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Abstract

The quantification and analysis of molecular localization in living cells is increasingly important for elucidating biological
pathways, and new methods are rapidly emerging. The quantification of cell polarity has generated much interest recently,
and ratiometric analysis of fluorescence microscopy images provides one means to quantify cell polarity. However,
detection of fluorescence, and the ratiometric measurement, is likely to be sensitive to acquisition settings and image
processing parameters. Using imaging of EGFP-expressing cells and computer simulations of variations in fluorescence
ratios, we characterized the dependence of ratiometric measurements on processing parameters. This analysis showed that
image settings alter polarization measurements; and that clustered localization is more susceptible to artifacts than
homogeneous localization. To correct for such inconsistencies, we developed and validated a method for choosing the
most appropriate analysis settings, and for incorporating internal controls to ensure fidelity of polarity measurements. This
approach is applicable to testing polarity in all cells where the axis of polarity is known.
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Introduction

Cell polarity is essential for the development and health of all

multicellular organisms and controls diverse biological activities

[1–4]. A facet of cell polarity that controls cell fate determination is

Asymmetric Cell Division (ACD), a mechanism by which a

dividing cell produces two daughter cells with different molecular

composition, leading to the adoption of a different cellular fate

[5,6]. A role for ACD is now well established in cells of solid

tissues, but its importance in lymphocyte development, function

and disease is still controversial [7–12]. One of the major issues

inhibiting elucidation of the role for ACD in lymphocytes is the

difficulty in measuring asymmetry across these small, highly motile

cells [13]. Although early studies of ACD focused upon examples

where the asymmetry across the cell has been so obvious that

subjective assessment could be used, other examples, such as

lymphocyte ACD require finely tuned quantification.

Asymmetry in molecular localization is generally measured by

fluorescent labeling of molecules within intact cells followed by

fluorescence microscopic imaging. Fluorescent labeling might

involve tagging of exogenously expressed proteins with genetically

encoded fluorophores, or labeling of endogenous protein with

fluorescently tagged antibodies. There are several approaches to

measure polarity, some of which compare the geometric center of

the cell with either the geometric centre of fluorescence or the

brightest fluorescent pixel [14,15]. An alternative approach,

commonly used for measuring ACD, compares the total fluores-

cence from each half of the cell, often by deriving ratios of

fluorescence in the two halves of the dividing cell [7,8,16,17]. For

this type of analysis, it is assumed that the ratios are proportional

to the distribution of the molecules under investigation. The

ratiometric approach has two advantages for ACD. First, the total

fluorescence in each half is presumably more physiologically

relevant than the other patterns of fluorescence within the cell, and

should directly relate to the inheritance of those fluorescent

molecules. Second, such the measurements can be continued

beyond the point of cell division in time lapse imaging, making it

more broadly useful for determining the functional consequence of

ACD. Many variations of this approach have been implemented,

such as comparing fluorescence along a line scan rather than using

the total fluorescence, or measuring only nuclear asymmetry [18].

After deriving polarization measures in dividing cells, each event is

then sometimes ascribed as Symmetric Cell Division (SCD) or

ACD by arbitrarily assigning a cut-off value, with ratios above this

arbitrary value considered asymmetric.

A ratiometric approach is only viable if the ratios that are

derived from the fluorescent intensities are an accurate reflection

of the ratios of protein in the two halves of the cell, and this has not

previously been formally tested. Possible artifacts that might lead
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to inaccurate ratios include: the acquisition settings (such as

detector gain, fluorescence excitation power, scanning parameters,

fluorophore properties, and more), and intensity variations

contributed from instrumental precision limitations such as

signal-to-noise ratio (SNR) [19,20]. Additionally, post-acquisition

image processing such as background subtraction, spectral

unmixing, and averaging algorithms can directly influence the

fluorescence measurements in a nonlinear fashion [21]. To assess

the reliability of quantitative fluorescence analysis, biologists can

use internal controls, such as the parallel imaging of a molecule

that is known to divide symmetrically [22]. Such an approach

estimates the noise contributed from imaging artifacts such as

uneven illumination or cell alignment (i.e. when the two halves of

the cell are in different focal planes) [13]. However, because the

fluorescence in the second channel is collected and processed

differently to the channel of interest, this would not control for

other acquisition and processing artifacts.

To the best of our knowledge there has been no report of how

imaging settings and processing can affect the assessment of cell

polarization. We recently showed that comparing fluorescence on

the left half of the cell to that on the right half of the cell was useful

in normalizing polarization of proteins during cell migration [23].

Here, we introduce a similar normalization approach to control

for the effect on polarization ratios of non-biological factors such

as image settings and post-acquisition analysis. To gain more

insight into the effects of image processing on quantification of

fluorescence ratios, and to develop new standardized approaches

to correct for systematic differences that do not represent

biological variation, we performed a comprehensive analysis using

synthetic images. In this study, we focused on polarity during cell

division, but the issues that we identify are common to all forms of

cell polarity. We used both real data and computational

simulations to identify pitfalls that currently prevent accurate

analysis of cell polarity. A striking example is the large variance of

calculated polarization ratios from a cell division that is known to

be symmetric caused by altering the image threshold. To alleviate

the problems inherent in polarity measurements, we introduced

and validated a new corrective approach.

Results and Discussion

Polarization ratios are sensitive to image processing
settings

First, we tested whether polarization ratio measurements are

settings-dependent using a MLA-144 T lymphocyte cell line

expressing freely diffusing Enhanced Green Fluorescent Protein

(EGFP), which should always be distributed symmetrically. We

focused on polarization during cell division, where morphology

allows for straightforward designation of the two polarity axes.

Cells were tracked, and the frames in which the shape of the

dividing cell most closely represented the telophase stage were

extracted for analysis. The major axis was used to assess

polarization along the mitotic spindle (Figure 1A). Thresholding

to remove background fluorescence is routinely used in image

analysis, but from the analysis of cDNA microarrays it is known

that intensity ratios are influenced by image processing [24] and

the level of thresholding [25]. Therefore synthetic images were

generated to explore the alterations in contrast that are frequently

introduced during image acquisition or post acquisition process-

ing, whereby pixels with intensities of a value less than the

threshold value (between 0 and 90% of the value of the maximum

pixel intensity of the cell) are either omitted [26] or set to 0 [27].

Similar effects can also be introduced experimentally during the

image acquisition, for instance, by reducing the detection offset or

the exposure time [28].

The threshold levels in the simulation vary between 0 to 90% of

the value of the maximum pixel intensity of the cell (For additional

data about the simulations see ’Materials and Methods’, and Text
S1, Figure S1 and Figure S2). We tested the effect of removal of

background fluorescence on two ratios that have previously been

used to assess polarity in hematopoietic cells: a simple proportion

between the integrated fluorescence of the two halves of the cell

[7] (Figure 1Bi) and a normalized Polarization Ratio (PR),

calculated as the fluorescence difference between the two halves

divided by the total fluorescence (Figure 1Bii, iii). In contrast to

the ratio in Figure 1Bi, the PR accounts for potential artefacts that

might be introduced where cells have heterogeneous expression

levels, and has previously been used to calculate polarization ratios

in cell-cell interactions [29], dividing [8] and migrating T cells

[23]. PRmajor describes polarization of relevance to ACD in these

simulations (but could equally reflect polarization during migra-

tion), and PRminor describes polarization along the axis perpen-

dicular to the major axis.

Because GFP is uniformly distributed in cells, it is expected to

give low PR. However, although ratios calculated in both ways are

low (compatible with SCD) at threshold values of up to 65%, the

ratios increase dramatically at threshold values greater than 65%

for many of the cells (Figure 2). In extreme threshold values of

T = 90%, some cells exhibited ratios larger than 1.5 (Figure 2A),

a cut-off value that has been used for categorization of ACD

[7,30]. Similar trends were observed using the PR (Figure 2B).

These data indicate that current quantification of polarization

during division, which generally do not incorporate a systematic

approach to background subtraction and contrast enhancement,

run the risk of miscalculating polarization.

Figure 1. Axial subdivision for polarization analysis. (A) An
approach for quantification of polarity. Black arrows represent the
major and its perpendicular minor axis. Splitting the image into two
allows a direct comparison of fluoresce intensity across the minor or
major axes. The major axis is derived from the longest diameter of an
ellipse that overlaps the cell. The minor axis is defined as the
perpendicular to the major axis. Blue and red colors show the areas
from which pixel intensities were collected, and represent the two
halves of the cell that would, if the cell divided, become daughter 1 and
2. The left and right sides of the cells are bright and dim respectively.
(B) Polarization ratios are extracted by integrating pixel intensities
across the major or minor axis: i) Ratio along the major axis (using
segments divided by the minor axis). ii) PRmajor: Normalized ratio along
the major axis (across the minor axis). iii) PRminor: Normalized ratio along
the minor axis (across the major axis).
doi:10.1371/journal.pone.0099885.g001
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Simulations indicate that the degree of clustering of
fluorescence alters the effect of thresholding

In addition to the impact of acquisition and analysis settings as

discussed above, many intracellular molecules are not distributed

as homogeneously as EGFP, which might lead to further artifacts.

To assess this, we simulated cell divisions with fluorescence in

either clustered (representing protein aggregates, nanoparticles, or

endosomal proteins [31,32]) or non-clustered (representing

diffusely distributed proteins such as EGFP) patterns, each with

both symmetric and asymmetric distribution. PR values for 10

simulated symmetric divisions of non-clustered fluorescence

(Figure 3A) over different threshold values showed a similar

pattern to the EGFP-expressing cells (Figure 2B), with threshold

levels of greater than 80% (Figure 3A.iv), yielding high PR values

that could be falsely interpreted as ACD. Simulations of

symmetrically dividing cells with clustered fluorescence

(Figure 3B) showed a further increase in sensitivity to threshold-

ing, with threshold levels over 40% yielding PR values of 0.1. At

extreme levels of thresholding (of more than 80%, Figure 3B.iv) all

pixels that remained were from the original clusters. At this level of

thresholding, PR values could exceed 0.3 (corresponding to an

absolute ratio of 1:1.5), despite the fact that the division was

symmetric. Thus, the simulations demonstrate an influence of

image processing settings on the measured ratios that is similar to

that observed with the EGFP-expressing cells, indicating their

suitability for further analysis. Furthermore, the simulations

indicate that cells with clustered fluorescence are still more

susceptible to artifacts, further highlighting the need for a

systematic method for image processing and background subtrac-

tion.

Calculation of the polarity across the minor axis provides
a useful control to assess noise and to normalize
calculations of asymmetry

A unique characteristic of most polarized cells was previously

shown to provide an opportunity for improved analysis [23].

Namely, that true asymmetry should be evident across one axis,

but should generally not occur across the perpendicular axis

(Figure 1A). In contrast, asymmetry that is caused by artifacts in

the image acquisition or processing should be evident across both

axes. The principle of our method is that settings applied during

and after image acquisition will cause similar skewing of the ratio

across both axes. The ratio across the minor axis can therefore be

used to estimate the noise in the PR measurements. To assess

whether this approach might enable a systematic method to select

image processing settings, and to determine the influence of

background removal on minor and major ratios, 10 cells were

simulated (representative cells are shown in Figure 4A and

Figure S3) for: i) symmetric non-clustered; ii) asymmetric non-

clustered; iii) symmetric clustered; iv) asymmetric clustered cell,

and the PRmajor and PRminor were compared (Figure 4B).

Symmetrically dividing cells exhibited low PR values for low

threshold settings, and the PR increased slightly at higher settings.

Importantly, the increase in PRmajor at high segmentation settings

was similar to the increase in PRminor, indicating that these

polarization measurements reflected artifacts in image processing

rather than genuine asymmetry along the major axis. The

simulations of asymmetrically dividing cells showed a strikingly

different pattern, where the PRmajor and PRmajor were clearly

different from each other. In non-clustered fluorescence

(Figure 4ii), PRminor was low (below 0.05) at low threshold settings,

and increased slightly at higher threshold settings (to a maximum

of 0.2). In contrast, the PRmajor hovered around 0.2 for low

threshold values but increased dramatically at high threshold

values, plateauing at 1.0 by 60% thresholding (where threshhold-

ing can lead to aberrant values, rendering the data meaningless).

These data indicate that the pattern of PRminor response to

threshold settings provides an opportunity to set the appropriate

conditions for measurement of PR, and can be used to objectively

ascribe an appropriate threshold value for analysis of the PRmajor.

For instance, the appropriate threshold value for analysis could be

defined as the value just below that at which PRminor increases by

10% above the baseline (50-60% in this instance). Simulated cells

in which the fluorescence was clustered showed a similar, although

more noisy, trend, with low PRmajor and PRminor values across the

thresholding range for cells with symmetric distribution of

clustered molecules. However, the PRmajor was clearly different

from PRminor at higher threshold levels for asymmetric distribution

of clustered molecules. In microarray analysis, the log ratio has

proved to be as good as or better than the PR value for comparing

pairs of fluorescent values, thus we determined whether this

approach might also be useful for polarity measurements by

deriving log ratios across the major and minor axis (Figure 4C).

The log ratio also provided good discrimination between

symmetry and asymmetry, which again was highly dependent

upon the thresholding. The log ratio approach did not present any

obvious advantages over the PR, and since the PR is more

established in cell polarity measurements, we focused on PR for

the remainder of this study. Together, these data confirm that the

PRminor could be used to assess the reliability of ratiometric

measurements and to select an appropriate thresholding setting for

analysis of PRmajor.

Comparing PRmajor and PRminor demonstrates the effects
of clustered fluorescence

Having shown that a clustered pattern of fluorescence increases

the PR (Figure 4), we used the differences between PRmajor and

PRminor to assess the degree of clustering for which ACD could be

reliably assessed. We simulated divisions of cells containing from 1

and 100 clusters (increments of 1), and with fold-differences in the

number of clusters from 1 (symmetric along the major axis) to 2

(asymmetric along the major axis) with increments of 0.1

Figure 2. Ratio coefficients from experimental data are
dependent on the threshold value. Fluorescence intensity ratios
were extracted from images of dividing MLA cells expressing GFP, and
for a random selection of 10 events, ratios plotted again threshold
setting. Ratios were calculated using Proportion (A) and PR (B).
Different colors represent different events.
doi:10.1371/journal.pone.0099885.g002
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(Figure 5, two examples shown on left). PRmajor and PRminor were

displayed in heat maps (Figure 5A right hand side), calculated

under 0%, 20%, 40%, 60%, and 80% threshold values. Again,

increasing threshold levels resulted in an increase in both PRmajor

and PRminor, but particularly promoted an increase in PRmajor. As

expected, at high numbers of clusters, the data appeared similar to

the unclustered analysis above: PRminor was aberrantly high at

thresholds of 80%, but at T = 60%, PRminor was reasonably low

and PRmajor showed a good dynamic range. At T = 60%, PRminor

was reasonably low even as the cluster number diminished to

approximately 8–10 clusters per cell. However, below 8–10

clusters per cell, PRminor was aberrantly high, as was the PRmajor

for simulations in which the symmetry across the major axis was

close to 1, which should not have yielded high values. These data

suggest that clustering can still yield reliable polarity ratios, as long

as the number of clusters exceeds 8–10. Evidently, different data

sets might be more or less affected by cluster number, and we were

conservative in simulating only weak polarity (2 fold differences

across the major axis), so the analysis of more extensive polarity

should be even more robust. Nonetheless, these data both

demonstrate that clustered fluorescence can yield robust polarity

analyses if care is taken to ensure the best settings, and indicate the

value of PRminor to assess the noise across a non-polarized axis and

ensure appropriate quantification.

Assessing the value of binarization in the analysis of
polarity

In many biological situations, a population of cells can comprise

both symmetric and asymmetric divisions [33], in addition to

divisions that were imaged or processed at wrong settings. In such

cases, it is desirable to measure the degree of asymmetry of both

the population and of individual cells, and, in some instances, also

to binarize such data and to designate each cell as symmetric or

asymmetric. Binarization has previously been achieved by

assigning a cut-off value and binning all events above the cut-off

as polarized, and all events below the cut-off as non-polarized [7].

Although convenient, such an approach clearly has the potential

to introduce errors, as it does not account for the distribution of

polarization ratios, the potential overlap of ratios amongst two

subpopulations, or the errors in individual events. We utilized the

results of Figure 5A as ground truth data to formally assess the

accuracy of the cut-off approach, and binarized as ACD or SCD

using a cut-off of 1.5 (as has previously been used, [7,9,30])

(Figure 5B). The number of events ascribed as ACD increased as

the ratio increased (quantified in the histograms below each heat

map), and that this was most evident at 60% thresholding

(previously shown to be the most appropriate setting). However,

the data was noisy, with many blue events (ACD) in the left

columns (symmetry), and many white events (SCD) in the right

columns (asymmetry). For this simulation, at the most appropriate

threshold (60%) approximately 28% of the cells that were

simulated to have a ratio of 1.0–1.3 were scored as ACD (i.e.

28% false positives), and 82% of cells that were simulated to have a

ratio of 1.7–2.0 were scored as ACD (i.e. 18% false negatives).

This analysis indicates that simply deriving a ratio and ascribing

a cut-off can lead to error in the designation of divisions as ACD or

SCD, and that there is no value that would effectively discriminate

between high and low polarization ratios. We then assessed

whether PRminor might enable an alternative approach to

binarization of the data. The analyses described above use

PRminor to assess the noise in populations of cells and to optimise

processing settings, but PRminor of individual cells also has

potential value in the analysis of polarization of the population.

We therefore used the data set in Figure 5A to determine the value

of binarizing by simply comparing PRmajor with PRminor. ACD

was ascribed to cells in which PRmajor was greater than PRminor,

and SCD was ascribed to cells in which PRmajor was less than or

equal to PRminor (Figure 5C). At all thresholding settings the

number of events ascribed as ACD increased with increasing

polarity, but as with the cut-off approach above, false positives (1:1

simulations ascribed as ACD) occurred even under optimal

conditions (60% thresholding, high numbers of clusters). The

Figure 3. Ratio coefficients from synthetic data are dependent on the threshold value. 10 images of cells simulated to have symmetric
fluorescence partitioning with non-clustered (A) and clustered localization (B) were simulated to quantify the effect of background subtraction on
ratio coefficients. The horizontal axis represents the Threshold value. The vertical axis represents the PR. The possible range varies between -1 to 1,
where 0 is maximum symmetry and high absolute ratios indicate maximum asymmetry. Different colors represent different simulated divisions. Black
crosses represent the ratio and T value of illustrative images below. Input for simulation: h= 0, R = 22 pixels, number of clusters in both D1 and D2 was
20.
doi:10.1371/journal.pone.0099885.g003
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number of false negatives (2:1 simulations ascribed as SCD) was

low across all thresholding settings, and these were only evident for

simulations with low numbers of clusters. Compared with the cut-

off approach (Figure 5B), at the 60% thresholding levels, there

were more false positives (54%), but fewer false negatives (5%) and

the binarization was far less dependent upon thresholding than the

cut-off approach. Interestingly, visual inspection of binarization

plots indicated that the accuracy of binarization was much more

dependent on clustering for the PRmajor versus PRminor approach

than for the cut-off approach (presumably, because artifacts due to

clustering can have twice the impact). These data indicate that

binarization using either of these methods can be useful for

comparing between two populations, that this approach is more

appropriate for non-clustered data, and that events that are

ascribed as SCD are most likely truly symmetric. Most impor-

tantly, these data indicate that binarization is not a reliable

indicator of the number of truly asymmetric events, and the

designation of an event as symmetric or asymmetric requires a

more case-by-case approach.

Methods to incorporate PRminor in the assessment of
polarity

The simulations in Figure 5A indicate that, even after careful

selection of thresholding values, PRmajor is still noisy, particularly

for clustered fluorescence. To assess whether PRminor could be

used to improve the analysis, we adopted a plot of PRmajor versus

PRminor as used previously to explore the relationship between PR

values [23]. We next assessed whether PRminor could also be used

to remove aberrant events and so improve the quality of the

analysis, by comparing the PRmajor vs. PRminor plots from five

different thresholding values (Figure 6A). These simulations

incorporated ground truth "bad data" to assess the value of this

approach: Each division was simulated to have the probability of

p = 0.025 that one daughter cell was out-of-focus, one side of the

two cells was out-of-focus, one side of one of daughter was out-of-

focus, or only one side of one of daughter was in focus. In total,

10% of the data is expected to contain an out-of-focus artifact. The

simulations were designed to represent a mix of symmetric and

asymmetric events, with minimal events of intermediate polariza-

tion. As in flow cytometric analysis, visual inspection of the

PRmajor vs. PRminor plots provides much information: (i) a small

Figure 4. PRmajor and PRminor are differentially affected by thresholding and clustering. Cells were simulated to be: i) symmetric non-
clustered; ii) asymmetric non-clustered; iii) symmetric clustered; iv) asymmetric clustered. (A) Examples of simulated cells and approach to
hemisphere separation. Blue and red lines describe the major and minor axes respectively, and the magenta contour shows the separation that gave
an equal number of pixels to each hemisphere (slightly shifted from the major axis). (B) PRmajor and PRminor values for 10 simulated cells were plotted
against T value (C) Mmajor and Mminor values for 10 simulated cells were plotted against T value. Note that in the asymmetric cells, some fluorescence
values were reduced to 0 for the higher threshold settings, causing misleading values of 1 in (B) and infinite (unplottable) values in (C). Input for
simulations: h= 0, R = 22 pixels, number of clusters in D1 and D2 was 20 in the symmetric and 20 and 30 in asymmetric
doi:10.1371/journal.pone.0099885.g004
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number of outliers were evident, which can then be discarded

from the analysis, (ii) a majority of events with low PRminor were

clearly suitable for analysis, and (iii) a clear distribution into two

populations of PRmajor, representing symmetric and asymmetric

divisions could be seen. The "bad data" was removed by gating out

the top 10% of PRminor values, and, PRmajor and PRminor were

represented as histograms (Figure 6B). In this instance, the

distribution of the histogram allows clear discrimination between

the two populations, making allocation into ACD and SCD

populations both facile and valuable. In most real scenarios, there

would probably not be a clear discrimination between the two

subpopulations, and binning into ACD and SCD would likely

require approaches such as those described above, with the

accompanying issues of accuracy. These data illustrate that the

comparison of PRmajor and PRminor on individual events using a

two-dimensional scatter plot provides and effective means to assess

the quality of the data, gate out artefacts, and assess the

distribution of polarity across the population. Conversion of the

data to one-dimensional histograms allows for comparison across

populations, and provides the basis for whether, and how, each

event might be binned as ACD or SCD.

Sensitivity test from simulations
The above analysis illustrates the difficulty of designation of

events as ACD or SCD. An ideal experimental situation would

contain known symmetric and asymmetric controls for compar-

isons with the test samples, and provide a basis for determining the

best binarization approach, but such controls are not always

available. The analysis performed in Figure 6 assumes that there

are two populations that can be relatively easily separated to two

clusters. However, in some cases the classification can be much

harder. To study the value of our approach in samples without the

clearly defined two populations described in Figure 6, we

simulated a heterogeneous population of 1100 divisions in which

the proportional ratio between the two daughter cells, varied from

1 to 1.5 fold with 100 cells representing each increment of 0.05.

Figure 5. The effect of cluster number on the accuracy of PR measurements. Divisions were simulated to have increasing numbers of
clusters ranged from 1 to 100 in increments of 1 for one of the daughter cells. The number of clusters in the second daughter was the number of
clusters in daughter 1 multiplied with its corresponding ratio. Ratios vary from1 to 2 with increments of 0.1, and were calculated under 0%, 20%, 40%,
60%, and 80% threshold. (A) The PRmajor and PRminor for each event are shown in heat maps, where the PR ranging from 0 to 1 are represented in "jet"
colors (blue to red). The ratios were binarized using (B) cut-off value of 1.5 or (C) by equation 5. Blue pixels represent events in which PRmajor was
larger than PRminor; white pixels represent events in which PRmajor was smaller than PRminor.
doi:10.1371/journal.pone.0099885.g005
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Scatter plots of PRmajor and PRminor for each simulated division at

threshold values of 0%, 20%, 40%, 60%, and 80% (Figure 7A
and B for non-clustered and clustered respectively) showed that

60% thresholding provided the most suitable dynamic range for

PRmajor. The gate excluded all events in the top 10% of PRminor

values (right of the pink line). For non-clustered simulations, color

coding (each colour represents simulations within a 0.05 window

of ratios) indicates that the gated events generally yielded

appropriate PRmajor values. These data indicate that gating

removed some mid-range events that would otherwise have been

allocated an inappropriate PRmajor (out-of-focus events were not

simulated in this experiment, but should have also been reduced

by this process). Gating out the top 10% of PRminor was

particularly important for the analysis of clustered events, where

PRmajor was appropriately distributed according to colour for the

low PRminor events, but inappropriately distributed in the high

PRminor events (see histograms in Figure S4). Combined with the

analysis of out-of-focus events in Figure 6, these data provide

strong support for the value of plotting PRmajor against PRminor to

exclude aberrant data. In addition, the finding that PR values

distributed according to original input ratios (as illustrated by the

color distribution in Figure 7), indicates that this approach can

discriminate between increments of polarity, providing greater

value than a mere allocation as asymmetric or symmetric.

Strategy for polarity analysis
Normalization of polarization ratios against control fluoro-

phores or the minor axis, allows for an objective assessment of the

degree of asymmetry. This brings us closer to the ultimate goal of

developing a means to determine whether ACD occurs in a

population or in individual cells, even when ground truth data

such as the degree of asymmetry in biologically relevant ACD

events is not available. Although this approach was developed

specifically for the analysis of ACD, it also provides a guide for the

analysis of all forms of polarity in lymphocytes and potentially in

other cell types. A proposed workflow for one approach to the

analysis of polarization is described in Figure 8. In this approach,

plots of PRmajor and PRminor are generated to compare any post-

processing alterations under consideration (such as the variations

in segmentation settings used in this study), and to select settings

that do not increase the PRminor, but provide good dynamic range

for PRmajor. Ideally, a random subset of the data would be

analyzed to assess variation without biasing towards the final

outcome would be used for this assessment (for instance,

histograms plotting PRmajor and PRminor against segmentation

for 10 randomly selected events. The same process can be

undertaken for fluorescence of a control protein, if available, as

different processing settings might be more appropriate [23].

Having selected the most appropriate settings for each fluorescent

colour, all the data can be displayed in a two-dimensional scatter

plot of PRmajor versus PRminor, and also PRmajor for the fluorescent

molecule of interest plotted against PRmajor for the control protein.

These plots can be scrutinized for indications of any possible

problems with the data. For instance, if the two different

fluorescent signals correlate, this might suggest that there is

spectral bleed-through between the two fluorescent channels that

Figure 6. Gating based on PRminor in simulated data. Cell divisions were simulated with ratio 1 (blue color) or 1.5 (red color), 100 divisions for
each, with 10% of out of focus "bad data" and PRmajor (y-axis) was plotted against PRminor (x-axis) (A) for non-clustered (i) and clustered (ii)
fluorescence. The magenta line show the gating border that to removes 10% outliers of the minor axis polarization, to remove "bad data". PRmajor of
the gated events were plotted as a (B). Input for simulations: h was chosen randomly varying from 0 to 90 degrees, distribution of parental radius and
total intensity were selected randomly from real distribution from real data, number of clusters in one of the daughter cells was 20 to 100, and the
number of clusters in the other daughter cell was multiplied in the simulated ratio giving possible range from 30 to 150.
doi:10.1371/journal.pone.0099885.g006
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needs to be corrected. Out-of-focus events might also be identified.

Ideally, events that are inappropriately high for either PRminor or

for the control protein PRmajor would be assessed to determine the

cause of the issue, and depending upon the distribution of the data,

and these events can be gated out for subsequent analysis of

PRmajor of the control protein. This data can then be presented as

a histogram (or one-dimensional scatter plot depending upon the

sample size), and can be plotted alongside controls such as the

PRminor of the protein of interest, and the PRmajor of the control

protein. As with flow cytometry, the question being explored will

then determine whether the histograms are used to comparison

between populations, to derive mean or median polarization

ratios, or to further subdivide the populations as polarized or not

polarized. Additionally, it can be used to consider possible

differences in other aspects and measures between two daughter

cells such as size, migration patterns, and more. TACTICS

software (http://tactics-toolbox.com/) [34]provides one valuable

means to follow this process, and conversion of microscopic data to

a format readable by standard flow cytometric data [35] would

presumably provide another. This strategy is applicable to studies

of polarization during cell division as exemplified here (see Figure
S5), cell migration [23], and presumably other forms of polarity

such as immunological synapse formation and apicobasal or

planar cell polarity [3,4].

There are several ways in which quantitative data can be

verified to ensure that it genuinely reflects the polarity of the cell,

the approach we suggest here provides one method, but each

experiment will provide different opportunities for validation. For

instance, in time lapse microscopy, measuring fluorescence of the

daughter cells would allow assessment of whether a polarity ratio

correlates with asymmetric inheritance. Controls that are expected

to alter polarity can also be informative regarding the validity of

the measurements. The use of controls such as PRminor, and the

application of gating to remove aberrant events, approximates

more closely the rigour in analysis that is now standard in flow

cytometry. Multiparametric comparisons, quality control and

interactive probing of the data have proven extremely valuable

for flow cytometry, and applying such approaches to the wealth of

contextual information available in microscopy experiments

should dramatically enrich our understanding of biology. In

summary, our results demonstrate that currently used approaches

to the quantification of biology can be misleading, but that the use

of appropriate controls and analytical approaches can allow for

reliable measurements.

Materials and Methods

Computational platform
Generation and analysis of both synthetic and real images was

achieved using MATLAB R2012b version 8.0 (the MathWorks,

Inc., Natick, MA, USA) with the Image Processing Toolbox.

Calculations were performed on an HP Z400 workstation

equipped with a 3.3 GHz Intel Xeon W3580 Quad processor

and 16 GB of RAM working under a Windows7 64-bit operation

system.

Generation of synthetic images
Binary cell images were generated using a simplistic model of

dividing cells as explained in Text S1. Our simulations exemplify

non-clustered molecules, such as GFP in addition to clustered

molecules such as nanoparticles [18,36], protein aggregates, [37]

or mRNA [15] that are characterized by speckled density spots.

The texture of non-clustered, freely distributed fluorescence was

generated using MATLAB implementation of Perlin texture

created by Antti Lehmussola [38]. The MATLAB function

spotmaker.m (written by Tristan Ursell 2012, downloaded from-

http://www.mathworks.com/ MATLABcentral/fileexchange/

36026-create-a-simulated-image-of-diffraction-limited-spots-with-

Figure 7. Sensitivity test from simulations. Cell divisions were simulated in increasing ratios from 1 to 1.5 with even increments of 0.05, giving
n = 1100 divisions in total. PRmajor was plotted against PRminor for non-clustered (A) and clustered (B) data. Data is showed as major/minor plot, under
a range of thresholds from T = 0%, to T = 80% in increments of 20%. The magenta line shows gating exclusion of 10% of data with the highest PRminor.
The gate shifts right as T value increase. The colours in the figure legend represent different ratios and corresponding to the ratio colour of each data
dot. Input for simulations: h was chosen randomly varying from 0 to 90 degrees, distribution of parental radius and total intensity were selected
randomly from a real distribution from real data, number of clusters in one of the daughter cells was 20 to 100, and the number of clusters in the
other daughter cell was multiplied in the simulated ratio giving a possible range from 30 to 150.
doi:10.1371/journal.pone.0099885.g007
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noise) was used to generate clustered localization. Multiple clusters

were simulated as diffraction-limited spots with noise. The initial

position of the spots was randomly distributed, and for sequential

frames the location was randomly moved in the x and y direction

to simulate Brownian motion. To mimic the fact that fluorescent

images are frequently derived from a projection of the 3-

dimensional volume of the cells, we used a 2-dimensional radial

intensity distribution with exponential slope over the polygon from

its center:

I(r)~e
{r

3 ðEquation1Þ

Where r is the pixel coordinates around the origin. Finally, further

imaging effects were added to give more realistic characteristics.

To simulate the Gaussian point spread function (PSF) typical of

confocal fluorescent images, the clustered images were filtered

using the MATLAB function imfilter with a Gaussian filter. To

simulate a blurred effect for the non-clustered expression we used

a disk filter. Both filters were generated by the MATLAB fspecial

function. Realistic simulated data that contain some degree of

noise was generated with skewed polarization ratios. For this aim,

MATLAB imfilter function was utilized to convolve a Gaussian

filter only to the part of cell that is out of the focal plane. To

simulate white noise and detection response, Gaussian white was

added using the MATLAB function, imnoise. Finally, each

division was aligned along the major axis and the daughter cells

categorized as daughter 1 for the top and 2 for the bottom cell,

positive for right side and negative for left side. However, this

labeling was only used to separate between the cells and had no

effect on the analysis as the cells were randomly flipped to remove

any potential systematic bias. The MATLAB source-code of

TACTICS, and the simulations are available online at http://

tactics-toolbox.com.

Cell paddocks and cell culture
Cells were cultured in microfabricated grids (paddocks) for

cellular studies in vitro [39]. The cell paddocks were made of

transparent biocompatible polymer PolydImethylsiloxsane

(PDMS) with dimensions of 1256125645 micron and with well-

defined vertical sidewalls and a transparent base. Cell paddocks

were placed into a well of an 8 well chamber slide (LAB-TEK II,

NUNC) sterilized with 100% EtOH and UV light, and rinsed with

media prior to use. MLA-144 T cells expressing GFP were

cultured at 37uC, 10% CO2 in Dulbecco’s Minimal Essential

Medium (SECF) supplemented with 10% (v/v) fetal calf serum, L-

glutamine (1 mM) and 100 ng/mL penicillin/streptomycin.

Time-lapse microscopy
Time-lapse images were obtained with IX71 inverted micro-

scope (Olympus, Tokyo, Japan) equipped with a Nipkow disk-type

confocal unit (Yokogawa CSU22, Tokyo, Japan) and Electron

Multiplying Charge-Coupled Device (EMCCD) Andor camera

(Model: iXon EM+885, Belfast, Northern Ireland). Images were

acquired in both DIC and green channels using a 20x air objective

Figure 8. Suggested workflow for optimal analysis of ACD. A
method of analysis that avoids some pitfalls of polarity measurement as
illustrated in this study begins with (1) extraction and segmentation of
images, including demarcation of major and minor axes (either using
the long axis as demonstrated here, or alternative strategies). (2) A
randomly selected sample set of the data should be used to plot PRmajor

and PRminor against a range of processing settings, and used to (3)
determine the optimal processing settings that avoid artificially high PR
values (as indicated by PRminor analysis) but provide good dynamic
range of PRmajor(see the discussion of Fig 4 for an illustration of this
process) (4) The optimal processing settings are used to plot PRmajor

against PRminor for the entire population. (5) PRmajor vs. PRminor is
utilized for exploration of the quality of the data. Firstly, assuming that
polarization occurs only along one axis, the two parameters should be
independent of each other and this can be evaluated from the plot
both visually (as is common in flow cytometric analysis where
correlations can indicate errors in cross-spectral compensation) and
by regression analysis. If the plots are still linked to the original data,
any outliers can be readily examined to determine possible causes of
error. For instance, using an interface such as provided by the TACTICS
Toolbox [23], clicking on the dots can bring up the specific frame or
movie associated with that data point and possible exclusion of
aberrant data such as problems with the focus. Secondly, gating for
cells with low PRminor values on the plots enables exclusion of noisy
data and simultaneous assessment of the extent, range and variance of
PRmajor. (6) The gated PRmajor can then be plotted as a histogram or
scatter plot, enabling comparison with control data or between test
populations. These plots represent an endpoint of the analysis, but can
also be used to determine whether additional values such as mean or

median PR, range, variance or proportion in different PR values would
be informative and could be extracted from the data. (7)(Optional)
Depending upon the quality of the data and the goals of the analysis,
binarization of the events into ACD and SCD could be achieved by
either cut-off or comparison of PRmajor and PRminor values as described
in Figure 5.
doi:10.1371/journal.pone.0099885.g008
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0.45NA, which corresponded to a pixel size of 0.33 mm60. 33 mm.

The working distance was 6.6–7.8 mm. Exposure time was

600 ms for green and 100 ms for DIC. Multiple stage positions

were captured (controlled by MetaMorph software version

7.7.11.0) with a sampling rate of 1 minute for 1–24 hrs, and were

saved as 8-bit two-dimensional arrays (100261004 pixels).

Processing of time-lapse data
Divisions were split by minor and major axis. Pixels of the two

corresponding sides of the cells were copied to reconstruct two

new images, whereas each image represents one half of the cell.

To define the major axis, a line-based Bresenham algorithm [40]

was stretched across a defined axis to split the cell image through

the cell center into the two opposite pixels located on the cell

perimeter. The minor axis is perpendicular to and passes through

the midpoint of the major axis. When cells are close to each other

it is impossible to accurately separate the pixels. Therefore,

automated selection for splitting was applied by fitting the cell

shape and area to a circle to find the angle of overlap h. When h
was smaller than 37 degrees, instead of trying to match from

which daughter the overlapping pixels belong, the splitting was

made so that an even number of pixels was contributed from each

daughter. Since the use of subtraction techniques such as

threshold has been shown to change the apparent size measure-

ments [41], cell borders were kept constant and the initial

detected borders in (T = 0) were used when screening the effect of

T value on PR.

Calculation of Polarization Ratio (PR)
Throughout this study the Polarization Ratio (PR) values were

calculated as the fluorescence difference between the two halves

using the equation:

PR~DD1{D2

D1zD2D ðEquation2Þ

where D1 and D2 are the two halves of the cell, which can be

either the mean or integrated pixel intensity, depending upon the

experiment. To calculate the PRmajor the two halves are daughter

1 and daughter 2 (Figure 1.B.ii). To calculate the PRminor the two

halves are the two sides across the minor axis (right and left in

Figure 1.B.iii). Possible ranges vary between 0 (indicating

for maximum symmetry) and 1 (indicating for maximum

asymmetry).

Calculation of binarization
The binarization of each division as symmetric versus asym-

metric was achieved by counting only divisions that are polarized

more along the major axis than along the minor axis;

f (x)~ fx~1, if PRminorvPRmajor

x~0, else

%Binarized~100:

P

i

f (xi)

n

ðEquation3Þ

where f is result of specific binarized event, n is the number of

divisions, and %Binarized is the percentage of division identified as

polarized. These equations were used in Figure 5.C.
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