Wong et al. BMC Cardiovascular Disorders 2012, 12:7
http://www.biomedcentral.com/1471-2261/12/7

BMC
Cardiovascular Disorders

RESEARCH ARTICLE Open Access

Effect of calcification on the mechanical stability
of plaque based on a three-dimensional carotid

bifurcation model

Kelvin KL Wong', Pongpat Thavornpattanapong', Sherman CP Cheung', Zhonghua Sun” and Jiyuan Tu'"

Abstract

vulnerability.

Background: This study characterizes the distribution and components of plaque structure by presenting a three-
dimensional blood-vessel modelling with the aim of determining mechanical properties due to the effect of lipid
core and calcification within a plaque. Numerical simulation has been used to answer how cap thickness and
calcium distribution in lipids influence the biomechanical stress on the plaque.

Method: Modelling atherosclerotic plaque based on structural analysis confirms the rationale for plaque
mechanical examination and the feasibility of our simulation model. Meaningful validation of predictions from
modelled atherosclerotic plaque model typically requires examination of bona fide atherosclerotic lesions. To
analyze a more accurate plaque rupture, fluid-structure interaction is applied to three-dimensional blood-vessel
carotid bifurcation modelling. A patient-specific pressure variation is applied onto the plaque to influence its

Results: Modelling of the human atherosclerotic artery with varying degrees of lipid core elasticity, fibrous cap
thickness and calcification gap, which is defined as the distance between the fibrous cap and calcification
agglomerate, form the basis of our rupture analysis. Finite element analysis shows that the calcification gap should
be conservatively smaller than its threshold to maintain plaque stability. The results add new mechanistic insights
and methodologically sound data to investigate plaque rupture mechanics.

Conclusion: Structural analysis using a three-dimensional calcified model represents a more realistic simulation of
late-stage atherosclerotic plaque. We also demonstrate that increases of calcium content that is coupled with a
decrease in lipid core volume can stabilize plaque structurally.

Keywords: atherosclerosis, calcification, fibrous cap, lipids, plaque rupture

1. Background

Atherosclerosis constitutes a high number of deaths
related to cardiovascular diseases in developed countries.
It is a chronic systemic disease, frequently leading to
vascular morbidity and premature mortality. Although
atherosclerosis is systemic, plaque rupture is local and
leads to acute cardiac syndromes such as ischemia and
myocardial infarction or cerebrovascular events. Plaque
material and structural characteristics are important
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factors in the natural progression of the disease and
may have important clinical predictive value.
Extensively calcified lesions most likely represent
atherosclerosis at later stages of remodelling and may
reflect more stable lesions [1]. However, earlier stages of
atherosclerosis that do not contain calcium deposits
may be more prone to rupture with subsequent occur-
rence of acute events [2]. Not only can non- or less-
invasive imaging identify flow-limiting coronary stenosis
[3], but it can also to detect plaque components, mea-
sure atherosclerotic plaque burden and its response to
treatment, and to differentiate stable plaques from those
that are prone to rupture [4,5]. Non-invasive imaging
modalities such as computed tomography [6] and
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magnetic resonance imaging [7-9], as well as the inva-
sive intravascular ultrasound modality [10-12], allow for
detection of plaque morphology and composition (calci-
fied versus non-calcified atherosclerotic plaques) and
assessment of the extent of remodelling [13].

Plaques can be characterized into three types based on
the histology analysis [14]: non-calcified plaques; calci-
fied plaques; and mixed plaques refer to lesions with
non-calcified and calcified components within a single
lesion (Figure 1A and 1B). The presence of calcification
in lipid, based on observation agglomerate of calcium
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clusters, occurs in some plaques (Figure 1C and 1D).
Calcium content is reported to increase in patients with
acute coronary syndrome [15]. Large lipid core and cal-
cified areas (defined as > 10% of the plaque area each)
and thin-cap fibroatheroma have been found to be asso-
ciated with positive vascular remodeling [16,17]. Regard-
less of the mechanisms of calcium formation involved,
histology shows that calcium is a common but variable
component in advanced atherosclerotic plaques.

Both composition and morphology are the determin-
ing factors for critical stress (or peak maximum
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Figure 1 Histological observation of plaque composites. A: Lipid distribution in a crescent formation within the plaque can cause protrusion
into the lumen and tend to obstruct distal arteries after plaque rupture. B: Calcification can be observed by white granules embedded in lipid.
C: A zoom-in view of calcified smooth muscles cells reveals the agglomerate of calcium clusters within the plaque. D: Calcification agglomerates
are also present in the lesion adjacent to the elastic lamina. (Revised from images by Stary [14])
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principal stress) during rupture. Plaque characteristics
can be determined from numerical simulation for eva-
luation of its vulnerability [18-20]. In particular, patient-
specific geometries can be reconstructed from MRI
[21-27], and also with emphasis on the plaque rupture
in the carotid artery due to high shear stress [28,29].
More importantly, a shift in paradigm occurs for the
mechanism of fibrous cap rupture ranging from calcifi-
cations in arteries with lipid pools to cellular level
microcalcifications in the fibrous cap. Effect of fibrous
cap on plaque vulnerability has been widely investigated
[30,31]. For a calcified plaque, the existence of some cal-
cium core structural configurations is hypothesized to
play a critical role in plaque rupture [32-34]. However,
studies are limited to micro-calcification spots
embedded in fibrous caps. The realistic calcification
structures are present in the lipid and in agglomerates
of clusters as presented by Huang et al. who showed the
effect of percent areas of calcification and lipids on max-
imum principal stress [35]. But such patient-specific stu-
dies lack morphological parameters on controlled stress
models and restrict insights into plaque rupture.

To address the current limitations, we model a realis-
tic calcified plaque using variation of mechanical prop-
erties such as maximum principal stress and
deformation due to the effect of morphological changes
by calcification composites. A number of pathological
and clinical imaging studies suggest that plaque vulner-
ability is inversely correlated with fibrous cap thickness.
In addition to the fibrous cap thickness, the calcification
gap which is defined as the width between the fibrous
cap and the agglomeration of calcium clusters in the
lipid is studied for the first time. To verify our hypoth-
esis that calcification plays an important role in plaque
vulnerability, idealized morphological constituents are
implemented at different configurations to correlate
stress parameters with geometrical properties.

2. Methods
2.1 Plaque Composite Model
The construction of the constitutive model is such that
the complex behaviour of stress on the plaque can be
quantified and analyzed. We assess stress on a plaque
that comprises four main tissue types: the lipid (lp), the
fibrous cap (fc), the calcium agglomerate (cag), the non-
diseased wall (ndw). The morphological configuration of
these components is of critical importance in the quan-
tification of plaque vulnerability. The properties of these
tissues are variable and integration of these various
components into a plaque structure produces different
stress effects.

In calcified plaques, agglomeration of microcalcifica-
tion clusters is aligned in a crescent within the lipid and
acts as a buoyant support to the rupture of the fibrous
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cap. Calcification clusters may be eccentrically shaped
or positioned distantly from the lumen such that higher
stress or tension may be localized at the fibrous cap.
This causes an increase in plaque vulnerability as the
calcification configuration tends to shift all the stress
onto a focal point.

We model elastic behaviour of its composites by using
stress-plane analysis on an idealistic model (Figure 2).
The peripheral arterial internal diameter (3.6 mm) and
external diameter (4.0 mm) are fixed. Fibrous material
from plaque occupies the interior wall of an artery such
that a lumen of varying size is formed. The lumen is
modelled with an eccentricity of 0.5 mm with respect to
arterial centre, and with varying lumen diameter L that
corresponds to percentage of stenoses. The fibrous cap
is assumed to be of the same material constitution as
the plaque material. For set of models with lipids, this
subintimal substance is constructed by extending a 140°
crescent with thickness of 0.35 mm (Figure 3A). The
calcification gap refers to a lipid gap between fibrous
cap and calcification agglomerate (Figure 3B). Plaque
morphology is based on fibrous cap width d, thickness
of calcification agglomerate d_,,, and calcification gap
Aeg.
2.2 Plaque Rupture Mechanics
Anisotropic modelling of atherosclerotic vessel can be
implemented to probe into plaque vulnerability issue
[30,36]. A two-dimensional modelling platform for cali-
brating the extent of plaque rupture is based on
mechanical parameters governing the atherosclerotic
configuration. Three-dimensional analyses have also
been prepared to justify the accuracy of the results
based on the plane analyses of patient-specific case stu-
dies [18,20,21,31,33,37,38] that were previously investi-
gated. Some studies of plaque mechanics examine
arterial wall bending along the longitudinal axis since it
has been shown that repetitive bending causes strain on
an atherosclerotic plaque resulting in rupture [39].

Plaque rupture is dependent on biomechanical events
acting on the fibrous cap such as hemodynamic shear
stresses [40], turbulent pressure fluctuations [41], cyclic
variation of intraluminal pressure and maximum princi-
pal stress by the pulsatile blood pressure [30,42]. In par-
ticular, large eccentric lipid cores are of mechanical
disadvantage since circumferential tensile stresses are
configured in such a way that fibrous caps have a ten-
dency to rupture most of the time [36]. This gives rise
to the relationship between plaque rupture and the criti-
cal stress acting on the fibrous cap.

Autopsies of patients that are diagnosed of cardiac
ischemia showed that the level of macrophages is high,
smooth muscle cells are reduced, the proportion of cres-
centic acellular mass for a lipid core is significant, and
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Figure 2 Plaque configuration in atherosclerotic artery. The presence of the fibrous cap and lipid within a diseased artery causes the
protrusion of the arterial wall into the lumen. A: The morphological configuration of these plaque composites is idealized schematically to
facilitate geometrical modeling for validation. B: The definition of a calcification gap is based on distance between the calcification agglomerate

deg deag

B

the fibrous cap is thin [42-45]. For plaque rupture, 65
pum thickness with an infiltrate of macrophages is
defined as the threshold after histological analysis [46].
This can give guidance to critical risk analysis of plaque
condition.

2.3 Design of Plaque Models

Idealized plane models of the longitudinal atherosclero-
tic arteries are implemented to study effects of stenotic
severity on circumferential stress on plaque. One set
pertains to stenosis based on a homogenous wall mate-
rial while the other set is based on plaque with a lipid
core where the constitutive model is taken to be non-
homogenous, anisotropic, and elastic. To numerically
simulate this type of plaque-vessel, all plaque constitu-
ents are assigned with the physiological mechanical
properties.

For validation, we implement a non-calcified plaque
structural configuration. We have two subsets of models
that pertain to plaques with and without the lipid core
in Figures 3A and 3B respectively. Then, we proceed to
examine the effects of fibrous cap thickness dy. and
width of calcification gap d., on the stress levels that
pertain to the plaque. Varying fibrous cap thickness dj.
from 0.05 to 0.5 mm is implemented. We hypothesize
that calcification plays an important role in plaque vul-
nerability assessment, and therefore the calcification
agglomerate is modeled as a 140° crescent of variable
thickness d.,, and positioned within the lipid. We

design idealistic models for analysis of calcification
structural variation which relates to calcification gap d,,
ranging from 0.05 to 0.33 mm (Figure 3C).

The following parameters are used in a plane-stress
model: Young modulus (E) in circumferential (¢) and
radial () directions, v,4 and v,, that are the Poisson
ratios in r-0 and 0-z planes respectively, as well as G,y
that is the shear modulus in -0 plane.

The elastic mechanical property of the calcification
agglomerate is established based on defined percentages
of fibrous plaque tissue (ft), lipid core (Ic) and calcium
(Ca):

E“ = oF + BEC + yES,

cag ft lc Ca (1)

Gr@ = acr@ + IBGTG + yGrO ’
where i denotes r and 6 represents radial and circumfer-
ential orientations respectively. The percentage of compo-
sitions @, B, and y corresponds to fibrous tissue, lipid and

calcium, respectively. The Young modulus Efag and shear
modulus G,,® are based on a linear combination of Ejl

and Gi , that pertains to component j = ff, lc, and Ca.

The material properties of the plaque constituents are
consolidated from Loree et al. [30] and Holzapfel et al.
[18] in Table 1. In our study, we assumed a combination
of fibrous tissue (o = 5%), lipid (B = 20%) and calcium
(y = 75%) as components for a homogenous calcification
agglomerate.
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Figure 3 Design of models based on varying geometrical configurations. For model sets A and B (that are used for numerical simulation
validation), we implement the two sets of fibrous plague geometries pertain to one of a constant material construction and one with a
composite matrix of fibrous plaque and constant lipid core. Stenosis at 70, 75, 80 and 90% are modeled. As the position of lipid core (of
constant thickness of 0.35 mm) remains consistent, the stenotic reduction results in thinning of fibrous cap. For model set C, we implement a
set of calcified plaques which comprises of a varying calcification gap d., (from 0.02 to 0.33 mm).

Table 1 Material properties for plaque constituents.

Parameter Artery (ndw) Fibrous tissue (ft) Lipid (Ip) Micro-calcium Calcification
(Ca) agglomerate (cag)
E, (kPa) 10 50 1 12,600 9452.7
Ey (kPa) 100 1000 1 12,600 95002
Grg (kPa) 50 500 1 12,600 9475.2
Vo 0.01 0.01 001 001 0.01
Viz 0.27 0.27 0.27 0.27 027

The Young modulus (E, E,), Poison ratios (G,;) and shear modulus (v, v,,) are presented for the plaque, non-diseased wall of artery, and lipid. The data are
revised from Loree et al. [30] and Holzapfel et al. [18] Fibrous tissue at o = 5%, lipid at § = 20% and calcium at y = 75% pertain to the homogenous calcification
agglomerate.
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2.4 Two-dimensional Finite Element Method Validation
Finite element method (FEM) is performed using
ANSYS™ finite element program to relate the stress dis-
tribution within plaque with a luminal pressure P of
14.6 kPa. The finite element meshes are based on tetra-
hedral elements with minimal skewness. The axial strain
is of the order of vessel dimension and negligible with
respect to the circumferential and principal strain, and
therefore the analysis is based on plane-stress models.
Due to the symmetry of the vessel, a half model is
implemented to reduce computational costs of model-
ling stress. The symmetry condition is applied at the
half-vessel that lies on a symmetry line. Adaptive mesh-
ing for each component of the plaque is performed to
increase the mesh resolution at regions where high
strain energies are localized. Such non-homogenous dis-
tribution of mesh elements will improve accuracy of the
numerical solution. Different grid densities are applied
for the artery, fibrous plaque, lipid and calcification
agglomerate as a variation of strain energies pertain to
these elastic materials (Figure 4).

As atherosclerosis is a complex process, multiple para-
meters are required to accurately model plaque vulner-
ability. As a prerequisite, it is useful to conduct this
preliminary analysis based on a simplified version of the
model in order to identify the correlations between
maximum principal stress, maximum deformation,
fibrous cap thickness and calcification gap. Prior to
these numerical experiments, a validation is performed
against research study by Loree et al. [30] based on idea-
lised atherosclerotic plaque configuration using planar
stress analysis.

Figure 5 presents the effect of fibrous cap thickness on
peak circumferential stress. For cases with constant
lipid, fibrous cap thickness reduces with decreasing ste-
nosis. In addition, when there is a constant lipid inside
the plaque, the level of stress tends to be strongly influ-
enced by the thickness of fibrous cap. Our simulation
results agree well with validation data. We also deduce
that since the fibrous cap thickness correlates to plaque
stability, it is an important parameter when determining
plaque vulnerability.

2.5 Three-dimensional Computational Fluid Dynamics
Modelling

To analyze the structure of the plaque components,
numerical simulation is applied to illustrate the variation
of mechanical properties due to the effect of changes by
the lipid core and its agglomerate of microcalcification.
Modelling of the human atherosclerotic artery with
varying degrees of lipid core elasticity, fibrous cap thick-
ness and calcification gap, which is defined as the dis-
tance between the fibrous cap and calcification
agglomerate, form the basis of our rupture analysis.
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2.5.1 Geometry Reconstruction and Meshing

Tada et al. performed modelling of healthy carotid
bifurcation based on an idealistic geometry [47]. Key
dimensions of this artery are presented in Table 2. For
their geometry, a region of sinus is included as it is the
common feature found in carotid bifurcation. Our
model was based on a size scale of 1:2.775 when com-
pared with the two-dimensional verification model.
However, this will not affect the structural analysis if all
our structural parameters are varied at the same specific
ratios to achieve physiological similitude.

For a diseased carotid bifurcation, the location of the
plaque is assumed to be located on the outer wall of the
internal carotid artery (ICA) sinus in order to study the
effect of the stenosis to the flow as well as the mechani-
cal stress occurs. A three-dimensional crescent structure
was incorporated into the sinus of the carotid bifurca-
tion to simulate the presence of plaque. We note that
plaques can be characterized into three types based on
the component with it: non-calcified plaque, partially
and fully calcified plaque (see Figure 6A, B and 6C
respectively). Fibrous tissue (), lipid () and calcium ()
pertain to the homogenous calcification agglomerate at
o =5%, B =20% and ¥ = 75% as components for a
homogenous calcification agglomerate.

We can implement an anisotropic modelling of the
atherosclerotic vessel to probe into the plaque vulner-
ability issue. We present a three-dimensional modelling
platform for calibrating the extent of plaque rupture
based on mechanical parameters governing the athero-
sclerotic configuration. Then analyses of some sample
case will be prepared to justify the accuracy of the
results based on the plane analyses. Some studies of pla-
que mechanics examine arterial wall bending along the
longitudinal axis since it has been shown that repetitive
bending causes strain on an atherosclerotic plaque
resulting in rupture [39].

Figure 7 shows example of computational grid used in
this research. Figure 7A illustrates the mesh of the full
calcified carotid bifurcation. Figure 7B reveals the reso-
lution of the calcification that is required for the simula-
tion. In each case, the mesh will be slightly different due
to the degree of stenosis. The mesh used consisting of
three-dimensional tetrahedral and prism was generated
in CFX-mesh software. Grid independence analysis was
performed at 3 different mesh refinement levels for the
structure domain: Coarse (130,000 elements), Medium
(340,000 elements) and fine (1,500,000 elements). For
the fluid domain, the mesh refinement levels are: Coarse
(110,000 elements), Medium (300,000 elements) and
fine (1,000,000 elements). For both the structure and
fluid domain, only 2% of dissimilitude between the fine
and medium mesh was observed. Therefore, it is con-
cluded that the fine mesh can be used to obtain grid
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Figure 4 Mesh modelling of plaque model based on different configuration of lipid pool and calcification agglomerate at 70%
stenosis. A: For plaque with no lipid pool (70% stenosis), the geometrical modeling uses N = 12928 for plane-strain elements. B: For plaque
with constant lipid pool (of thickness 0.35 mm), N = 12712 elements. C: For plaque with constant lipid pool and calcification agglomerate (d., =

0.175 mm), N = 12123 elements.
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Figure 5 Relationship between circumferential stress and stenosis. The graph of the circumferential stress versus degree of stenosis is
presented for plaque with or without lipid pool. The peak circumferential stress is normalized with respect to the luminal pressure (6 ma,/P). This
can give an indication of the accuracy of simulation analysis using results by Loree et al. [30] as a form of validation

independent results. All results obtained and discussed
in the discussion section are the solution of computa-
tion performed with the fine mesh.
2.5.2 Details of Blood-Vessel-Plaque Simulation
Partitioned approach was used to implement FSI cap-
ability in the ANSYS™ software package. The coupling is
performed between ANSYS and CEX. The coupling of
the two solvers is performed many times per time step
until convergence of interface variables (displacements
and pressure) is reached. At each coupling loop, calcula-
tion of blood flow is initiated. Then calculated pressure
field is transferred and used as applied force in ANSYS
in order to calculate deformation of the artery. The tol-
erance for the interface variables is 1E-4. The blood
flow is modelled a laminar since the highest Reynolds
number, even with high degree of stenosis, is approxi-
mately about 1000 which is still in laminar region. Time
step size is set to 0.015 s. the results is obtained at the
4™ cycle to get rid of effects from initial conditions.

In solid domain, each end of the artery (CCA, ICA,
ECA) are modelled as fixed supports while symmetry
condition is assumed at the plane of the bifurcation. In

Table 2 Geometrical properties for carotid bifurcation.

Location of Carotid Bifurcation Dimensions
CCA internal diameter 001 m
Maximum sinus internal diameter 023 m

ICA internal diameter 0.007 m
ECA internal diameter 0.0065 m
ICA bifurcation angle 25°

ECA bifurcation angle 25°

The dimensions for a generic carotid bifurcation are presented based on the
model by Tada et al.>® to be used in CFD simulation.

fluid domain, boundary condition at inlet is specified as
time-varying constant [47] while outlet boundary condi-
tions at the end of ICA and ECA are set as time-varying
mass flow rate as shown in Figure 8. In addition, no slip
condition is specified at artery wall. The wall is assumed
to be smooth. In this work, arterial wall is modelled as a
Hookean and isotropic material for computational sim-
plicity [48,49]. The blood properties are also simplified
and thus modelled as Newtonian fluid. Both blood and
artery properties are shown in Table 3.

3. Results and Discussion

3.1 Two-dimensional Structural Modelling

Subintimal plaque structures such as fibrous cap thick-
ness play an important role in plaque stress distribution.
Here, we analyze the pathological fracture caused by the
increases of stress on plaque. We have, in addition to
this parameter, the calcification gap (which is defined as
the width of the lipid layer sandwiched between the cal-
cification agglomerate and the fibrous cap) as another
variable. Due to a matrix of different elastic materials in
the composition, stress concentrations vary throughout
the structure [50,51]. Therefore, it is of interest to simu-
late how the variable morphological configurations affect
the stress levels on the plaque which can cause fracture.
Then, sensitivity studies on effects of lipid elasticity and
fibrous cap thickness in the case of a constant lipid core
on maximum principal stress and deformation are
presented.

Results for plaque models at 70% and 90% stenosis
and with a constant lipid pool (E;, = 1 kPa) are illu-
strated by Figures 9A and 9B. Analysis of the different
plaque models with lipid cores of fixed size (0.35 mm)
shows the effect of fibrous cap thickness ds on



Wong et al. BMC Cardiovascular Disorders 2012, 12:7
http://www.biomedcentral.com/1471-2261/12/7

Page 9 of 18

the fibrous cap at 0.500 mm thick.

\

Sl

Figure 6 Three-dimensional isometric view of the plaque in a carotid bifurcation. The plaque-arterial configuration can be non-calcified
plaque, mixed type of plaque and calcified plaque. Here, the lipid height and width is specified as 6.714 mm and 3.298 mm respectively, with

maximum principle stress and deformation. Multiple
numerical simulation models based on the variation of
ds. and Ey, is performed to characterize critical stress
and maximum deformation levels. The sensitivity of the
mechanical stress properties to the lipid core elasticity
and fibrous cap thickness can be presented with
response curves that provide the interaction between
different mechanical properties of the plaque material.
This can give us an insight into the morphological effect
of plaque constituents on maximum stress levels.

Figures 9C and 9D are simulated models with a con-
stant lipid cores whose Young Modulus is set as Ej, = 1
kPa and a calcification agglomerate that has Young
Modulus E . based on & = 5%, B = 20% and y = 75%
(refer to Table 1). The changes in these mechanical
properties can be graphically presented when calcium
clusters are present. Variation of calcification gap d,, is
presented to show its effect on peak principal stress and
maximum deformation. Modelling calcified plaque with
agglomerate at varying calcification gaps gives the
response of maximum principal stress and deformation
based on the influence of calcium clusters. This
mechanical entity affects structural integrity of the over-
all plaque content, and plays a major role in plaque
vulnerability.

3.2 Three-dimensional Fluid-Structure Interaction
Modelling

Figure 10 are simulated three-dimensional models with
a constant lipid cores at E;, = 1 kPa and a calcification
agglomerate where E,, is based on a = 5%, 8 = 20%
and y = 75% (refer to Table 1). We extract the maxi-
mum principal stress and deformation contour plots for
the carotid bifurcation along its longitudinal axis as it is
more easily visible to observe these mechanical property
variations along the fibrous cap.

The three-dimensional plaque models at 90% stenosis
under the effect of different fibrous cap configurations
are illustrated by Figures 10A and 10B. The different
plaque models with lipid cores of fixed size is effected
and the influence of fibrous cap thickness dy. on maxi-
mum principle stress and deformation is demonstrated
to be similar to the trend shown by the two-dimensional
structural analysis, whereby increment in the fibrous cap
thickness dy, results in a reduction of critical stress and
maximum deformation.

Figures 10C and 10D are simulated blood-plaque-ves-
sel models in which variation of calcification gap d,, is
presented to show its effect on peak principal stress and
maximum deformation. Here, increment of d, results in
an increase of these two mechanical properties.
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Figure 7 Meshing of calcified carotid bifurcation. The isometric view of the mesh for entire length of carotid bifurcation and a zoom-in view
of the calcified plague gives an indication of the mesh resolution required for blood-plaque interaction simulation.
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Figure 8 Patient-specific pressure waveform used in simulation. Patient-specific pressure waveform for the fluid simulation within the
carotid bifurcation shows a maximum of 107 mmHg used. This waveform is imposed at the entrance of the artery.
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Table 3 Material properties for artery and blood
constituents.

Artery

Young modulus (Pa) 5.00E+05
Poisson ratio 0.5
Blood

Density (kg m?) 1050
Viscosity (Pa s) 3.50E-03

The Young modulus and Poison ratio for artery as well as density and
viscosity for blood are presented for the blood-vessel interaction simulation.

3.3 Response of Maximum Principal Stress and
Deformation to Plaque Elasticity and Structural Variation
Response curves for stress and deformation versus pla-
que composite elasticity and fibrous cap thickness are
plotted. Both maximum principal stress and deformation
have negative correlation with the fibrous cap thickness
and Young modulus of plaque composites. This leads to
the suggestion that the change of stress with respect to
Young modulus of lipid core or calcification agglomer-
ate and fibrous cap thickness tends to follow the same
variation as deformation. Calcification gap and maxi-
mum deformation thresholds are established based on
critical stress threshold for plaque rupture.

3.3.1 Two-dimensional Structural Analysis

Stress response curve for maximum principal stress 0.«
versus Young modulus of lipid Ej, and fibrous cap size
dg. shows that the peak maximum principal stress or
critical stress o, is 370 kPa, which corresponds to the
highest plaque vulnerability, is achieved where the pla-
que has lipid core with the highest elasticity and the
thinnest fibrous cap (Figure 11A). Stress levels of calci-
fied plaque (where Ej, = 1 kPa, d.; = 0.02 mm and E,,
ranges from 10 to 400 kPa) demonstrates the same cor-
relation with plaque composite elasticity and fibrous cap
thickness (Figure 11C). Critical stress for a calcified pla-
que (0., = 268.12 kPa) is lower than that of a non-calci-
fied one. In general, the stress levels of the calcified
plaque are lower than a non-calcified one.

Effect of Ej, and dy. on the cap deformation Dy is pre-
sented (Figure 11B). The peak deformation D, at
0.389 mm or 389 pum corresponds to the lower limit of
the range that pertains to lipid core Young modulus and
fibrous cap thickness. With calcification, D, is
reduced to 0.239 mm (Figure 11D). The overall defor-
mation is generally lower than that for the non-calcified
plaque. The deformations are an order of magnitude
higher than the fibrous cap for plaque rupture.

3.3.2 Three-dimensional Fluid-Structural Analysis

We note the improvement in smoothness of the surface
curve variation of the graph based on three-dimensional
fluid-plaque simulation in the atherosclerotic carotid
bifurcation. Based on Critical stress for a non-calcified
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plaque at o, = 350 kPa (shown in Figure 12A) is higher
than that of a calcified one with d.; = 0.1 mm at o, =
258 kPa (shown in Figure 12C). Dy, at 0.328 mm cor-
responds to the maximum deformation for non-calcified
plaque (Figure 12B). With calcification, Dy, is reduced
to 0.236 mm (Figure 12D).

Typically, the simulation results follow the same trend
as that of the two-dimensional plaque structural analy-
sis. We see a drop in value of the blood-vessel interac-
tion model when compared based on the two-
dimensional structural analysis. However, the critical
stress and maximum deformation follows a more accu-
rate trend due to the realism of the blood-plaque config-
uration being modeled. It may be worthwhile
highlighting that the two-dimensional analysis can serve
as a preliminary verification of the three-dimensional
results.

3.4 Response of Critical Stress and Maximum Deformation
to Plaque Structural Variation

Relationship between calcification gap and maximum
principal stress is based on effect of stress distribution
on fibrous cap having d., varied from 0 to 0.25 mm and
with Ej, = 1 kPa and E g = 100 kPa. Plaque rupture
occurs when stress levels exceed a 300 kPa threshold as
determined by Lendon et al. [52] and Vengrenyuk et al.
[32] This stress threshold determines that based on the
morphological condition that we assumed in our model
and for a threshold calcification gap, plaque fracture will
occur. It is worthwhile mentioning that it should not be
assumed that all plaques fracture at this value [36].
However, this value can be used as a guide in our
analysis.

3.4.1 Two-dimensional Structural Analysis

For the non-calcified plaque with the same fibrous cap
thickness, stress level can reach as high as near 370 kPa.
But presence of calcification agglomerate at sufficiently
low calcification gap can lower stress levels to below 370
kPa and prevent plaque rupture which may occur at 300
kPa. Since fibrous cap thinness threshold for rupture is
0.065 mm, we implement the case of a fibrous cap as thin
as 0.05 mm as a limiting example. The calcification gap is
specified as 0.02 mm as consistent with Figure 11.

Based on calcified plaque with fibrous cap thickness
dg. at 0.05 mm, the relationship between calcification
gap d.g and peak maximum principal stress or critical
stress O, is presented (Figure 13A). As calcification gap
increase, the critical stress tends to converge to a stable
levelling of peak maximum principal stress. The plaque
is stabilized when the calcification gap is less than 0.04
mm based on the assumed plaque configuration. The
critical stress o, has a positive correlation with maxi-
mum fibrous cap deformation D,,,x (Figure 13B). This is
due to the correlation that exists for the calcification
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Non-calcified Plaque with Thin Fibrous Cap
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Figure 9 Finite element analysis of plaque models at two-dimensional cross-sections and with different fibrous cap thickness and
calcification gap. Peak principal stress and deformation plots pertain to a constant lipid pool (£, = 1 kPa) of fixed thickness (0.35 mm), and
with varying fibrous cap thickness dy. and calcification gap d,. A: For di. = 0.05 mm, the critical stress o, and maximum deformation Dy, are
331 kPa and 0.390 mm respectively. B: For d. = 048 mm, o, = 28.7 kPa and Dyy,.x = 00281 mm. The geometrical outlines of the plaque
composites for A and B show the structural difference in the deformed plaque due to applied stress. C: For d, = 0.02 mm and d. = 0.05 mm,
O = 282 kPa and Dyax = 0290 mm. D: For deg = 0.175 mm and di. = 0.05 mm, o, = 326 kPa and Dya = 0370 mm.




Wong et al. BMC Cardiovascular Disorders 2012, 12:7
http://www.biomedcentral.com/1471-2261/12/7

Page 13 of 18

Non-calcified Plaque with Thin Fibrous Cap

&P e°ad’e‘>6‘ TR R A A
’\1’5’5”} . . Q9 Q" QO QO

Maximum pnnc:pal stress [kPa] Deformation [mm]

S

v-‘b"'é"\“(" ORGP A

A
Non-calcified Plaque with Thick Fibrous Cap

o S P> IR I P NP ST R Y
Np DS e o (SFF PN TR PP IS
u‘;‘;b’\’\‘b%%\ b A oV oV oV oY oV o

o

& A D

Maximum principal stress [kPa] Deformation [mm]

B
Calcified Plaque with Thin Fibrous Cap and Thin Calcification Gap

> R I I J AN P R m“&m%e*’\‘(’@\‘“m b,@wv'\‘s
e@»ﬁ’@«#’\“’("\"'@(‘\"‘"'»’”mw“i”*? a'aeee RPN AT R S

Maximum prmclpal stress [kPa] Deformation [mm]

C
Calcified Plaque with Thin Fibrous Cap and Thick Calcification Gap

SR RN © o S 0 o®
ST FFE RN RO A AP A DA F RS
6 @ H @A TSNP PP SIS

ve

Maximum principal stress [kPa] Deformation [mm]

D

Figure 10 Fluid-structural interaction analysis of three-dimensional plaque models based on a longitudinal orientation and with
different fibrous cap thickness and calcification gap. Peak principal stress and deformation plots pertain to a constant lipid pool (£, = 1

kPa) of fixed size (0.35 mm), and with a specific fibrous cap thickness dy and calcification gap dc,. A: For di. = 0.05 mm, the critical stress o, and
maximum deformation Dy are 350 kPa and 0421 mm respectively. B: For di. = 0.05 mm, 6 = 956 kPa and Dypay = 0.293 mm. C: For deg = 0.1
mm and d¢. = 0.05 mm, 6 = 258 kPa and Dy, = 0.352 mm. D: For dy = 0.3 mm and dy. = 0.05 mm, 0., = 314 kPa and Dy, = 0467 mm.
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Figure 11 Maximum principal stress and deformation based on elasticity of two-dimensional plaque composite and fibrous cap
thickness for non-calcified and calcified plaque. A: For a two-dimensional non-calcified plaque, graph of the maximum principal stress Gy
versus Young modulus £, and fibrous cap thickness dr. shows that critical stress is 370 kPa. B: For a two-dimensional calcified plaque at dey =
0.02 mm, the fibrous tissue, lipid and calcium structures are present at various concentrations in the calcification agglomerate such that its
Young modulus £,q varies from 10 to 400 kPa. The plot of Oynay Versus Ec.g and di. shows that critical stress is 268.12 kPa. C: For a two-
dimensional non-calcified plaque, graph of peak deformation Dy versus £, and ds. shows that maximum deformation D,y is 0.389 mm. D: For
a two-dimensional calcified plaque, graph of D¢ versus Ec.q and drc gives Dy, = 0.239 mm.
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gap with the maximum deformation. For D,,,, > 165
um, which is 3.3 times the fibrous cap thickness (0.05
mm), stress levels exceed 300 kPa.

3.4.2 Three-dimensional Fluid-Structural Analysis

As shown in Figure 14, the same trend follows for the
three-dimensional model with calcified plaque whose
calcification gap is specified at 0.1 mm. Here, Figure
14A illustrates the relationship between calcification gap
d, and critical stress o, and Figure 14B correlates the
critical stress o, with maximum fibrous cap deforma-
tion Dy,,x. We note a slight reduction in critical stress
below the 350 kPa threshold value. The limiting calcifi-
cation gap occurs at d.; = 0.21 mm before plaque rup-
ture takes place for critical stress at 300 kPa. It is to be
noted that a larger calcification gap is presented as com-
pared to the results of the two-dimensional model
occurs due to the implementation of an artery-plaque
structure that is 2.775 times larger in size.

The maximum deformation also assumes the same
trend that is based on the two-dimensional structural
stress analysis. For a larger artery being configured, and
implementation of a carotid bifurcation model, we see a
reduction in terms of value for critical stress. The maxi-
mum deformation is observed to be approximately the
same at Dp,,, > 168 pum for the stress levels to exceed
300 kPa.

4. Conclusion

Medical imaging modalities are able to characterize the
atherosclerotic plaque in terms of their morphological
and mechanical properties. Non-invasive imaging tech-
niques not only identify flow-limiting vascular stenosis,
but also detect calcified and non-calcified plaque, mea-
sure atherosclerotic plaque burden and its response to
treatment, and differentiate stable plaques from those
which tend to rupture [4,5]. However, the prediction of
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Figure 12 Maximum principal stress and deformation based on elasticity of three-dimensional plaque composite and fibrous cap
thickness based on non-calcified and calcified plaque. A: For a three-dimensional non-calcified plaque, graph of the maximum principal
Stress Omay Versus Young modulus £, and fibrous cap thickness di. shows that critical stress is 350 kPa. B: For a three-dimensional calcified
plaque at d.q = 0.02 mm, the plot of G,y versus g and di. shows that critical stress is 258 kPa. C: For a three-dimensional non-calcified
plaque, graph of peak deformation Dy versus £, and di. shows that maximum deformation Dpay is 0.328 mm. D: For a three-dimensional
calcified plaque, graph of Dy versus Ec,g and di. gives Dya, = 0236 mm.
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Figure 13 Critical stress on fibrous cap with respect to width of calcification gap and maximum deformation on fibrous cap for two-
dimensional plaque-rupture analysis. A: The plot of critical stress o, versus width of calcification gap d., reflects the decrease in plaque
vulnerability for increasing occupancy of the calcification agglomerate (which is inversely correlated to d.g). For di at 0.05 mm as a conservative
setting, a calcification gap value of > 0.04 mm causes stress levels to exceed 300 kPa and cause plaque rupture. B: Critical stress o, versus
maximum deformation Dy, of fibrous cap for d at 0.05 mm demonstrates that o, becomes lower as d.q minimizes the deformation. Here,
Dimax > 0.165 mm causes plaque rupture.
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high-risk plaque rupture still requires a numerical simu-
lation framework for verification due to the complex
matrix of different material composites. This can form
the basis for determining adverse cardiovascular events
that have exceeded the threshold for rupture.

Subintimal plaque structures such as the fibrous cap,
calcification gap and lipid core play an important role in
determining plaque rupture. For a non-calcified plaque
with constant luminal area, the critical stress and peak
deformation increase as the fibrous cap becomes thin-
ner. On the contrary, these two mechanical effects les-
sen in the presence of calcification agglomerates. For a
thin fibrous cap and a large calcification gap, the stress
levels will be significant and results in high vulnerability
of the plaque despite the fact that they may show angio-
graphically insignificant. Therefore, the subintimal struc-
ture should be used as the basis for determining plaque
vulnerability instead of information on stenotic severity
that is based on medical image visualisation.

Macrocalcifications occupy part of the lipid pool and
that the cellular and smaller calcifications are distinct
from these macrocalcifications which forms another
category. All natures of the calcifications may coexist in
the lipid pool and are independent of one another. We
made an assumption in the model that the microcalcifi-
cations are floating debris uniformly distributed in the
lipid pool without adhesion to form larger macrocalcifi-
cation structures. While this may not form the true
composite in reality, the effect of calcification can still
be modelled by this configuration.

Calcification clusters plays a major role in plaque rup-
ture as demonstrated by structural analysis on a contin-
uous calcification agglomerate structure. Some studies
showed a negative effect on plaque vulnerability and
demonstrated that stress induced by microcalcification
in thin fibrous caps advances plaque rupture [32-34].

Others suggested that calcification stabilizes plaque
[35,36]. Cellular calcification structures introduce a role
in plaque vulnerability, and our study may be of interest
to the analysis of calcification structure based on
agglomerates of micro-calcium elements in plaque. In
reality, calcium clusters are scattered in the form of a
crescent shape within the lipid core. To examine the
collective effect of these calcium clusters such as their
distance from the fibrous cap, we assume a continuous
calcification structure along the curvature of the artery
with a layer of lipid volume in between. Our agglomer-
ate model is a linear combination of microcalcification,
fibrous plaque and lipid at specific percentages and
assumed a uniform property based on this homogenous
mixture, which may be adjusted depending on patient-
specific density of calcium in plaque.

We arbitrarily assume the configuration of the compu-
tational models based on observation of the histologic
images of partially calcified plaque. It represents a parti-
cular stage of calcified plaque development. The nature
of analysis would remain the same even though this
configuration is modified at a later stage of the
development.
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