (DM) is a very common disease that affects over 180 million people, whose 
hallmarks are pancreatic β-cell dysfunction and insulin resistance [101]. Type 2 DM, which affects 
90% of diabetics, leads to a number of cardiovascular alterations, including angiopathy, which is the 
main cause of morbidity and mortality in type 2 DM [111]. In the study of this disease, platelets have 
become a very important role because platelet hyperactivation and hiperaggregation play a key role in 
the development of angiopathy [112,113]. Platelets from diabetic patients have altered Ca2+ 
mobilization [114-116], increased ROS production [117,118] and enhanced protein tyrosine 
phosphorylation [119-121]. The reason of the enhanced ROS production during diabetes mellitus is not 
clear but it has been reported that diabetes mellitus is associated to hyperhomocysteinemia [122,123]. 
Studies in animal models have revealed that hyperhomocysteinaemia result in increased oxidative 
stress, impaired endothelial function and increased thrombogenicity. That rise in homocysteine 
concentration leads to increased production of ROS which can eventually trigger platelet hyperactivity 
[88,127] but lowering homocysteine levels by daily supplementation with antioxidants did not reduce 
the risk of developing type 2 DM [128]. 
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Either at rest or after platelet stimulation with thrombin, [Ca2+]c is higher in cells in patients with 
type 2 DM than in healthy donors [51,124], although platelets from healthy and type 2 DM subjects 
accumulate the same amount of Ca2+ into intracellular stores [119]. Abnormal Ca2+ homeostasis in 
platelets from type 2 diabetic patients has been attributed to altered Ca2+ extrusion mechanisms, 
increased IP3 generation or enhanced Ca2+ entry mechanisms [50]. Altered Ca2+ extrusion mechanisms 
have been reported for PMCA and SERCA, which are very sensitive to oxidative damage as 
mentioned above [51,115,125]. PMCA activity is regulated by tyrosine phosphorylation, and activation 
of platelets by thrombin stimulates Src-dependent PMCA tyrosine phosphorylation, and thus, 
inhibition of Ca2+ extrusion [119,126]. The increase in [Ca2+]c can trigger the synthesis of 
thromboxane A2 and hyperaggregability causing platelet hyperactivation.There is evidence linking the 
decrease in vascular NO production with increased production of ROS that alter platelet function 
[127]. The generation of ROS in type 2 DM may result in platelet activation due to removal of the 
inhibitory effect of NO on platelet function. For example, superoxide anion and hydrogen peroxide are 
constantly produced in the cell, and diabetes is associated with a reduction in the production of 
antioxidants. High concentrations of ROS can alter platelet function by different pathways, including 
the activation of protein tyrosine phosphorylation by Bruton's tyrosine kinases, and the Src family 
tyrosine kinases [79,128].  

Different antioxidants has been shown to reverse DM-associated platelet hyperactivity and 
hyperaggregability by reducing [Ca2+]c [117,129-130]. The use of antioxidants combined with diet, 
such as the Mediterranean diet or low-calorie diet and a healthy lifestyle provide big support in 
therapies for diabetes [131-133]. However, current studies are focused on the prevention of ROS 
production acting directly on ROS sources and possible treatments to reduce the deleterious effects of 
these oxidants through the development of inhibitors against the main sources of ROS. Mitochondria 
have been the focus of several studies aimed to treat or prevent cellular dysfunctions associated with 
oxidative stress [134,135]. For instance, the use of iron-chelators that attenuated hydrogen peroxide-
induced mitochondrial membrane potential loss, decreased the release of cytochrome c into the 
cytoplasm and inhibited the activation of caspase-3, suggesting that these drugs may induce 
cytoprotective effects via the preservation of mitochondrial function [136]. The enzyme NADPH 
oxidase has been suggested as a possible target to decreasing ROS generation. A number of drugs used 
for the treatment of hypertension, hypercholesterolaemia and coronary artery disease such as the 
statins, AT1 (angiotensin II receptor type 1) antagonists and ACE inhibitors have been shown to 
decrease NADPH oxidase-derived superoxide and ROS production [137,138]. The use of NO donors 
suppressed vascular NADPH oxidase-dependent superoxide production have been probed successfully 
for oxidative stress attenuation [139,140]. 

3.1. Neurodegenerative diseases 

In healthy neurons Ca2+ is essential for neuronal development, synaptic transmission and plasticity, 
and the regulation of various metabolic pathways [141]. Glutamate, the major excitatory 
neurotransmitter in the central nervous system induced an increase in [Ca2+]c directly by activating α-
amino-3-hydroxy-5-methylisoxazole-4-propionate acid (AMPA) and N-methyl-D-aspartate (NMDA) 
receptor channels and indirectly by activating voltage-dependent Ca2+ channel. Besides, the activation 
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of glutamate receptors coupled to the GTP-binding protein Gq11 stimulates the release of IP3 leading to 
the opening of channels in the ER, following by a sustained entry of Ca2+ across the plasma membrane 
by store-operated or/and receptor-operated channels [142], and recent evidences suggest that transient 
receptor potential channels play an important role in neuronal Ca2+ homeostasis [143,144].  

Under pathological conditions, the ability of neurons to control the increases in [Ca2+]c is reduced, 
and this dysfunction can lead to neuronal death in three ways. First, direct or indirect cysteine 
proteases activation, such as calpain and caspases, which degrade a variety of substrates including 
cytoskeletal proteins, membrane receptors and metabolic enzymes. Calpain also has a role in the 
apoptotic cascade through its ability to activate caspases [145-147]. Second, Ca2+ induces oxidative 
stress through the activation of oxygenases in arachidonic acid metabolism, disturbance of 
mitochondrial Ca2+ and energy metabolism. ROS generated in response to Ca2+ influx induced by 
glutamate includes superoxide, hydrogen peroxide, hydroxyl radical and peroxynitrite [148]. Finally, 
Ca2+ induces apoptosis through activation of pro-apoptotic proteins such Bax, Par-4 and p53, 
enhancing mitochondrial membrane permeability and release of cytochrome c [149,150]. 

Oxidative stress plays a key role in the development of many neurodegenerative disorders such as 
Alzheimer’s and Parkinson’s disease. ROS induce blood-brain barrier disruption, mediate the 
transendothelial migration of monocytes and myelin phagocytosis, and finally induce cellular damage 
[151-153]. ROS also bind to lipids, proteins and nucleic acids leading to oxidative damage that 
ultimately leads to necrosis and cell death [154-156]. 

Alzheimer Disease (AD) is a disease that affects more than 35 million people worldwide. It is 
characterized by progressive loss of memory and other cognitive functions. Neurons progressively die 
and some areas of the brain show atrophy. The average life of AD patients is 8-10 years after its 
detection [157]. 

Alterations in Ca2+ homeostasis in neurons contribute to the neurodegenerative process. It have 
been shown that in AD patients the proteolytic processing of β-amyloid precursor protein and 
presenilin 1 and 2 are altered, leading to increased production of neurotoxic Aβ [158-161]. Amyloid β-
peptide breaks the neuronal Ca2+ homeostasis by generating ROS, a process catalyzed by Cu+ and Fe2+. 
The neurotoxic Aβ induces oxidative stress, which leads to lipid peroxidation and breaks the Ca2+ 
homeostasis through the production of 4-hydroxy-2,3-nonenal, resulting in damage of the Na+/K+ and 
Ca2+-ATPases, and glucose and glutamate transporters [162]. Finally, the Aβ generated an increase in 
basal levels of intracellular Ca2+ that sensitizes neurons to apoptosis [163,164]. Besides breaking Ca2+ 
homeostasis by oxidative stress, Aβ oligomers can form pores for Ca2+ in cell membranes [165]. These 
findings suggest that treatments that regulate neuronal Ca2+ homeostasis might be able to prevent or at 
least delay the onset of AD. However, despite the success of drugs such as L-type Ca2+ channel 
blockers [166], therapies that disrupt Ca2+ fluxes may affect normal function of neurons, so the 
therapies should aim at stimulating the production of neurotrophic factors that protect neurons from 
cell death. Recent advances in AD treatment are focused on the use of the immune system. Current 
studies are mainly focused on the production of specific Aβ antibodies, on inhibitors of the enzymatic 
machinery involved in the production of Aβ from APP and also uncovered Aβ aggregation  
inhibitors [167-169]. 

Finally, because ROS can affect Ca2+ homeostasis, there are treatments that attempt to reduce 
oxidative stress in the cells, for instance inhibition of NADPH oxidase, responsible for most of the 



Molecules 2010, 15              
 

 

7175

ROS production in microglia [170], which significantly reduces the development of the disease. The 
use of antioxidants, such vitamins A, C and E, or coenzyme Q, can form a protective barrier in the 
brain, preventing access of ROS and avoiding neuronal degeneration [171-173]. However, the use of 
other well known antioxidants, such as folic acid and vitamins B6 and B12 has been ineffective [174]. 
Currently, much attention has been focused on ROS generation by mitochondria, the main cellular 
source of ROS, with the aim to design different strategies that prevent the development of AD 
associated to stressful situations or aging [175,176]. 

Among other antioxidants, the use of flavonoids in therapeutic strategies has been extensively 
investigated. Flavonoids group a large and complex number of polyphenolic compounds that contain a 
three-ring structure with two aromatic centers and a central oxygenated heterocycle. On the basis of 
structural differences flavonoids are classified into flavonols, flavones, flavanones, catechins, 
anthocyanidins, isoflavones, dihydroflavonols, chalcones and proanthocyanidins [177]. The 
antioxidant actions of flavonoids has been reported to induce beneficial effects on a number of 
disorders. Flavonoids have been reported to reduce the risk of platelet-derived thrombotic disorders 
[178-180], an effect that has been attributed to the effect of flavonoids on a large number of signaling 
events, including prevention of lipid peroxidation [181], inhibition of actin filament polymerization 
[182], impairment of the thromboxane A2 signalling pathway [183,184] or reduction of Ca2+ 
mobilization [130,177,185,186]. Furthermore, flavonoids have been reported to exert vasodilatory 
effects, thus reducing coronary heart disease, through the inhibition of protein kinase C, cyclic 
nucleotide phosphodiesterases or Ca2+ uptake [187]. Plant flavonoids also exert modulatory effects on 
the immune response [188] and suppress pathways of lipid biosynthesis and of very low-density 
lipoprotein production, thus modulating lipid homeostasis [189]. Future studies of the biochemical 
mechanisms underlying the biological effects of flavonoids may reveal new strategies for the treatment 
of cardiovascular disease, as well as associated conditions such as obesity, hepatic steatosis, and Type 
2 DM [189]. 

4. Conclusions 

In summary, ROS have been reported to play an important functional role at physiological 
concentrations; however, when the concentration of oxidants exceeds the cellular scavenging 
mechanisms, ROS might be involved in the development of a number of cellular disorders, including 
abnormal Ca2+ homeostasis. The use of exogenous oxidant scavengers has been demonstrated to exert 
beneficial effects on a number of disorders, although further studies are necessary to design therapeutic 
strategies specific for the different diseases and scavengers.  
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