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Abstract: Protopine is a substance used for hemostasis with an anti-inflammatory action and is
one of the substances that are actively undergoing experiments to confirm their utility as anticancer
agents. This study examined the molecular changes in the cellular signaling pathways associated with
inflammatory responses in phorbol 12-myristate 13 acetate (PMA)-induced human hepatocellular
carcinoma cell line (Hep G2). The inhibition of PMA-induced phosphorylation of I-κB in HepG2,
the effect of protopine on the MAPK signals, the inhibition of COX-2 activity, and the inhibition
of MMP-9 as a medium of inflammatory response were evaluated by Western blot and qPCR. The
effect of protopine on the survival rates in HepG2 cells was evaluated and found to be stable to a
processing concentration of up to 40µM. Subsequent Western blot analyses showed that protopine
blocks the transfer of the MAPKs cell signals induced by PMA and the transfer of the subunit of
the nuclear factor-kappa B (NF-κB) to the nucleolus. Protopine inhibited the kappa alpha (I-κBα)
phosphorylation in the cytosol and blocked PMA-induced inflammation via COX-2 activity inhibition.
The expression of MMP-9 at the gene and protein levels, which is associated with cell migration and
metastasis, was reduced by protopine.

Keywords: HepG2; PMA; protopine

1. Introduction

Protopine is an alkaloid component contained mainly in Papaveraceae plants, and it is
known for its excellent anti-inflammatory action as a representative biological effect [1–7].
Garcia-Gil (2021) and Son (2019) reported that protopine induces apoptosis in colon cancer
cells and prostate cancer cells and has analgesic action by inhibiting the histamine H1 re-
ceptor and platelet aggregation [5,6]. The hepatoprotective activity and anti-inflammatory
effects were also reported [2,7]. Protopine was reported to attenuate inflammatory symp-
toms by inhibiting the mitogen-activated protein kinase (MAPK)/nuclear factor kappa
B (NF-κB) signaling pathway in Raw264.7 cells [2]. Based on these results, this study
shows that protopine inhibits hepatitis in PMA-stimulated HepG2 cells by inhibiting the
MAPK/IκB/NF-κB signaling pathway. Mitogen-activated protein kinase (MAPK) is com-
posed of extracellular signal-regulated kinases (ERKs), c-Jun NH2-terminal kinases (JNKs),
and p38-MAPK (p38), contributing to inflammation, cell survival, and natural cell death [8].
In particular, in human hepatocellular carcinoma cells (HepG2), the signal transduction
process is initiated by activating the signal transduction enzyme protein kinase C (PKC) by
phorbol 12-myristate 13-acetate (PMA) [9–15]. Studies have shown that MAPKs contribute
to the activation process in which inflammatory stimuli are transmitted to the nucleus of
cells through phosphorylation of the inhibitor of nuclear factor kappa B (I-κB), a subunit of
NF-κB. In addition, protopine exhibits anti-inflammatory efficacy by regulating the NF-κB
signaling factor in various cell lines [9,10]. NF-κB induces the expression of various inflam-
matory genes, including genes encoding cytokines and chemokines, and participates in
inflammatory regulation. In addition, MMP-9, a factor that causes cell migration involved
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in cell suicide, is also activated. On the other hand, there are insufficient reports on whether
the anti-inflammatory effects of protopine regulate the PMA-induced MAPKs activity in
human liver cancer cell lines. This study examined the protopine-induced inhibition of
PMA-induced IκB phosphorylation in HepG2 cells and its effects on MAPK signaling, the
inhibition of cyclooxygenase-2 (COX-2) activity as a mediator of inflammatory responses,
and inhibition of matrix metalloproteinase (MMP)-9.

2. Results
2.1. Effect of Protopine on the HepG2 Cell Viability

An MTT assay was performed to evaluate the effect on the HepG2 cell viability. The
concentration-dependent decrease in protopine at a concentration of 0–50 µM. For the
evaluation of cell viability, the maximum concentration of protopine was set to 40 µM with
low cytotoxicity, and the experiments were performed at concentrations of 10 µM, 20 µM,
and 40 µM in the cell experiments (Figure S1).

2.2. Inhibitory Effect of Protopine on the PMA-Induced Inflammatory Transcription Factor NF-κB
Signals in HepG2 Cells

To verify the expression of the NF-κB signaling pathway, transcription factors as-
sociated with inflammatory responses induced by PMA, I-κBα, were confirmed by a
time-dependent Western blot. As a result, phosphorylation of I-κBα was highest 24 h after
the PMA treatment (Figure 1A). In addition, the cells were also treated at different concen-
trations. When I-κBα was treated with protopine at 40 µM, phosphorylation was reduced
compared to the group treated with PMA alone (Figure 1B). After separating the cytoplasm
and the nucleolus, the movement from the cytoplasm to the nucleolus was inhibited in a
concentration-dependent manner by Western blot (Figure 2A). Immunofluorescence was
used to visualize the phosphorylation inhibitory effect. As a result, the nucleus moved out
of the cytoplasm when the cells were treated with PMA alone. The nucleus was inhibited
from moving out of the cytoplasm when treated with protopine at 40 µM (Figure 3).
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Figure 1. Protopine regulated I-κBα translocation in PMA-stimulated HepG2 cells. (A) Western
blot analysis of time-dependent I-κBα phosphorylation after treatment with PMA 200 nM in HepG2
cells. (B) Cells were pretreated with protopine 40 µM for 1 h and then treated with PMA 200 nM
for 24 h. The level of I-κBα protein phosphorylation was determined by Western blot. The results
are presented as the means ± SD. # p < 0.05 indicates significantly different from the normal control.
* p < 0.05 indicate a significant difference from the PMA group. NC, normal control.
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Figure 2. Protopine regulated NF-κB translocation in PMA-stimulated HepG2 cells. (A) Protopine
treatment induced nuclear NF-κB expression in a concentration-dependent manner. (B) Protopine treat-
ment induced cytosol NF-κB expression in a concentration-dependent manner. Results are presented as
means ± SD. # p < 0.05 and ## p < 0.01 indicates significantly different from control group. * p < 0.05,
** p < 0.01 indicate significantly different from PMA group. NC, normal control group; IND, inducer.
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Figure 3. Immunofluorescence images of HepG2 cells that were treated with PMA and protopine
and analyzed for NF-κB expression. PMA treatment promoted the translocation of NF-κB protein
from the cytoplasm to the nucleus of HepG2 cells. When the cells were treated with 200 nM PMA
alone, translocation of the NF-κB protein from the cytoplasm to the nucleus occurred. The protopine
treatment inhibited the translocation of NF-κB protein from the cytoplasm to the nucleus in HepG2
cells. Scale bar = 5 µm.
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2.3. Effect of Protopine on the Inhibition of PMA-Induced Expression of COX-2 and MMP-9 in
HepG2 Cells

The expression and inhibition of the NF-κB signaling pathway, an inflammatory
transcription factor induced through PMA, were confirmed, and Western blot and RT-qPCR
were performed. The expression of COX-2 induced by PMA was decreased significantly
(p < 0.0038) by protopine in a concentration-dependent manner (Figure 4A). Western blot
analysis of MMP-9 showed a significantly (p < 0.0017) protopine-induced decrease at 40 µM
(Figure 4B). RT-qPCR confirmed that the decrease occurred in a concentration-dependent
manner and showed a high inhibition rate at 40 µM (Figure 4C).
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Figure 4. Protopine regulated COX-2 and MMP-9 in PMA-stimulated HepG2 cells. (A) COX-2,
confirmed by Western blot, increased expression during the PMA treatment and decreased in a
concentration-dependent manner upon the protopine treatment. (B) MMP-9, confirmed by Western
blot, increased the expression when treated with PMA, and showed a high inhibition rate when
treated with 40 µM of protopine. (C) MMP-9 mRNA levels were determined by RT-PCR analysis.
MMP-9 showed the highest inhibition rate even at the mRNA level when treated with 40 µM
protopine. Results are presented as the mean ± SD. ## p < 0.01, indicating a significant difference
from the control. * p < 0.05, ** p < 0.01, indicating a significant difference from the PMA group. NC,
normal control; IND, inducer.

2.4. Effect of Protopine on the PMA-Induced Inflammatory Signaling Pathway MAPK in HepG2 Cells

The expression and inhibition of the NF-κB signaling pathway, an inflammatory
transcription factor induced through PMA, were confirmed, and the regulation of the
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MAPKs signals corresponding to higher levels of signals by protopine was confirmed by
Western blot. ERK expression was strongly inhibited by protopine at 40 µM (p < 0.0137,
Figure 5A,B). On the other hand, JNK and p38 were decreased significantly (p < 0.0016) in a
concentration-dependent manner and showed a high inhibition rate at 40 µM (Figure 5C,D).
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determined by Western blot. (B) ERK1/2 activated by PMA inhibited its activation in a concentration-
dependent manner on protopine. (C) Protopine inhibited JNK activation in a concentration-dependent
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results are presented as mean ± SD. # p < 0.05 ## p < 0.01, and ### p < 0.001 indicate significant
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3. Discussion

Protopine is an alkaloid found in Papaveraceae with anti-inflammatory effects [2,4].
According to the results of Rathi (2008) and Alam (2019), there are studies on the regu-
lation of MAPKs activity [2,5–7]. Combining the above two previous studies, the anti-
inflammatory effect of protopine inhibits inflammation by suppressing the changes in
MAPK activity, which is also applied to liver cells. Cellular studies have shown that
regulation of the MAPK pathway can inhibit the inflammatory response and be a target
of the ultimate molecular action point among the branches of the signaling process. The
phosphorylation of I-κBα after the MAPK signaling is expected. This has been applied
as a basic research model to the study of inflammatory responses in tumor cells, such
as HepG2. In this study, the changes in the MAPKs activity were measured using PMA
as an inducer in HepG2 cells, a human liver cancer cell line. Therefore, in regulating
the PMA-induced phosphorylation of PMA-induced cell signaling molecules, the process
is related to MAPK-related inflammatory NF-κB signaling [16–18]. NF-κB regulates the
pleiotropic regulation of a wide range of pro-inflammatory genes, such as iNOS and COX-2,
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as well as various cytokines and chemokines. Various studies have reported an increased
expression of inflammation in response to NF-κB binding to the gene promoter regions.
IκB maintains NF κB in the cytoplasm by preventing nuclear localization [19–21]. Various
inflammatory stimuli, such as LPS and PMA, induce NF-κB activation through the phos-
phorylation and subsequent degradation of IκB proteins [22]. The present study indicates
that protopine inhibits the PMA-activated phosphorylation of IκB, with time-dependent
and concentration-dependent results. Therefore, inhibiting the NF-κB signaling pathway
by protopine may lead to the downregulation of pro-inflammatory mediators, leading to
anti-inflammatory effects. MAPKs, such as ERK, JNK, and p38, play important roles in reg-
ulating PMA-stimulated cytokine and chemokine production. Activation of MAPK through
PMA could further stimulate other kinase proteins, followed by the nuclear translocation
of NF-κB, which in turn would activate the transcription of pro-inflammatory genes with
NF-κB binding sites in their promoters [23,24]. In Western blot analysis, protopine inhibited
the transduction of PMA-induced MAPKs cell signaling and blocked the nucleoplasm
transport of p65, a subunit of nuclear factor kappa B (NF-κB). In particular, protopine
inhibited kappa B alpha (I-κBα) phosphorylation of the cytosol significantly. As a result,
the performance of blocking PMA-induced inflammation by inhibiting COX-2 activity was
confirmed. Finally, after confirming the expression of MMP-9 involved in cell migration
and metastasis, protopine induced a decrease in expression at both the gene and protein
levels [25]. The efficacy of MMP-9-activated protopine to block inflammation is related to
cellular abnormalities, i.e., excessive cell proliferation and migration, differentiation and
invasion, and apoptosis. These results show a similar trend to previous studies [26–28].
Unlike protopine, which exhibited various physiological activities in cells, the limitation
of this study was the lack of verification using animal experiments. A study of the mech-
anism of overcoming inflammatory-response-mediated diseases can be a new research
goal in the future.

4. Materials and Methods
4.1. Material

Human hepatocellular carcinoma cells (HepG2) were purchased from the Korean
Cell Line Bank (KCLB, no. 88065, Seoul, Korea) and cultured in 10% fetal bovine serum
(FBS) (Invitrogen, Grand Island, NY, USA) and penicillin/streptomycin mix (Invitrogen,
Grand Island, NY, USA) containing Dulbecco’s Modified Eagles Medium (DMEM) (Hyclone,
Logan, UT, USA). Protopine was purchased from ChemFaces and cell experiments (Figure 1).
Phorbol 12-myristate 13-acetate (PMA) was supplied by Sigma Chemicals (St. Louis, MO,
USA) and used. The antibodies used in Western blot analysis, JNK, p-JNK, p38, p-p38,
NF-κB, I-κBα, pI-κBα, ERK, p-ERK, MMP-9, COX-2, and β-actin, were obtained from
Cell Signaling Technology (Beverly, MA, USA). Anti-mouse and anti-rabbit (Santa Cruz
Biotechnology, Dallas, TX, USA) were used for the secondary antibody.

4.2. Cell Culture and Viability Measurement

HepG2 cells were cultured at 37 ◦C and 5% CO2 using Dulbecco’s Modified Eagles
Medium (DMEM) containing 10% FBS and the penicillin/streptomycin mix. A MTT assay
was performed to evaluate the effect of protopine on cell survival. First, after seeding cells
at 2 × 105 cells/mL in 96 wells, the cells were incubated for 24 h. The supernatant was
removed, and DMEM (Dulbecco’s Modified Eagles Medium) without FBS was added. The
cells were then incubated for 24 h again. Subsequently, 5 mg/mL of MTT was added to the
medium at a ratio of 1:9 and incubated at 37 ◦C in dark conditions for two hours. After
removing the supernatant and drying, the formazan was dissolved in DMSO (Dimethyl
Sufoxide), and the absorbance was measured at 540 nm (VersaMax, Molecular Device,
San Jose, CA, USA).
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4.3. Western Blot Analysis

The protopine-induced PMA-induced inflammatory signaling process was examined.
HepG2 cells were seeded into six-well plates at 2 × 105 cells/mL. After 24 h, the medium
was exchanged for DMEM not containing FBS, treated with 200 nM PMA, and then with
protopine (10, 20, or 40 µM) after one hour. The proteins were harvested from the cells after
24 h of incubation. Protein quantification was performed using a BCA protein assay kit
(Thermo Fisher Scientific, Waltham, MA, USA). The absorbance was measured at 562 nm,
and the protein value was quantified by substituting it into a standard curve. The protein
was quantified at 20 µg/lane and running and transferred for 10% sodium dodecyl sulfate
(SDS)-polyacrylamide gel electrophoresis (PAGE). For the blocking procedure to prevent
the binding of non-specific antibodies, the membrane was reacted with Tris-buffered saline-
Tween 20 (TBS-T) containing 5% bovine serum albumin (BSA) for one hour and using
TBS-T. The membrane was washed three times for five minutes each. The primary antibody
was prepared in a ratio of 1:1000 in TBS-T containing 3% BSA and reacted at 4 ◦C for 12 h.
After overnight incubation, the membranes were washed three times with TBS-T for five
minutes each. The secondary antibody containing 1% BSA was reacted with TBS-T at a
ratio of 1:3000 at room temperature for two hours. Finally, immunoreactive fluorescence
was induced using an enhanced chemiluminescent (ECL) solution (Super Signal West Pico,
Thermo Fisher Scientific, Waltham, MA, USA), and analyzed on a Western blot imaging
system (Fusion solo, Marne-la-Vallee, France). For the Western blot band images, the
density of the band was measured using Image J 1.52a software, and a normalization
process was performed using the housekeeping gene β-actin and a protein suitable for each
experiment (Table S1).

4.4. Quantitative Polymerase Chain Reaction

A real-time polymerase chain reaction (qPCR) was performed to evaluate the effects of
protopine on PMA-induced gene expression of MMP-9. The HepG2 cells were inoculated at
2 × 105 cells/mL in a 60 mm cell culture vessel and cultured for 24 h. The cells were treated
with protopine (10, 20, or 40 µM) and 200 nM PMA and incubated in DMEM without FBS
for 24 h. The total RNA was isolated using TRIzol reagent (Thermo, Waltham, MA, USA).
The isolated RNA sample was quantified at 260 nm and 280 nm and synthesized as cDNA
according to the manufacturer’s manual provided using AccuPower RT PreMix (Bioneer,
Daejeon, Korea) and Oligo (dt) 18 primer (Invitrogen, Carlsbad, CA, USA). In a polymerase
chain reaction (PCR), 10 µL of 2X SYBR green Master Mix (Bioneer, Seoul, Korea), 8 µL of
ultrapure water (Bioneer, Seoul, Korea), and 10 pmol/µL primers (Macrogen, Seoul, Korea)
were mixed sequentially for cDNA in the polymerase chain reaction (PCR) Light Cycler 480.
The amplification process was performed in a PCR System (Roche, Basel, Switzerland). The
stepwise DNA denaturation, primer annealing, and extension reaction were polymerized
in 45 cycles (Table S2).

4.5. Immunofluorescence

Immunofluorescence staining was performed to confirm the effect of protopine on
blocking PMA-induced NF-κB (p65) migration from the cytoplasm to the nucleus. First,
HepG2 cells were grown after seeding on Lab-Tek II chamber slides (Nalgene Nunc,
Springfield, IL, USA) at 2 × 103 cells/mL, fixed at room temperature for 10 min using
4% formaldehyde, and then on a 0.1% Triton X-100 induced cell membrane permeabiliza-
tion at room temperature for 10 min. Subsequently, after blocking using 1% BSA for one
hour, the NF-κB(p65) primary antibody was diluted in 1% BSA at 2 µg/mL to induce
binding overnight. Subsequently, the fluorescence-treated secondary antibody (Invitrogen,
Grand Island, NY, USA) was diluted in 1% BSA at 2 µg/mL, reacted at room temper-
ature for one hour, and observed through a fluorescence microscope (BX50, Olympus,
Tokyo, Japan).
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4.6. Statistical Analysis

Statistical analysis of all experimental results was expressed as the mean ± standard
deviation (means ± SD), and one-way ANOVA was performed using the GraphPad Prism 5
(GraphPad Software, San Diego, CA, USA) program to determine the statistical significance
of each group. Significance was accepted only when p < 0.05, p < 0.01, and p < 0.001
compared with Tukey’s multiple comparison test.

5. Conclusions

This study examined the effects of protopine on the viability of HepG2 cells. The
process was stable up to a treatment concentration of 40 µM. Western blot analysis showed
that protopine inhibited the transduction of the PMA-induced MAPKs cell signal and
blocked the nucleoplasm movement of p65, a subunit of nuclear factor kappa B (NF-κB).
Protopine inhibited kappa B alpha (I-κBα) phosphorylation in the cytosol and blocked
PMA-induced inflammation by inhibiting COX-2 activity. Finally, after confirming the
expression of MMP-9 in cell migration and metastasis, protopine induced a decrease in
expression at both the gene and protein levels. Overall, protopine helped to regulate the
inflammatory response induced by PMA. Since MMP-9 in the protein and mRNA levels
was reduced by the protopine, it may be worthwhile to study the effect of this compound
on cell migration and cell suicide in future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27144601/s1, Figure S1. Effect of protopine on HepG2
cell viability, Table S1. Antibody used for Western blot analysis, Table S2. PCR primers used for
quantitative real-time PCR.
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