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Introduction
Epstein-Barr virus (EBV) is the causative agent of infectious 

mononucleosis and is associated with several human malig-

nancies (Kieff and Rickinson, 2002). The most abundant of the 

few viral genes (4–11) expressed during EBV latency are the 

noncoding RNAs, EBV-encoded RNA 1 (EBER1) and EBER2, 

which are expressed at �5 × 106 per cell (Lerner et al., 1981). 

The EBERs, which are �170 nts in length, are transcribed by 

RNA polymerase III and assembled into nuclear ribonucleo-

protein particles containing the La protein (Lerner et al., 1981). 

EBER1 also binds the ribosomal protein L22 and relocalizes 

a large fraction of the free cellular L22 to the nucleoplasm in 

EBV-positive cell lines (Toczyski et al., 1994).

The physiological function of EBERs has remained 

 elusive. Although not necessary for EBV-mediated immortal-

ization of B cells in vitro, EBERs promote cellular transfor-

mation in various systems (Takada and Nanbo, 2001; Yajima 

et al., 2005) and inhibit apoptosis that is induced by α inter-

feron (Nanbo et al., 2002; Ruf et al., 2005). These activities 

have been attributed to the binding and inhibition of the double-

stranded RNA–dependent protein kinase R (PKR; Sharp 

et al., 1993; Takada and Nanbo, 2001; Nanbo et al., 2002), 

despite multiple studies that have found that EBERs are nu-

cleoplasmic (Howe and Steitz, 1986; Barletta et al., 1993), 

whereas PKR and its well documented effect on translation 

initiation are cytoplasmic (Takizawa et al., 2000). Recent re-

sults (Ruf et al., 2005; Wang et al., 2005) indicate that EBERs 

do not inhibit PKR activity in vivo when cells are challenged 

with various PKR stimuli.

The La protein is an abundant nuclear phosphoprotein 

that facilitates the correct folding and maturation of RNA 

polymerase III transcripts through its specifi c association with 

the short polyU sequence at their 3′ ends (Wolin and Cedervall, 

2002). The human La protein has also been reported to play a 

role in the translational regulation of some messages (Costa-

Mattioli et al., 2004), including those that harbor unique ter-

minal oligopyrimidine–rich motifs at their 5′ ends. Indeed, an 

unphosphorylated form of La has been detected that is specifi -

cally bound to terminal oligopyrimidine– containing mRNAs 

(Intine et al., 2003). Previously, the idea that La actively 

 shuttles between the nucleus and cytoplasm was supported 

only by observations of its localization in drug-treated cells 

 (Bachmann et al., 1989).

We used heterokaryon and other assays to defi ne the cel-

lular traffi cking of the EBERs and the La protein. We fi nd that 

the EBERs are confi ned to the cell nucleus, whereas the en-

dogenous La protein undergoes nucleocytoplasmic shuttling. 

As a control for the shuttling of small RNAs, we report that 
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spliceosomal U1 small nuclear RNA (snRNA) does traffi c to 

the other nucleus in human/mouse heterokaryons that are neg-

ative for EBER shuttling.

Results and discussion
We initially undertook heterokaryon-shuttling experiments 

(Borer et al., 1989) with the well characterized EBV-transformed 

suspension cell line, BJAB-B1. Because these cells did not 

 adhere well to glass slides, we switched to the human HKB5cl8 

cell line, which is a hybrid between human embry onic kidney 

293S (HEK293S) cells and 2B8 cells, which are an EBV-positive 

Burkitt’s lymphoma B-cell line (Cho et al., 2002; El-Guindy 

et al., 2002). HKB5cl8 cells not only attach to the glass slides 

but are morphologically superior in that the nucleus and cy-

toplasm can be readily distinguished. By RT-PCR analyses 

 (unpublished data), HKB5cl8 cells establish type I latency 

(Kieff and Rickinson, 2002) that is characteristic of Burkitt’s 

 lymphoma cells. We also performed Northern blot analyses 

and found that EBER1 and EBER2 are expressed in HKB5cl8 

(Fig. 1 A, lane 1) at levels only two- to threefold lower than in 

BJAB-B1 cells (Fig. 1 A, lane 3).

To test whether the endogenously expressed EBERs shut-

tle in and out of the nucleus, heterokaryons were formed by 

Figure 1. EBER1 and EBER2 do not shuttle in HKB5cl8 cells. (A) EBER1 and EBER2 expression in HKB5cl8 cells. A Northern blot of 5 μg total RNA from 
HKB5cl8 (lane 1), BJAB (lane 2), and BJAB-B1 (lane 3) was sequentially probed for EBER1, the U6 loading control, and EBER2. (B) Lack of EBER nucleo-
cytoplasmic shuttling. Heterokaryons were prepared by fusing HKB5cl8 cells transfected with a plasmid producing hnRNP A1-GFP and mouse NIH3T3 cells 
for 6–7 h in the presence of cycloheximide. Heterokaryons were identifi ed by the shuttling of hnRNP A1-GFP (2 and 5, green) into mouse nuclei, identifi ed 
by punctate DAPI staining (1 and 4). Human (H) and mouse (M) nuclei of the heterokaryons are labeled. A total of 14 heterokaryons were analyzed. 
 Endogenous EBER1 (3) and EBER2 (6) were detected using DIG-labeled probes (yellow). 

Figure 2. Detection of 𝛂2 U1 RNA shuttling. (A) Hetero-
karyons were prepared as in Fig.1, except that an α2 
U1–expressing plasmid, rather than an hnRNP A1-GFP–
expressing plasmid, was transfected into HKB5cl8 cells 
and no cycloheximide was added. The two human (H) and 
one mouse (M) nuclei in the heterokaryon are labeled as 
identifi ed by DAPI (1). The α2 U1 RNA (red) shuttled into 
the mouse nucleus (3), whereas the endogenous EBER1 
(green) did not (2). A total of seven heterokaryons were 
analyzed. (B) Turnover rates of EBER1 compared with U1, 
7SL, and Y1 RNAs. HKB5cl8 (open symbols) and BJAB-B1 
(closed symbols) cells were treated with actinomycin D, 
and the indicated RNAs were detected by Northern blotting. 
Each time point is the mean of three independent experi-
ments, with error bars indicating the SD.
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fusing human HKB5cl8 cells with mouse NIH3T3 cells (Borer 

et al., 1989). The human cells had previously been transfected 

with plasmids expressing the shuttling heterogeneous nuclear 

ribonucleoprotein (hnRNP) A1-GFP protein (Pinol-Roma and 

Dreyfuss, 1991); heterokaryons were identifi ed by the appear-

ance of hnRNP A1-GFP in both the human and the mouse 

 nuclei (Fig. 1 B, 2 and 5). Mouse nuclei were readily distin-

guished by punctate DAPI staining, which replicates the species-

specifi c nuclear staining difference previously reported for 

Hoechst dye (Moser et al., 1975).

EBER1 and EBER2 were detected by in situ hybridization 

using DIG-labeled antisense DNA oligonucleotides. These 

probes were complementary to the 3′ half of the EBERs, but 

not to regions including conserved polymerase III promoter 

 elements A and B (which may explain the unique report of 

 cytoplasmic localization of EBERs [Schwemmle et al., 1992]). 

As shown in Fig. 1 B (3–6), EBERs remained in the human 

 nuclei and did not shuttle into the mouse nuclei during the 6-h 

 incubation. HEK293 cells transiently expressing EBERs also 

did not exhibit shuttling (unpublished data); titration of the 

EBER-expressing plasmids showed that in situ hybridization 

signals would have been detected even with RNA levels <10% 

(as observed by Northern blotting; unpublished data).

To ensure that the nucleocytoplasmic shuttling of RNA, as 

well as of protein molecules, could be observed in our assays, 

we examined U1 snRNA. We used a modifi ed human U1 RNA, 

α2 U1 RNA, in which the fi rst 20 nts are signifi cantly different 

from either the human or mouse U1 snRNA (Yuo and Weiner, 

1989). This U1 RNA is functional in vivo (Yuo and Weiner, 

1989) and, therefore, is expected to follow the wild-type matu-

ration pathway, which involves export to the cytoplasm before 

assembly with Sm proteins and reimport into the nucleus (Feeney 

et al., 1989; Mattaj et al., 1993). For heterokaryon assays, we 

transfected an α2 U1 RNA–expressing plasmid into HKB5cl8 

cells and visualized the RNA with probes that hybridize specifi -

cally to the modifi ed region. We observed α2 U1 RNA in both 

the human and the mouse nuclei (Fig. 2 A, 3), indicating that α2 

U1 moves out of and back into the nuclei of somatic  human 

cells. Importantly, in the same heterokaryons where U1 shut-

tling was observed, endogenous EBER1 was confi ned to the 

 human nuclei (Fig. 2 A, 2); the same result was obtained with 

a longer 12-h incubation (not depicted), as opposed to a 6-h 

 incubation. In the RNA-shuttling assays, cycloheximide was 

omitted, ruling out the possibility that the lack of EBER1 shut-

tling is protein synthesis-dependent. EBER2 was also tested, 

but we were unable to fi nd a hybridization temperature that 

would  allow simultaneous detection of EBER2 and α2 U1 

RNAs (unpublished data).

The absence of EBER signals from mouse nuclei in heter-

okaryons could be attributable to the rapid cytoplasmic degra-

dation of RNA once it is exported from the human nucleus. 

Therefore, we compared the turnover rates of EBER1 and other 

small RNAs; 7SL and Y1 RNAs are both cytoplasmic and 

 transcribed (like EBERs) by RNA polymerase III, whereas U1 

RNA is a nuclear RNA polymerase II product. After the addi-

tion of actinomycin D to HKB5cl8 or BJAB-B1 cells, EBER1 

exhibited an apparent half-life of 25–30 h (Fig. 2 B), which is 

signifi cantly greater than Y1 (apparent half-life of 7 h; Rutjes 

et al., 1999) and only slightly less than 7SL and U1 (Fury and 

Zieve, 1996). Because shuttling was observed for U1, but not 

for EBER1 (Fig. 2 A), and they are both extremely stable 

RNAs, rapid cytoplasmic degradation cannot explain the lack 

of EBER1 shuttling.

To confi rm nuclear retention in another system, we per-

formed X. laevis oocyte microinjection assays using in vitro–

transcribed EBER1, U6, and tRNAPhe. 2.5 h after injection, 

almost all of the positive nuclear export control, tRNAPhe, was 

detected in the cytoplasmic fraction (Fig. 3 A, lanes 1, 4, and 5). 

In contrast, EBER1 remained in the nucleus, as did the negative 

export control, U6 RNA (Fig. 3 A, lanes 1, 4, and 5). To address 

whether La is responsible for the nuclear retention of EBER1, 

we repeated the microinjection assays using an EBER1 mutant 

lacking its 3′ polyU tail (required for stable La binding); the 

terminal nts were changed from UGUUUUOH to GAACACOH. 

As expected, this EBER1 mutant exhibits eightfold reduced 

binding to La, based on immunoprecipitation using BJAB 

Figure 3. Lack of oocyte nuclear export and Exp5 binding by EBER1. 
(A) Oocyte microinjections. A mixture of T7-transcribed, α-[32P]UTP–labeled 
U6, tRNAPhe, and either wild-type EBER1 or mutant EBER1 lacking its 
3′ polyU terminus (0.5–1 fmol per oocyte) was microinjected into the gemi-
nal vesicles of whole X. laevis oocytes. After either a 0.5-h (wild-type, lanes 
2 and 3; mutant, lanes 7 and 8) or 2.5-h (wild-type, lanes 4 and 5; mutant, 
lanes 9 and 10) incubation at RT, 5–6 oocytes were fractionated. RNAs 
extracted from the nuclear (N), cytoplasmic (C), or total fractions were 
 resolved on a urea polyacrylamide gel and visualized by autoradiography. 
The percentages of RNA in the nucleus are indicated. (B) Electrophoretic 
mobility shift assays performed on binding reactions containing 4.5 fmol 
of labeled VARdm RNA, 1 pmol of recombinant Exp5 (lanes 2–10) and 
RanQ69LGTP (see Materials and methods), and the indicated amounts of 
unlabeled competitor RNA: VARdm (lanes 3 and 4), EBER1 (lanes 5–7), or 
U6 (lanes 8–10). Lane 1 contained no protein. 
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cell extracts (unpublished data). 2.5 h after injection, mutant 

EBER1 remained in the oocyte nucleus, whereas most tRNAPhe 

was in the cytoplasm (Fig. 3 A, lanes 6, 9, and 10). Therefore, 

it is unlikely that La is responsible for the nuclear retention 

of EBER1.

Finally, to probe why EBERs are not exported, we 

 performed in vitro exportin 5 (Exp5)–binding assays. Exp5 

mediates nuclear export of premicroRNAs and adenovirus 

noncoding RNA VAI by binding to a terminal stem (Gwizdek 

et al., 2001, 2003; Brownawell and Macara, 2002; Yi et al., 

2003; Lund et al., 2004), which is also proposed to exist in 

EBER1 (Gwizdek et al., 2001). Using an electrophoretic mo-

bility shift assay, we performed competition experiments to 

ask if EBER1 can displace the VARdm RNA (Gwizdek et al., 

2003) from recombinant Exp5. Although unlabeled VARdm 

effi ciently competed with the Exp5-bound substrate (Fig. 3 B,  

lanes 2–4), neither EBER1 (Fig. 3 B, lanes 5–7) nor the nega-

tive control U6 RNA (Fig. 3 B, lanes 8–10) signifi cantly dis-

placed the probe, even at 200-fold excess. The same EBER1 

preparation was active in binding its protein ligand L22 (Fok 

et al., 2006). Thus, lack of binding to an export receptor may 

explain why EBER1 is not exported from the nucleus. More-

over, it is unlikely that EBERs function by interfering with 

host cell microRNA biogenesis, which is consistent with ob-

servations (unpublished data) that the level of let-7 microRNA 

is not altered by the presence of EBERs.

Our strategy in investigating the cellular traffi cking of 

EBERs included testing if its obligatory protein partner La 

 undergoes nucleocytoplasmic shuttling. A typical EBV-infected 

cell harbors �5 × 106 copies of each EBER (Lerner et al., 

1981), whereas most human cells express �2 × 107 molecules 

of La protein (Wolin and Cedervall, 2002). Thus, even though 

EBERs do not shuttle, the La protein could. To examine La pro-

tein shuttling, HKB5cl8 cells were transfected with plasmids 

expressing either the shuttling hnRNP A1-GFP or the nonshut-

tling hnRNP C1-GFP as controls. After fusion with mouse 

NIH3T3 cells for 4 h, endogenous human La protein was de-

tected using a monoclonal anti-La antibody that does not cross 

Figure 4. Human La protein undergoes nu-
cleocytoplasmic shuttling in multiple cell lines. 
Heterokaryons were made by fusing HKB5cl8 
(1–6), HeLa (7–9), or HEK293 (10–12) cells, 
which were transfected with a plasmid produc-
ing either the shuttling hnRNP A1-GFP (1–3) or 
the nonshuttling hnRNP C1-GFP (4–12), with 
mouse NIH3T3 cells. After 4 h, human La pro-
tein (red) was detected with a monoclonal anti-
La antibody specifi c for human La, which is 
demonstrated by the absence of signal in 
the unfused mouse cells labeled m (7, 8, 10, 
and 11). Human (H) and mouse (M) nuclei are 
 labeled as in Fig. 1. More than 20 heterokar-
yons were analyzed.

Figure 5. Shuttling of the human La protein is 
not blocked by LMB. Heterokaryons were 
made by fusing HEK293 cells transfected with 
plasmids producing Flag-PP32 (1–3) or Flag-
PP32 and hnRNP A1-GFP (4–11) with mouse 
NIH3T3 cells as described in Fig. 4, except 
that no LMB (1–3) or 30 ng/ml LMB (4–11) 
was included during fusion. Detection of the 
human La protein and labeling of the nuclei 
are as described in Fig. 4. La is shown in red 
(2) or in pseudocolor orange (5 and 9). Flag-
PP32 is in green (3) or in pseudocolor deep 
red for infrared (6 and 10). 2 of 11 heterokar-
yons analyzed are shown. 
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react with mouse La protein (unpublished data; Wolin, S., per-

sonal communication), demonstrated by the lack of nuclear 

staining of unfused mouse cells, labeled m in Fig. 4 (panels 7, 

8, 10, and 11) and Fig. 5 (panels 1, 2, 4, and 5).  

Fig. 4 clearly shows that La shuttled from the human nu-

cleus into the mouse nucleus (Fig. 4, panel 2), mimicking the 

shuttling of hnRNP A1-GFP in the same heterokaryon (Fig. 4, 

panel 3). Inclusion of cycloheximide during the fusion period 

ruled out the possibility that newly synthesized human La pro-

tein was imported into mouse nuclei. Although the nonshuttling 

hnRNP C1-GFP remained in the human nucleus (Fig. 4, panel 6), 

the human La protein moved into the mouse nucleus (Fig. 4, 

panel 5). We then confi rmed that La nucleocytoplasmic shut-

tling is not cell-type specifi c by repeating the experiments with 

nonvirally infected human cells, HeLa or HEK293. Again, the 

nonshuttling hnRNP C1-GFP remained in the human nuclei and 

the human La protein shuttled into the mouse nucleus in both 

kinds of heterokaryons (Fig. 4, panels 8 and 9 and 11 and 12, 

respectively). We conclude that La, which is predominantly nu-

clear in multiple types of mammalian cells (Wolin and Cedervall, 

2002), has the capacity to exit and return to the nucleus.

Next, we asked whether La protein is exported via the 

Crm1 nuclear export receptor because a human La protein lack-

ing its putative nuclear retention element had been reported to 

accumulate in the cytoplasm, but to be retained in the nucleus in 

the presence of the Crm1 inhibitor leptomycin B (LMB; Intine 

et al., 2002). To ensure that LMB inhibits Crm1 in heterokar-

yons of HEK293 cells and NIH3T3 cells, we included as a con-

trol PP32, which is a known shuttling protein whose nuclear 

export is Crm1-dependent (Brennan et al., 2000). We trans-

fected HEK293 cells with a plasmid-expressing Flag-PP32 and, 

as expected, observed that both La and Flag-PP32 shuttled 

from the human to the mouse nucleus (Fig. 5, panels 2 and 3, 

resp ectively). In the presence of 30 ng/ml LMB, Flag-PP32, but 

not La, movement was inhibited (Fig. 5, panels 5, 6, 9, and 10). 

In this experiment, hnRNP A1-GFP, which does not require 

Crm1 for nuclear export (Brennan et al., 2000), was coexpressed 

to identify the hybrid cells (Fig. 5, panels 7 and 11). Because 

inhibition of Crm1 blocked the shuttling of Flag-PP32, but not 

of intact La protein, we conclude that the nuclear export of full-

length La is either Crm1 independent or that La is exported by 

more than one pathway. Further studies are needed to resolve 

the pathways and whether the phosphorylation state of La regu-

lates its shuttling activity (Intine et al., 2003).

Because EBERs do not exit the nucleus of either human 

cells (Fig. 1) or Xenopus laevis oocytes (Fig. 3; even in the ab-

sence of a La binding site), it is not the La protein, but rather 

some other feature of their RNA structure, that retains the 

 EBERs in the nucleus of EBV-infected cells. We tested the 

prediction, based on the presence of a terminal stem, that 

 EBERs might bind and interfere with the activity of Exp5 

(Gwizdek et al., 2001), which is limiting in the case of pre-

microRNA  export (Yi et al., 2003). Our fi ndings suggest that 

EBERs do not function in this way, but instead participate in 

some other exclusively nuclear process that enhances the expres-

sion of several growth factors, including insulin-like growth factor I, 

interleukin-9, and interleukin-10 (Kitagawa et al., 2000; Iwakiri 

et al., 2003; Yang et al., 2004) in EBV-transformed cells. 

Whether these consequences represent an active function of 

the EBER particles or arise through partial sequestration 

of La, ribosomal protein L22, or some other protein partner 

 remains to be determined.

Materials and methods
Cell culture and heterokaryon assays
HKB5cl8, BJAB, and BJAB-B1 cells were grown in RPMI 1640 medium 
 (Invitrogen) containing 10% FBS. HEK293 cells were grown in DME 
(Invitrogen) containing 10% FBS. NIH3T3 cells were grown in DME con-
taining 10% calf serum.

105 HKB5cl8 cells were transfected with 2 μg hnRNP A1-GFP, 
hnRNP C1-GFP (both gifts from G. Dreyfuss, University of Pennsylvania 
School of Medicine, Philadelphia, PA), or pα2U1 (Yuo and Weiner, 1989) 
plasmid using 6 μl TransIT reagent (Mirus) for �40 h on coverslips. 
105 HeLa cells were transfected with 2 μg hnRNP C1-GFP plasmid using 
6 μl Lipofectamine reagent (Invitrogen) for �40 h on coverslips. 105 
HEK293 cells were transfected with 2 μg hnRNP C1-GFP plasmid, 2 μg 
Flag-PP32 plasmid, or 1 μg each of hnRNP A1-GFP and Flag-PP32 plas-
mids using 6 μl TransIT reagent (Invitrogen) for �40 h on coverslips.

For heterokaryon assays, 105 mouse NIH3T3 cells were added to 
the transfected human cells described in the previous paragraph and 
 allowed to seed on coverslips for 3 h. 100 μg/ml cycloheximide and 
30 ng/ml LMB, as indicated in the fi gure legends, were added to the me-
dium to block protein synthesis for 30 min, and the cells were fused using 
50% PEG 3350/PBS for 2 min at RT. Cells were then washed in PBS three 
times and incubated in medium containing 100 μg/ml cycloheximide and 
30 ng/ml LMB, as indicated in the fi gure legends, for 4–7 h to allow 
shuttling. The lack of signals in mouse nuclei for hnRNP C1-GFP and for 
Flag-PP32 when LMB was added indicates that cycloheximide effectively 
shut down translation. Cells were fi xed in 4% formaldehyde/PBS and were 
processed for either in situ hybridization or immunofl uorescence, as de-
scribed in the following sections. Light microscopy and the appearance of 
shuttling proteins in the mouse nuclei were used to identify heterokaryons. 
Fluorescence images were photographed using a digital charge-coupled 
device camera (model C4742-95-12; Hamamatsu) through a microscope 
(Axioplan II; Carl Zeiss MicroImaging, Inc.) with a 40×, 1.3 NA, oil ob-
jective (Plan-Neofl uar; Carl Zeiss MicroImaging, Inc.). Images were cap-
tured using Openlab imaging software (Improvision) and incorporated into 
fi gures  using Photoshop CS and Illustrator CS software (both Adobe).

In situ hybridization of EBER and 𝛂2 U1 RNAs
Fixed cells were washed with PBS twice for 5 min, permeabilized with 
0.5% Triton X-100/PBS on ice for 10 min, and washed with PBS once 
and 2× SSC twice at RT. Cells were prehybridized with Phil’s hybridiza-
tion solution at 37°C for 1 h and hybridized with 2 ng/ml EBER1R152 or 
EBER2R134 probe (complementary to EBER1 nts 130–152 or EBER2 nts 
106–134; see Northern blot analysis section for sequences) in Phil’s 
hybridization solution (Forrester et al., 1992) overnight at 37°C. These 
probes were conjugated with DIG label using the 3′-DIG labeling 
kit (Roche) and were detected by incubation with a 1:200 dilution of 
 rhodamine-conjugated anti-DIG antibody (Invitrogen) in PBS at RT for 1 h. 
Cells were washed three times with PBS at RT for 10 min each and once 
with 0.2 μg/ml DAPI/PBS solution at RT for 10 min, and then mounted 
for fl uorescence microscopy. Alternatively, when EBER1 and α2 U1 were 
simultaneously probed at RT, the following oligonucleotides replaced 
the DIG-labeled probes and anti-DIG antibody: for EBER1, NEB1R148, 
5′-X C T G G T A C T T G A C C G A A G A C G G C A G A A A -3′; for α2 U1, NHA2U1A, 
5′-X C T G C T T G T G T T A G A T T A T G T G G A T -3′; and for α2 U1, NHA2U1B, 
5′-X C C C C T G C T T G T G T T A G A T T A T G T G G A T -3′. X denotes the 5′-amino 
group attached to a six-carbon linker. The 5′-amino group allowed conju-
gation of the Alexa Fluor 488 dye onto NEB1R148 and of the Alexa Fluor 
594 dye onto NHA2U1A and NHA2U1B, using Alexa Fluor Oligonucle-
otide Amine labeling kits (Invitrogen).

Immunofl uorescence detection of human La and Flag-PP32
Fixed cells on coverslips were washed with PBS twice for 5 min, permeabi-
lized with 0.4% Triton X-100/1% normal goat serum (Invitrogen) in PBS on 
ice for 10 min, and washed with 1% normal goat serum/PBS three times 
at RT for 10 min each. The cells were then incubated with primary anti-
bodies in 1% normal goat serum/PBS at RT for 1 h. A mouse monoclonal 
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anti–human La (a gift from M. Bachmann, Technical University Dresden, 
Dresden, Germany) and rabbit polyclonal anti-Flag (Sigma-Aldrich) anti-
bodies were used at 1:100 dilutions. The coverslips were washed three 
times with 1% normal goat serum/PBS at RT for 10 min each, incubated 
with Alexa Fluor 594–conjugated (red) goat anti–mouse (for La) or Alexa 
Fluor 488– (green) or 680–conjugated (infrared) goat anti–rabbit (for Flag-
PP32) antibodies for 1 h, washed three times with PBS at RT for 10 min 
each and once with 0.2 μg/ml DAPI/PBS solution at RT for 10 min, and 
mounted for fl uorescence microscopy.

Turnover rate measurements
Actively growing HKB5cl8 and BJAB-B1 cells at 4 × 105 cells/ml were 
treated with 10 μg/ml actinomycin D. At indicated time points, 2 × 105 
cells were removed and pelleted by centrifugation. Total RNAs were ana-
lyzed by Northern blotting.

Northern blot analysis
Total cellular RNA was purifi ed using Trizol reagent (Life Technologies) and 
5 μg of RNA (Fig. 1), subjected to 7 M urea gel electrophoresis, transferred 
to Zeta-blot (Bio-Rad Laboratories), and cross-linked to the membrane by UV 
irradiation. The immobilized RNA was hybridized with the indicated probe, 
and the signal detected and quantifi ed with a PhosphorImager (Molecular 
 Dynamics). In Fig.1, EBER levels were normalized to the signal obtained for 
cellular U6 snRNA; the probe was produced from plasmid pT7U6 (Wassarman
and Steitz, 1993) that was linearized with EcoRI and transcribed in the 
presence of α-[32P]UTP. Other RNA sequences were detected by Northern 
blotting using the following γ-[32P]–labeled DNA oligonucleotide probes: 
EBER1R152, 5′-C C A G C T G G T A C T T G A C C G A A G A C -3′; EBER2R134, 
5′-A T T A G A G A A T C C T G A C T T G C A A A T G C T C T -3′; U1R96, 5′-A A T C G C A-
G G G G T C A G C A C A T C C G G A G -3′; HY1R60, 5′-G T T C G A T C T G T A A C T G A-
C T G T G A-3′ ; and 7SLR99, 5′-G C A T A G C G C A C T A C A G C C C A G A A -3′.

Plasmid construction
The wild-type EBER1 coding sequence was cloned into the pUC19 
vector (Fok et al., 2006). Using this plasmid as template, EBER1 3′ 
polyU mutant was generated by PCR amplifi cation with the primers 
ECORIT7, 5′-C G C G A A T T C T A A T A C G A C T C A C T A T A G -3′ and EBER1PML, 
5′-G  C C G G A T C C C A C G T G T T C T G C G G A C C A C C A G C T G G T A C T T G A -3′. 
To generate tRNAPhe plasmid, oligonucleotides PHE5P, 5′-C G C G A A T T C T-
A A T A C G A C T C A C T C T A G G C G A A A T A G C T C A G T T G G G A G A G C G T T A G-
A C T G A A G A T C T A A A G G -3′, which contains a T7 promoter, and PHE3P, 
5′-G C C G G A T C C C A G C T G G T G C C G A A A C C C G G G A T G G A A C C A G G G A C -
C T T T A G A T C T T C A G T C T A A C G C T C T C C C -3′ were hybridized and fi lled in 
with Klenow polymerase. The construct for producing the VARdm substrate 
(Gwizdek et al., 2003) was generated by PCR using pAdEasy (Ameri-
can Type Culture Collection) as a template with primers TopVA, 5′-G A C-
C G A A T T C T C G G G A C G C T C T G G C C G G T C A G G -3′, which contains a T7 
promoter, and VA D4M, 5′-C G C G G A T C C A G T A C T A G G A G C A C T C C C C C-
G T T G T C T G A C G T C G C A C A C C T G G G T T A T C A C G G C G G A C G G C C G G A T-
A C G G -3′. All DNA fragments were inserted into the pUC19 vector using 
the EcoRI and BamHI restriction sites.

X. laevis oocyte microinjection and RNA isolation
The EBER1 plasmid and pT7U6 were linearized with DraI, the mutant 
EBER1 plasmid with PmlI, and the tRNAPhe plasmid with PvuII. RNAs were 
in vitro transcribed in the presence of α-[32P]UTP (GE Healthcare), gel puri-
fi ed, and injected into the germinal vesicles of whole X. laevis oocytes. 
0.5–1 fmol each of U6 RNA, tRNAPhe, and EBER1 were injected in a vol-
ume of 9.2 nl with 20 mg/ml blue dextran as a marker. Oocytes were 
 incubated at RT in OR2 buffer (5 mM Hepes, pH 7.8 with KOH, 82.5 mM 
NaCl, 2.5 mM KCl, 1 mM Na2HPO4, 1 mM MgCl2, and 1 mM CaCl2) for 
0.5 or 2.5 h and manually dissected in cold isolation buffer (80 mM KCl, 
17 mM NaCl, 6 mM Na2HPO4, 3.5 mM KH2PO4, and 10 mM MgCl2). 
Five to six oocytes were fractionated into nucleus and cytoplasm (Huang 
and Steitz, 2001) and pooled for each time point. Proteinase K digestion 
and phenol/choloform extraction were performed, and 0.5 oocyte equiva-
lents were run on an 8% urea polyacrylamide gel.

Immunoprecipitation of wild-type and mutant EBER1
The La-specifi c antiserum used was ON, which was provided by J.  Hardin 
(Yale University, New Haven, CT). Whole-cell sonicates (16 μl) from 2 × 105 
BJAB cells (Lerner et al., 1981) were incubated with 40 fmol (�2 × 105 
cpm) in vitro α-[32P]UTP–labeled wild-type or mutant EBER1 and 2 μg 
Escherichia coli tRNA as a nonspecifi c competitor in 20 μl for 30 min 
at RT. The reactions were immunoprecipitated with either anti-La or 
anti-L22 (Toczyski et al., 1994) attached to protein A–Sepharose beads 

(GE Healthcare), or beads alone at 4°C for 1–2 h. The beads were then 
washed fi ve times with NET-2 (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 
and 0.05% NP-40) at 4°C. RNA was extracted with phenol/chloroform/
isoamyl alcohol (25:25:1), ethanol-precipitated, and electrophoresed in 
an 8% urea polyacrylamide gel. Equal amounts of wild-type and mutant 
EBER1 were immunoprecipitated in control reactions with anti-L22, sug-
gesting proper folding of the EBER1 mutant.

Recombinant proteins
Expression and purifi cation of Exp5 was performed as previously de-
scribed (Brownawell and Macara, 2002), except that the purifi ed pro-
tein was dialyzed against buffer A (20 mM TrisHCl, pH 7.5, 100 mM 
KCl, 2 mM MgCl2, 2 mM DTT, and 10% glycerol). RanQ69LGTP was 
prepared as previously described (plasmid provided by I. Macara, 
 University of Virginia, Charlottesville, VA; Brownawell and Macara, 
2002; Rebane et al., 2004).

Electrophoretic mobility shift assays
The VARdm substrate (Gwizdek et al., 2003) was generated from the 
VARdm plasmid linearized with ScaI by in vitro transcription in the pres-
ence of α-[32P]UTP. Binding reactions (10 μl) containing 4.5 fmol VARdm 
RNA, 0.1 μM Exp5, 0.5 μM RanQ69LGTP, and the indicated amounts 
of competitor RNAs were incubated for 40 min at 30°C in RNA-binding 
buffer containing 20 mM TrisHCl, pH 7.5, 100 mM KCl, 2 mM MgCl2, 
2 mM DTT, 10% glycerol, and 2 pmol of the T7 terminator DNA olig-
onucleotide 5′-G C T A G T T A T T G C T C A G C G G -3′ to reduce nonspecifi c 
binding. Before loading, 1 μl of a 0.6 mg/ml heparin and 0.2 mg/ml 
Bromophenol blue mixture was added to each sample. The samples were 
loaded on a preelectrophoresed (30 min) 6% native gel in 0.5× TBE 
 buffer (45 mM Tris borate and 1 mM EDTA). Electrophoresis was per-
formed at 12 V cm–1 for 1 h at RT.
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