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SUMMARY

Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis
of gene sequences typically produces a collection of these trees, one for each gene in the analysis.
Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possi-
ble trees. In Euclidean spaces, principal component analysis is a popular method of reducing
high-dimensional data to a low-dimensional representation that preserves much of the sample’s
structure. However, the space of all phylogenetic trees on a fixed set of species does not form a
Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced
the notion of a principal geodesic in this space, analogous to the first principal component. Here
we propose a geometric object for tree space similar to the kth principal component in Euclidean
space: the locus of the weighted Fréchet mean of k + 1 vertex trees when the weights vary
over the k-simplex. We establish some basic properties of these objects, in particular showing
that they have dimension k , and propose algorithms for projection onto these surfaces and for
finding the principal locus associated with a sample of trees. Simulation studies demonstrate
that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and
African coelacanth genomes respectively, reveal important structure from the second principal
components.
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1. INTRODUCTION

A great opportunity offered by modern genomics is that phylogenetics applied on a genomic
scale, or phylogenomics, should be especially powerful for elucidating gene and genome evo-
lution, relationships among species and populations, and processes of speciation and molecular
evolution. However, a well-recognized hurdle is the sheer volume of genomic data that can now
be generated relatively cheaply and quickly, but for which analytical tools are lacking. There is
a major need to explore new approaches that will enable us to undertake comparative genomic
and phylogenomic studies much more rapidly and robustly than existing tools allow.

Datasets consisting of collections of phylogenetic trees are challenging to analyse, due to their
high dimensionality and the complexity of the space containing the data. Multivariate statistical
procedures such as outlier detection (Weyenberg et al., 2014), clustering (Gori et al., 2016) and
multi-dimensional scaling (Hillis et al., 2005) have previously been applied to such datasets, but
principal component analysis is perhaps the most useful multivariate statistical tool for exploring
high-dimensional datasets. For example, Zha et al. (2001) and Ding & He (2004) showed that
principal component analysis automatically projects to the subspace where the global solution
of K-means clustering lies, and so facilitates K-means clustering to find near-optimal solutions.
Although principal component analysis for data in R

m can be defined in several different ways,
the following description is natural for reformulating the procedure in tree space. Suppose we
have data Z = {z1, . . . , zn} where zi ∈ R

m for i = 1, . . . , n. For any set of k + 1 points V =
{v0, . . . , vk} ⊂ R

m we can define

�(V ) =
{

k∑
i=0

pivi : p0, . . . , pk ∈ R, p0 + · · · + pk = 1

}
, (1)

so that �(V ) is the affine subspace of R
m containing v0, . . . , vk . The orthogonal L2 distance

of any point y ∈ R
m from �(V ) is denoted by d{y, �(V )}, and the sum of squared projected

distances of the data Z onto �(V ) is denoted by

D2
Z {�(V )} =

n∑
i=1

d{zi, �(V )}2.

Then the kth principal component �k corresponds to a choice of V which minimizes this sum.
In R

m, �0 is the sample mean, �1 is the line through the sample mean which minimizes the
sum of squared projected distances, and so on for k = 2, 3, . . .. Although it is not explicit in the
definition above, in R

m the principal components are nested, i.e., �0 ⊂ �1 ⊂ �2 ⊂ · · · . This
description of principal component analysis relies heavily on the vector space properties of R

m:
�(V ) is defined as a linear combination of vectors and the procedure uses orthogonal projection.

However, the space of phylogenetic trees on a fixed set of leaves is not a Euclidean vector space,
so we cannot directly apply classical principal component analysis to a dataset of phylogenetic
trees. Instead, Billera et al. (2001) showed that the set TN of all phylogenetic trees with N + 1
leaves labelled 0, 1, . . . , N forms a CAT(0) space as defined by Bridson & Haefliger (2011,
Definition II.1.1). In CAT(0) spaces any pair of points are joined by a unique geodesic, or
shortest-length path, and an algorithm exists that computes TN geodesics in O(N 4) steps (Owen
& Provan, 2011). Furthermore, projection onto closed sets is well defined in CAT(0) spaces.

The analogue of the zeroth principal component is the unweighted Fréchet mean of the data
z1, . . . , zn. The Fréchet mean is a statistic which characterizes the central tendency of a distribution
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in arbitrary metric spaces. For any metric space S equipped with metric d(· , ·), the Fréchet
population mean μ with respect to the distribution ν is defined by

μ(ν) = arg min
y∈S

∫
S

d(y, x)2 dν(x).

The discrete analogue, the weighted Fréchet mean of a sample Z = {z1, . . . , zn} with respect to
a weight vector w, is

μ(Z , w) = arg min
y∈S

n∑
i=1

wi d(y, zi)
2,

where the weights wi satisfy wi � 0 for i = 1, . . . , n. In any CAT(0) space, μ(Z , w) is a well-
defined unique point given data Z and weight vector w. The definition of the zeroth principal
component �0 in R

m given above coincides with the definition of the Fréchet sample mean with
weights wi = 1 in any CAT(0) space. Several algorithms for computing the Fréchet sample mean
in TN have been developed (Bačák, 2014; Miller et al., 2015) and we review these in § 2·2, as
they play an important role in our method. The term Fréchet mean will be used throughout to
refer to a sample mean unless stated otherwise.

Methods for constructing a principal geodesic in tree space, an analogue of �1 ⊂ R
m as defined

above, have recently been developed. In Nye (2011), the approach involved firing geodesics from
some mean tree. For each candidate geodesic �, the sum of squared projected distances D2

Z(�)

was computed and a greedy algorithm was used to adjust � in order to minimize D2
Z(�). The

geodesics considered were infinitely long, but have the disadvantage that in some cases many
such geodesics fit the data equally well. Subsequent approaches therefore considered finitely long
geodesic segments (Feragen et al., 2013; Nye, 2014). The geodesic segment between two points
v0, v1 ∈ TN is analogous to �(V ) in (1) with k = 1, except that the weights p0 and p1 must be
constrained to be a valid probability vector; that is, p0 and p1 must be nonnegative and sum to 1.
Feragen et al. (2013) constrained the ends of the geodesic to be points in the sample Z and sought
the corresponding geodesic � which minimizes D2

Z(�), whereas Nye (2014) did not restrict the
geodesic and used a stochastic optimization algorithm to perform the minimization.

In this paper we address two fundamental questions: (i) which geometric object most naturally
plays the role of a kth principal component in tree space; and (ii) given such an object, how can we
efficiently project data points onto the object? Our proposed solution is to replace the definition of
�(V ) ⊂ R

m given in (1) with the locus of the weighted Fréchet mean of points v0, . . . , vk in tree
space. Specifically, suppose V = {v0, . . . , vk : vi ∈ TN , i = 0, . . . , k} and define �(V ) ⊂ TN by

�(V ) = {μ(V , p) : p ∈ Sk}
where Sk is the k-dimensional simplex of probability vectors,

Sk =
{

(p0, . . . , pk) : pi � 0, i = 0, . . . , k ,
k∑

i=0

pi = 1

}
,

and μ(V , p) is the Fréchet mean of the points in set V with weights p. We call �(V ) the locus of
the Fréchet mean of V . Our choice of notation is intended to emphasize the analogy between the
definition of �(V ) in tree space and the corresponding definition for R

m in (1). The locus of the
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Fréchet mean is a type of minimal surface, as the following physical analogy suggests. Imagine
connecting a point y ∈ TN to points v0, . . . , vk ∈ TN by k + 1 pieces of elastic. When the point
y is free to move, it will move under the action of the elastic into an equilibrium position in tree
space. If the stiffness of each piece of elastic is allowed to vary independently, corresponding to
different choices for p ∈ Sk , the equilibrium point will move about in tree space, tracing out a
surface. In Euclidean space the locus of the Fréchet mean of some collection of points is an affine
subspace; however, in tree space, the locus can be curved. Surfaces of this kind have recently
been studied in the context of Riemannian manifolds and other geodesic metric spaces (Pennec,
2015). We discuss the relationship of the present paper to that work in § 6.

Our main theoretical results are as follows. First, when V = {v0, . . . , vk} we derive a set of
local implicit equations for �(V ). These allow us to derive conditions for �(V ) to be locally
flat, and also enable us to construct explicit realizations of �(V ) in certain cases. Secondly,
using the implicit equations we show that the locus of the Fréchet mean �(V ) in TN is locally
k-dimensional for generic nondegenerate choices of V , and thus forms a suitable candidate for a
kth principal component. Third, we present an algorithm for projection onto �(V ) which relies
only on the CAT(0) properties of TN . We demonstrate accuracy of the projection algorithm via
a simulation study.

2. THE GEOMETRY OF TREE SPACE

2·1. Construction of tree space and its geodesics

Throughout the paper, the m-dimensional Euclidean vector space is denoted by R
m. The non-

negative and positive orthants in R
m are denoted by R

m
�0 and R

m
>0, respectively. For any vectors

x, y ∈ R
m, ‖x‖ denotes the Euclidean norm of x and 〈x, y〉 denotes the Euclidean inner product.

A phylogenetic tree with leaf set X = {0, 1, . . . , N } is an undirected weighted acyclic graph
with N + 1 degree-1 vertices labelled 0, 1, . . . , N and with no degree-2 vertices. We consider
rooted trees, and the root is the leaf labelled 0. Each such tree contains N + 1 pendant edges,
which connect to the leaves, and up to N − 2 internal edges. The maximum number of internal
edges is achieved when the tree is binary, in which case all non-leaf vertices have degree 3, and
the tree is said to be fully resolved. If a tree contains fewer edges, then it is said to be unresolved
and there must be at least one vertex with degree 4 or higher. Apart from the root edge containing
taxon 0, each edge in a phylogeny is assigned a strictly positive weight, also called the edge
length. Given a tree x ∈ TN , the set of edges of x is denoted by E(x), and the weight assigned to
e ∈ E(x) is denoted by |e|x. It is convenient to define |e|x to be zero whenever e is not contained
in x.

Tree space TN is the set of all phylogenetic trees with leaf set X (Billera et al., 2001). Tree
space can be embedded in R

M for M = 2N − 1 in the following way. If we cut any edge e ∈ E(x),
then the tree x splits into two disconnected pieces. This determines a split Xe|X c

e of the leaf set X ,
where Xe ∪ X c

e = X and Xe ∩ X c
e = ∅. By convention we choose Xe to be the set containing the

root 0, and so there are M = 2N −1 possible splits of X . The collection of splits represented by a
tree x is called the topology of x. Since edges and splits are equivalent, we use the notation E(x)
to also represent the set of splits in x. By choosing some arbitrary ordering of the set of all splits,
each tree x ∈ TN can be represented as a vector in R

M with up to 2N − 2 positive entries given
by the edge weights of x and zeros for each split that is not contained in x. However, an arbitrary
choice of vector will not necessarily represent a tree; for example, the splits {0, 1}|{2, 3, . . . , N }
and {0, 2}|{1, 3, . . . , N } cannot both be contained in the same tree, so any vector for which these
splits both have a strictly positive value does not represent a tree. Two splits Xe|X c

e and Xf |X c
f

are compatible if one of the four sets Xe ∩ Xf , X c
e ∩ Xf , Xe ∩ X c

f and X c
e ∩ X c

f is empty, in which
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case there is at least one tree containing both splits. Any collection of pairwise compatible splits
determines a valid tree topology (Semple & Steel, 2003, Theorem 3.1.4).

The embedding into Euclidean space reveals the combinatorial structure of TN . Every tree
x ∈ TN contains N pendant edges other than the root edge, so TN is the product of R

N
>0 and a

space corresponding to the internal edges. It is therefore convenient to ignore the pendant edges
and consider the corresponding embedding of tree space into RN = R

M−N . Given any tree
topology τ containing m internal edges, the set of trees with topology τ corresponds to a subset
Oτ ⊂ RN which is isomorphic to R

m
>0 with respect to the local Euclidean structure. Each such

region is called the orthant for topology τ . The boundary of Oτ in RN corresponds to trees
obtained by removing one or more internal edges from τ . Equivalently, the trees on the boundary
can be obtained by taking a tree x in Oτ and continuously shrinking one or more internal edges
down to length zero. Thus, for a fully resolved topology τ , the codimension-1 boundaries of
Oτ correspond to trees containing N − 3 internal edges, and in general each codimension-k
boundary corresponds to trees containing N − k − 2 internal edges, for k = 1, . . . , N − 2. There
are (2N − 3)!! possible fully resolved rooted tree topologies, and so TN is built from (2N − 3)!!
orthants isomorphic to R

N−2
>0 together with the boundaries of these orthants which correspond

to trees that are not fully resolved. Orthants are glued together at their boundaries, since a given
unresolved tree containing m internal edges can be obtained by removing edges from several
different trees containing m + 1 edges. Orthants corresponding to fully resolved topologies are
glued at their codimension-1 boundaries in a relatively simple way. If a single internal edge in a
tree with fully resolved topology τ is contracted to length zero and removed from the tree, the
result is a vertex of degree 4. There are three possible ways to add in an extra edge to give a fully
resolved topology, so each codimension-1 face of Oτ is glued to two other such orthants. Trees
containing no internal edges are called star trees; the point 0 ∈ RN corresponds to the set of star
trees and is contained in the boundary of every orthant Oτ .

The topology of TN is taken to be that induced by the embedding into Euclidean space.
Geodesics are constructed by considering continuous paths in TN which are Euclidean straight-
line segments in each orthant. The length of a path is the sum of the Euclidean segment lengths.
As shown by Billera et al. (2001), the shortest such path or geodesic between two points x, y ∈ TN
is unique, and it will be denoted by �(x, y). The distance d(x, y) is defined to be the length of
�(x, y), and this defines the metric d(· , ·) on TN . By definition, d(x, y) incorporates information
about both the topologies and the edge lengths of x and y. Given two points x and y in the same
orthant, �(x, y) is simply the Euclidean line segment between x and y, whereas when x and y
are in different orthants, �(x, y) consists of a series of straight-line segments traversing orthants
corresponding to different topologies. Billera et al. (2001) proved that TN is a CAT(0) space, so
it has several additional geometrical properties (Bridson & Haefliger, 2011).

Owen & Provan (2011) established an O(N 4) algorithm to compute the geodesic between any
two trees in TN . The details of their algorithm are not important for the present application, but we
do require some notation for the form of the geodesics it constructs. Given x, y ∈ TN , let C(x, y)
be the set of splits in E(x) ∪ E(y) which are compatible with every split in E(x) and every split
in E(y). Adopting notation from Owen & Provan (2011), the geodesic �(x, y) is characterized by
disjoint sets of internal splits

A(1)
xy , . . . , A

(�xy)
xy ⊂ E(x), B(1)

xy , . . . , B
(�xy)
xy ⊂ E(y),

where �xy � 0 is an integer that depends on x and y. These sets of splits determine the order in
which edges are removed and added as the geodesic is traversed; the jth topology visited contains
splits
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B(1)
xy ∪ · · · ∪ B(j)

xy ∪ A(j+1)
xy ∪ · · · ∪ A

(�xy)
xy ∪ C(x, y) (j = 0, . . . , �xy).

The union
⋃

A(j)
xy (j = 1, . . . , �xy) is E(x) \ C(x, y) and similarly for tree y. We let A(x, y)

be the ordered list of sets (A(j)
xy : j = 1, . . . , �xy) and similarly define B(x, y). The support of

�(x, y), defined to be the triple {A(x, y), B(x, y), C(x, y)}, characterizes the sequence of orthants
the geodesic traverses. For any set E ⊂ E(x) we adopt the notation

‖E‖x =
(∑

e∈E

|e|2x
)1/2

,

and similarly for subsets of E(y). Owen & Provan (2011) showed that

d(x, y)2 = ‖Axy + Bxy‖2 + ‖Cxy − Dxy‖2, (2)

where Axy is the �xy-dimensional vector whose jth element is ‖A(j)
xy ‖x, and similarly for Bxy the

jth element is ‖B(j)
xy ‖y. The vectors Cxy and Dxy have dimension |C(x, y)| and respectively contain

the edge lengths |e|x and |e|y for e ∈ C(x, y). It follows from (2) that

d(x, y)2 = ‖x‖2 + ‖y‖2 + 2〈Axy, Bxy〉 − 2〈Cxy, Dxy〉, (3)

where ‖x‖2 is the sum of squared edge lengths in x and similarly for y.
The following definition characterizes certain geodesics which behave rather like Euclidean

straight lines.

DEFINITION 1 (Simple geodesic). Suppose that x, y ∈ TN are fully resolved. The geodesic
�(x, y) is said to be simple if each of the sets A(i)

xy and B(i)
xy contains exactly one element for

i = 1, . . . , �xy. Equivalently, �(x, y) is simple if and only if at most one edge length at a time
contracts to zero as the geodesic is traversed.

The following definition determines the set of trees y such that the geodesics �(x, y) to a fixed
point x all share the same support.

DEFINITION 2 (Support region). Fix some point x ∈ TN and an orthant Oτ corresponding to a
fully resolved topology τ . Let σ be the support of �(x, z) for some z ∈ Oτ . Then the set

Sx(σ , τ) = {y ∈ Oτ : �(x, y) has support σ }
is called a support region.The number of support regions for fixed x and τ is finite since geodesics
of the form �(x, z) for z ∈ Oτ have finitely many distinct supports.

Miller et al. (2015) considered very similar subsets of TN and established their properties. This
relied on a map TN → TN defined by squaring edge lengths. In the image of this map, Miller
et al. (2015) showed that each support region is defined by a set of linear inequalities and that the
boundaries between support regions are codimension-1 hyperplanes. It follows, by inverting the
squaring map, that the union over the set �x,τ of possible supports,

⋃
σ∈�x,τ

S◦x (σ , τ), is dense in
Oτ , where S◦x (σ , τ) denotes the interior of each support region; it also follows that the boundaries
between the support regions are continuous codimension-1 surfaces within each orthant.
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2·2. Algorithms for computing the Frechét mean

Several algorithms for computing the unweighted or weighted Fréchet mean of a sample in TN
have been developed (Sturm, 2003; Bačák, 2014; Miller et al., 2015). These algorithms have the
following general structure. Suppose we have a set V = {v0, . . . , vk} ⊂ TN . At the ith iteration
there is an estimate μi of the Fréchet mean of V . To find the next estimate, μi+1, a data point
vj is selected, either deterministically or stochastically depending on the particular algorithm.
The geodesic �(μi, vj) is constructed, and μi+1 is taken to be the point a certain proportion of
the distance along the geodesic. This proportion can depend on the weights when the weighted
Fréchet mean is estimated. In each case, some form of convergence of the sequence μ0, μ1, μ2, . . .
to the Fréchet mean of V can be proved, independent of the initial estimate μ0.

Our method does not make direct use of these algorithms. However, as described in § 4·1,
our proposed algorithm for projecting data onto the locus of the Fréchet mean is adapted from
the algorithm of Sturm (2003), which computes the Fréchet mean of v0, . . . , vk using weights
p0, . . . , pk � 0. By definition, the Fréchet mean is invariant under positive scaling of the weights,
so we can assume p0 + · · · + pk = 1 without loss of generality. Sturm’s algorithm proceeds in
the following way.

Algorithm 1. Sturm’s algorithm for the weighted Fréchet mean.

Fix an initial estimate μ0 and set i = 0.
Repeat:

Sample Vi ∈ {v0, . . . , vk} such that pr
(
Vi = vj

) = pj.
Construct �(μi, Vi).
Let μi+1 be the point a proportion si along �(μi, Vi), where si = 1/(i + 2).
Set i← i + 1.

Until the sequence μ0, μ1, . . . converges.

Convergence can be tested in various ways, for example by repeating until a specified number
of consecutive estimates μi all lie within distance ε of each other. Sturm proved that the points
μi converge in probability to the Fréchet mean of the distribution defined by sampling v0, . . . , vk
according to probabilities p0, . . . , pk .

The deterministic algorithm of Bačák (2014) for computing the weighted Fréchet mean is
similar to Sturm’s algorithm, except that the data points are used cyclically, as opposed to being
randomly sampled, and the weighting is instead taken into account in the definition of the pro-
portions si. We use the algorithm of Bačák (2014) for computing the Fréchet mean in order to
test our projection algorithm, and this procedure is also described in § 4·1.

2·3. Convex hulls

Nye (2014) suggested that the convex hull of k+1 points in TN might be a suitable geometrical
object to represent a kth principal component. A set A ⊂ TN is convex if and only if for all points
x, y ∈ A the geodesic �(x, y) is also contained in A. The convex hull of a set of points is the smallest
convex set containing those points. Any geodesic segment is the convex hull of its endpoints,
and using the convex hull of three points to represent a second principal component is a natural
generalization of the idea of a principal geodesic. Convexity is also a desirable property when
performing projections, as occurs in principal component analysis. However, convex hulls in tree
space do not have the correct dimension. Examples for which the convex hull of three points is
three-dimensional can readily be constructed, as shown in a 2015 University of Kentucky PhD
thesis by G. Weyenberg and in Lubiw et al. (2017). Lin et al. (2016, § 3) show that the dimension
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of a convex hull of three points in TN can be arbitrarily high as N increases. More generally,
convex hulls in tree space are difficult to characterize geometrically, and several fundamental
questions remain unanswered. These issues make convex hulls less appealing as geometrical
objects to represent principal components, so we focus our attention on the locus of the Fréchet
mean. We shall, however, demonstrate the relationship between the locus of the Fréchet mean
and the convex hull for an explicit configuration of three points v0, v1, v2 ∈ TN later in § 3·4.

3. THE LOCUS OF THE FRÉCHET MEAN

3·1. Basic properties

Throughout this section we work with k + 1 vertex points v0, . . . , vk ∈ TN and let V =
{v0, . . . , vk}. As in § 1, we define μ : (TN )k+1 × Sk → TN by

μ(V , p) = arg min
x∈TN

k∑
i=0

pi d(x, vi)
2

and denote the associated locus of the Fréchet mean by �(V ) = {μ(V , p) : p ∈ Sk}.
Here we establish some basic properties of �(V ), while § 3.2 presents a more detailed analysis

of �(V ) within orthant interiors. First, the map μ is continuous and so �(V ) is compact, since
it is the continuous image of a compact set. Continuity of μ can be proved using the determin-
istic algorithm for calculating the weighted Fréchet mean given by Bačák (2014); the output of
the algorithm depends continuously on the inputs V and p. Secondly, the points v0, . . . , vk are
contained in �(V ), since μ(V , ei) = vi where ei denotes the ith standard basis vector in Sk .
Similarly, each geodesic �(vi, vj) is contained in �(V ), by taking p to be a convex combination
of ei and ej. By the same argument, if W is a nonempty subset of V , then �(V ) contains �(W ).

In Euclidean space the convex hull of k + 1 points coincides with the locus of the Fréchet
mean of the points. However, this is not the case in tree space, though �(V ) is contained in
the closure of the convex hull of V . This latter property follows because any point in �(V ) can
be approximated arbitrarily closely by performing a finite number of steps in the algorithm of
Bačák (2014), as shown in § 2·2. Provided the algorithm is initialized with one of the points
v0, . . . , vk , each of these steps remains within the convex hull, and so the limit point is contained
in the closure of the convex hull. Note that �(V ) is itself generally not convex, so there may
not be a unique closest point on �(V ) to any given point z, although the minimum distance of z
from �(V ) is well defined. By using �(V ) as a principal component we have therefore lost the
desirable property of uniqueness of projection.

Fréchet means in tree space exhibit a property called stickiness (Hotz et al., 2013). This
essentially means that for fixed V the map μ(V , ·) : Sk → TN can fail to be injective. Specifically,
depending on the points in V , there may exist open sets in Sk which all map to the same point
in tree space. This has implications when we project data points onto �(V ): given a data point
z, the value of p which minimizes d{z, μ(V , p)}2 might be nonunique, even if there is a unique
closest point x ∈ �(V ) to z.

3·2. Implicit equations for the locus of the Fréchet mean

The algebraic form of tree space geodesics described in § 2·1 can be used to derive implicit
equations for the edge lengths of trees lying on the locus of the Fréchet mean �(V ), and these
equations are fundamental to establishing the dimension of �(V ). For fixed V = {v0, . . . , vk},
consider the objective function 
 : TN × Sk → R defined by
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(x, p) =
k∑

i=0

pi d(x, vi)
2.

Suppose we fix an orthant Oτ for a fully resolved topology τ . Let x ∈ Oτ have edge lengths
xj = |ej|x where ej ∈ E(x) (j = 1, . . . , 2N − 2). Miller et al. (2015) showed that functions of the
form d(x, vi)

2 are continuously differentiable on Oτ with respect to the edge lengths xj. In order
to minimize 
 we also assume that x lies in a set

S =
k⋂

i=0

S◦vi
(σi, τ) (4)

for some choice of supports σ0, . . . , σk . We call sets of this form mutual support regions with
respect to v0, . . . , vk . For each i the sets S◦vi

(σi, τ) are open and the union over possible choices
σi is dense in Oτ , as shown in § 2·1. Since the intersection of finitely many dense open sets
is also dense, it follows that the union of sets of the form S in (4) over all choices σ0, . . . , σk
is dense in Oτ . Each mutual support region is essentially a piece of tree space for which the
combinatorics of the geodesics to v0, . . . , vk do not vary as a reference point moves around the
region. An example of a decomposition of orthants into mutual support regions is given in § 3·4.
Under this assumption on x, we can write down the algebraic form of d(x, vi)

2 using (3), to
give


(x, p) = ‖x‖2 +
k∑

i=0

pi
(‖vi‖2 + 2〈Axvi , Bxvi〉 − 2〈Cxvi , Dxvi〉

)

so that

∂


∂xj
= 2xj + 2

k∑
i=0

pi
∂

∂xj

(〈Axvi , Bxvi〉 − 〈Cxvi , Dxvi〉
)
. (5)

If the point x ∈ S lies on the locus of the Fréchet mean �(V ), then ∂
/∂xj = 0 for all j, and so
we want to evaluate these derivatives to obtain implicit equations relating the edge lengths xj to
the vector p.

Let y be any of the trees v0, . . . , vk . By definition, 〈Cxy, Dxy〉 =∑e∈C(x,y) |e|x|e|y, so

∂

∂xj
〈Cxy, Dxy〉 = |ej|y,

since xj is the length of split ej. The derivative of 〈Cxy, Dxy〉 is therefore a constant. The term
〈Axy, Bxy〉 has a more general functional dependence on xj. By definition,

〈Axy, Bxy〉 =
�xy∑
l=1

‖A(l)
xy ‖x‖B(l)

xy ‖y =
�xy∑
l=1

⎛
⎜⎝∑

e∈A(l)
xy

|e|2x

⎞
⎟⎠

1/2⎛
⎜⎝∑

f ∈B(l)
xy

|f |2y

⎞
⎟⎠

1/2

.

For any edge ej ∈ C(x, y) this expression does not depend on xj, so the derivative is zero. When

ej ∈ E(x)\C(x, y), only the first term in brackets will depend on xj. Since the sets A(l)
xy are disjoint,
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it must be the case that ej is contained in exactly one set, and we define rij to be the index l of
that set when y = vi. Then

∂

∂xj
〈Axvi , Bxvi〉 = ‖B(rij)

xvi ‖
∂

∂xj

⎛
⎜⎜⎝ ∑

e∈A
(rij )
xvi

|e|2x

⎞
⎟⎟⎠

1/2

= xj
‖B(rij)

xvi ‖
‖A(rij)

xvi ‖
.

In the case where A
(rij)
xvi contains only ej and no other splits, we have ‖A(rij)

xvi ‖ = xj, so the expression

becomes ∂〈Axvi , Bxvi〉/∂xj = ‖B(rij)
xvi ‖, which is also a constant. Substituting these expressions into

(5) gives

∂


∂xj
= 2xj + 2

k∑
i=0

pi

{
xj
‖B(rij)

xvi ‖
‖A(rij)

xvi ‖
(1− Cij)− |ej|viCij

}
, (6)

where Cij = 1 if ej ∈ C(x, vi) and 0 otherwise.
We define F : Oτ × Sk → R

2N−2 by

F(x, p) = ∇x
(x, p). (7)

Miller et al. (2015) showed that the function d(x, y)2 for fixed y is continuously differentiable
on Oτ with respect to x ∈ Oτ . Higher derivatives exist within each support region S◦y (σ , τ).
It follows that F is continuously differentiable with respect to the edge lengths for all x lying
within the interior of mutual support regions, and that F is continuous on Oτ . However, F may
not be differentiable on the boundary between mutual support regions. In § 3·3 we show that the
matrix of second derivatives of 
 is positive definite on each mutual support region, and so every
solution to ∇x
 = 0 is a minimum. It follows that �(V ) is locally the solution to F(x, p) = 0.

The following lemma establishes conditions for �(V ) to be a flat affine subspace within the
mutual support region S ⊂ Oτ .

LEMMA 1. If the supports σ0, . . . , σk are such that the geodesics �(x, vi) are simple for all
i = 0, . . . , k, in the sense of Definition 1, then �(V ) is an affine subspace of dimension k or
lower in S =⋂i S◦vi

(σi, τ).

Proof. If all the geodesics �(x, vi) are simple for x ∈ S, then each set A(l)
xvi contains exactly

one split. Then (6) becomes

∂


∂xj
= 2xj + 2

k∑
i=0

piαij

for some constants αij. Solving F(x, p) = 0 gives each edge length xj as a linear combination of
p0, . . . , pk , which establishes the result. Generically, �(V ) is therefore locally a k-dimensional
affine subspace of Oτ , but the dimension may be lower. Further discussion of the dimension is
given in § 3·3. �
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Fig. 1. (a) Topologies for the trees v0, v1, v2 of the example in § 3·4; the circled numbers are weights for internal
edges. (b) Coordinates of the trees v0, v1, v2 under the identification with orthants in R

3; the ξ3 axis points out of the
page. The geodesics between v0, v1, v2 are shown: �(v1, v2) kinks around the origin; the dashed line is between points
(−1, 1, 4/3) and (1,−1, 4/3) on �(v0, v1) and �(v0, v2), respectively; the lower left quadrant does not correspond to

any tree topology, and is not a part of the space.

3·3. The dimension of the locus of the Fréchet mean

That �(V ) has dimension k in each mutual support region follows quickly from the form of
F in (7) through application of the implicit function theorem.

LEMMA 2. The matrix with elements ∂Fj/∂xk is positive definite for all x in mutual support
region S.

A proof of this lemma can be found in the Supplementary Material.

THEOREM 1. Within the mutual support region S, the locus of the Fréchet mean �(V ) is a
submanifold of dimension k or lower. For generic selections of the points v0, . . . , vk , the dimension
is k.

Proof. Application of the implicit function theorem to the map F when x ∈ S establishes that
there is a locally defined function g : Sk → S such that F{g(p), p} = 0 and that the locus {g(p), p}
is a k-dimensional submanifold of S × Sk . In fact, the image g(p) ⊂ S will be k-dimensional
when ∇pF , the derivative of F with respect to p, has rank k , which holds for generic selections
of V in tree space. This is analogous to considering the unique affine subspace containing k +
1 given points in Euclidean space: generically the subspace has dimension k , but it can be
lower. �

3·4. Explicit calculation

In this subsection we construct an explicit example of the locus of the Fréchet mean for
three points in T5. This example helps to demonstrate the nature of geodesics in tree space, the
derivation of the implicit equations for �(V ), the relationship with the convex hull, and other
geometrical features. We start by fixing v0, v1 and v2 to have the topologies and edge lengths
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u1

(a) (b)

u0

x

u1 u0

u2 u2

x2

x1 x1

x2

x

Fig. 2. Decomposition of the locus of the Fréchet mean into mutual support regions. There are
five such regions, represented by shading: two mutual support regions are dark grey, and two
are mid-grey. The dashed lines show the geodesics between a point x and the points v0, v1, v2:
(a) when x is contained in the light grey mutual support region, none of the geodesics �(x, vi)
hit codimension-2 orthant faces, so Lemma 1 shows that �(V ) is planar within the region; the
same applies to the two mutual support regions shaded mid-grey; (b) when x is contained in
one of the dark grey shaded regions, then �(x, v2) is not simple as it intersects a codimension-2

boundary, so the part of �(V ) lying within this region is not planar.

shown in Fig. 1(a). We will ignore the pendant edge lengths, and so the orthants containing these
trees can be identified with three orthants in R

3 equipped with standard coordinates ξ1, ξ2, ξ3.
There are five splits contained in these trees, excluding the pendant splits; they will be written as
{0, 1}, {2, 3}, {4, 5}, {3, 4, 5} and {2, 3, 4} by neglecting the complements in X = {0, 1, . . . , N }.
We then let x({0, 1}) denote the length associated with split {0, 1} in tree x, for example. Under
the identification with R

3 we have

ξ1 = x({2, 3}) ({2, 3} ∈ x), ξ1 = −x({3, 4, 5}) ({3, 4, 5} ∈ x),

ξ2 = x({4, 5}) ({4, 5} ∈ x), ξ2 = −x({2, 3, 4}) ({2, 3, 4} ∈ x)

and ξ3 = x({0, 1}). Figure 1(b) shows the location of trees v0, v1, v2 under this identification.
The orthant ξ1 < 0, ξ2 < 0, ξ3 > 0 does not correspond to a valid tree topology as {3, 4, 5} is
not compatible with {2, 3, 4}. At each codimension-1 face between the orthants shown there is in
fact a third orthant in T5 glued at the same boundary, but these orthants do not play a role in this
example.

In Fig. 1(b) it can be seen that the geodesics �(v0, v1) and �(v0, v2) are straight-line segments
under the identification with R

3, while the geodesic �(v1, v2) kinks at a codimension-2 face. This
behaviour is typical of geodesics in TN : they are straight-line segments within each orthant but
can contain kinks at the boundaries between orthants. Figure 1(b) also shows how the convex hull
of v0, v1, v2 has dimension 3. The dashed line shows the geodesic between points (−1, 1, 4/3)

and (1,−1, 4/3) on �(v0, v1) and �(v0, v2), respectively. The convex hull therefore contains the
points (0, 0, 1) and (0, 0, 4/3), so there are four points which are not coplanar within each orthant
of the convex hull.

Figure 2 shows the decomposition of the orthants into mutual support regions for v0, v1 and v2.
There are five regions in total, and the geodesics �(x, vi) are simple for all i = 0, 1, 2 when x is
contained in three of the regions. Lemma 1 shows that �(V ) is therefore planar in those regions
with equation
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Fig. 3. Perspective view of �(V ) for the example in § 3·4. The locus of the Fréchet
mean is a two-dimensional surface which resembles a rubber sheet pulled taut

between the corners.

ξ = (p0 − 2p1 + p2, p0 + p1 − 2p0, 1+ p0).

We can also explicitly calculate equations for �(V ) in the mutual support region contained in
2ξ1 + ξ2 < 0 and shown in dark grey at the top-left of each panel in Fig. 2. For x contained in
this region, the squared distances to the vertices are

d(x, v0)
2 = (1− ξ1)

2 + (1− ξ2)
2 + (2− ξ3)

2,

d(x, v1)
2 = (2+ ξ1)

2 + (1− ξ2)
2 + (1− ξ3)

2,

d(x, v2)
2 = {51/2 + (ξ2

1 + ξ2
2 )1/2}2 + (1− ξ3)

2,

where x has coordinates ξ1, ξ2, ξ3. These can be used to write down an equation for 
(x, p), and
then (6) becomes

∇ξ
 =
(

2ξ1 + 2
p2ξ151/2

(ξ2
1 + ξ2

2 )1/2
+ 4p1 − 2p0, 2ξ2 + 2

p2ξ151/2

(ξ2
1 + ξ2

2 )1/2
− 2p1 − 2p0, 2p0 + 2− 2ξ3

)
.

Then ∇ξ
 = 0 can be solved to give

ξ =
(

p0 − 2p1 + p2
[
5
/{

1+ f (p)2}]1/2, p0 + p1 − p2
[
5
/{

1+ f (p)−2}]1/2, p0 + 1
)

whenever p0 < 2p1, where f (p) = (p0+p1)/(p0−2p1). The resulting surface is shown in Fig. 3,
from which we can see that �(V ) forms a nonconvex two-dimensional surface that is contained
within the convex hull.

4. PROJECTION ONTO THE LOCUS OF THE FRÉCHET MEAN AND PRINCIPAL COMPONENT ANALYSIS

4·1. Projection

In order to use the surface �(V ) as a principal component, we need to be able to project data
onto �(V ). Let z ∈ TN denote a data point and fix V = {v0, . . . , vk}. A projection of z onto
�(V ) is a point which minimizes d{z, �(V )}. This point may not be unique as �(V ) is not
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convex. A naive algorithm to find a projection is to perform an exhaustive search, as described
in Algorithm 2.

Algorithm 2. Exhaustive search to project z onto �(V ).

Construct a lattice of points L ⊂ Sk . For k = 2 this is a triangular lattice.
For each point p ∈ L use a standard algorithm to compute μ(V , p).
Find p ∈ L which minimizes d{z, μ(V , p)}.

We implemented this algorithm for k = 2 and used the algorithm of Bačák (2014) in the
second step to compute Fréchet means. Algorithm 2 is computationally very expensive, since the
resolution of the lattice L needs to be quite fine in order to obtain accurate results. Consequently
we use the exhaustive search algorithm only as a benchmark for assessing other methods.

We would like a more efficient algorithm defined entirely in terms of the geodesic geometry,
since any reliance on local differentiable structure is likely to be problematic at orthant boundaries.
We propose Algorithm 3, which we call the geometric projection algorithm.

Algorithm 3. Geometric projection algorithm to project z onto �(V ).

Fix an initial estimate μ0 of the projection of z, let p = (0, . . . , 0), and set i = 0.
Repeat:

Construct �(μi, vj) for j = 0, . . . , k .
For j = 0, . . . , k let yi,j be the point a proportion si = 1/(i + 2) along �(μi, vj).
Find r ∈ {0, . . . , k} which minimizes d(z, yi,r).
Set μi+1 ← yi,r and p← ip/(i + 1)+ er/(i + 1), where er is the rth standard basis vector

in Sk .
Set i← i + 1.

Until the sequence μ0, μ1, . . . converges.

Algorithm 3 is a modification of Sturm’s algorithm for computing the Fréchet mean of V ,
Algorithm 1. At each step of Sturm’s algorithm, one of the points yi,j is used as the new estimate
μi+1, and the point yi,j is sampled according to a fixed probability vector p. Here, the new estimate
for the projection, μi+1, is again chosen from yi,0, . . . , yi,k but is selected to greedily minimize
the distance from z. The vector p ∈ Sk estimates the weight vector associated with the projected
point: at iteration i, i × p is a vector with integer entries which counts the number of times the
algorithm has moved the estimate of the projection towards each vertex in V . The computational
cost of the algorithm is similar to that for computing a single Fréchet mean using the Sturm
algorithm. For k = 2 the initial point μ0 is sampled uniformly from the perimeter of �(V ).
Convergence is tested as follows: at iteration i it is determined whether d(μs, μt) < ε for all
s, t ∈ {i−m, . . . , i}, where ε > 0 and m are fixed; if that is the case, then the algorithm terminates.
The output from the algorithm after I iterations is an estimate μI of the projection of z and a
vector p ∈ Sk .

The geometric projection algorithm is presented here without a proof of convergence and
without further theoretical study of its properties. Instead we rely on a simulation study in the
next subsection to assess its effectiveness.

4·2. Simulations

We ran simulations designed to demonstrate that, specifically in the case of k = 2, Algorithm 3
converges to a tree on �(V ) which minimizes d{z, �(V )}. For each iteration of the simulation, a
random species tree u with N = 6 taxa was generated under the Kingman (1982) coalescent. Three
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trees v0, v1, v2 and a fourth test tree z were then generated under a coalescent model constrained
to be contained within the tree u, and thus corresponded to gene trees coming from the underlying
species tree u. Maddison (1997) describes in detail the relationship between species trees and
gene trees. The DendroPy library (Sukumaran & Holder, 2010) was used to generate these trees.
The test tree z was then projected onto �(V ) for V = {v0, v1, v2} using the exhaustive search
algorithm and the geometric projection algorithm. All calculations were carried out ignoring
pendant edges. This particular simulation scheme was chosen in order to generate a variety of
different geometrical configurations for the points v0, v1, v2 and z, as well as being biologically
reasonable. If the trees were sampled with topologies chosen independently uniformly at random,
for example, the simulation procedure would only have explored instances of �(V ) with widely
differing vertices.

The results obtained from the two algorithms were compared in two ways. First, the distances
from the data tree to the projected trees obtained with the two algorithms were computed and
checked to ensure that the projection algorithm yielded a distance less than or equal to the
exhaustive search. Second, the distance between the tree from geometric projection and the tree
from exhaustive search was checked to ensure that the two trees were close together. For the
second check we considered any distance greater than 1% of the total internal length of the data
tree to be a failure.

In a run of 10 000 replications of this procedure, 95·7% of the replications passed the two tests.
However, even the set of failing replications produced a projection result that was quite close to
the exhaustive search result. Among the 435 failing replications, the perpendicular distance for
the projection was an average of 3·7% greater than the perpendicular distance of the exhaustive
search, and the distance between the two results was an average of 4·7% of the total internal
length of the data tree.

We believe that the failing results are attributable to the projection algorithm becoming trapped
in local minima of the perpendicular distance. Starting the algorithm from several locations and
comparing the results would help to mitigate this problem. However, for the present purpose of
fitting higher principal components to a collection of data trees, we believe these small deviations
from the exhaustive search solution are an acceptable trade for the increase in computational
speed.

4·3. Stochastic optimization for principal component analysis

Given data Z = {z1, . . . , zn}, our objective is to find V = {v0, . . . , vk} that minimizes the sum
of squared projected distances D2

Z {�(V )}. We henceforth restrict ourselves to the case k = 2. The
geometric projection algorithm is used to compute D2

Z {�(V )} given V , at least approximately,
so we must now consider how to search over the possible configurations of the vertices V . We
adopt a stochastic optimization approach, Algorithm 4 below, which is similar to that used for
fitting principal geodesics in Nye (2014). We assume that we have available a set of proposals
M1, . . . , Mm, each of which is a map from TN to the set of distributions on TN . In particular, given
any tree x, each Mi(x) is assumed to be a distribution on TN from which we can easily sample.

Algorithm 4. Stochastic optimization algorithm to fit �(V ) to Z .

Fix an initial set V = {v0, v1, v2} and compute D2
Z {�(V )}.

Repeat:
For i = 0, 1, 2:

For j = 1, . . . , m:
Sample a tree w from Mj(vi).
Let V ′ be the set V but with w replacing vi.



916 T. M. W. NYE, X. TANG, G. WEYENBERG AND R. YOSHIDA

Compute D2
Z {�(V ′)} using the geometric projection algorithm.

If D2
Z {�(V ′)} < D2

Z {�(V )} set V ← V ′.
Until convergence.

The optimization algorithm attempts to minimize D2
Z {�(V )} by stochastically varying one

point v ∈ V at a time using the proposals Mi(v). The algorithm is greedy: whenever a configuration
V ′ improves upon the current configuration V we replace V with V ′. Convergence is assessed
by considering the relative change in D2

Z {�(V )} over a certain fixed number of iterations. If
this is less than some proportion then the algorithm terminates. We used three different types
of proposal. The first samples a tree uniformly at random with replacement from the dataset Z .
The second type is a refinement of the first: given a tree x it similarly samples a tree z uniformly
at random with replacement from the dataset Z ; then the geodesic �(x, z) is computed, and a
beta distribution is used to sample a tree some proportion of the distance along �(x, z). The third
type of proposal is a random walk starting from x, as described in Nye (2014). The random walk
proposals can have different numbers of steps and step sizes. The algorithm is not guaranteed to
find a global optimum, and it can become stuck in local minima, so the algorithm must be run
with different starting points for each dataset, and then compare the results from each run.

Two statistics can be used to summarize the fit of �(V ) to a dataset Z : the sum of squared
projected distances D2

Z {�(V )} and a non-Euclidean proportion of variance statistic, denoted by
r2. If the projection of each data point z onto �(V ) is denoted by π(zi) and π̄ denotes the Fréchet
mean of π(z1), . . . , π(zn), then

r2 =
∑n

i=1 d{zi, π(zi)}2∑n
i=1 d{zi, π(zi)}2 +∑n

i=1 d{π̄ , π(zi)}2 .

The denominator in this expression varies with �(V ) since Pythagoras’ theorem does not hold
in tree space. Unlike D2

Z {�(V )}, the r2 statistic is quite sensitive to small changes in V , but it
can be interpreted broadly as the proportion of variance explained by �(V ).

To assess the performance of the algorithm we conducted a small simulation study. Eight
datasets of 100 trees containing N = 10 taxa were generated in the following way. For each
dataset a tree topology was sampled from a coalescent process, and each edge length was sampled
from a gamma distribution with shape α = 2 and rate β = 20, to give a tree w0. Two trees w1 and
w2 were then obtained by applying random topological operations to w0. In four of the datasets, w1
and w2 were obtained by performing nearest-neighbour interchange operations, while in the other
four datasets subtree prune and regraft operations were used. Then, to construct each dataset given
W = {w0, w1, w2}, 100 points were sampled from a Dirichlet distribution on S2 with parameter
(4, 4, 4), and the corresponding points on �(W ) were found using the Bačák algorithm. Each
point was then perturbed by using a random walk, so that each dataset resembled a cloud of
points around the surface �(W ). The step size of the random walk was tuned to produce datasets
classified as having either low or high dispersion. Table 1 summarizes the datasets used and the
simulation results. The stochastic optimization algorithm performs well in every scenario.

5. RESULTS

5·1. Coelacanths genome and transcriptome data

We applied our method to the dataset comprising 1290 nuclear genes encoding 690 838 amino
acid residues obtained from genome and transcriptome data by Liang et al. (2013). Over the
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Table 1. Simulations to assess the stochastic optimization algorithm: the left-
most column describes the number and type of topological operation used to
obtain w1 and w2 from w0 for each dataset; in each scenario, two datasets
were generated by perturbing points on �(W ) via random walks, with low
and high dispersions. Shown are the fitted values D2

Z {�(V )} computed with
the geometric projection algorithm, with reference values D2

Z {�(W )} in paren-
theses, computed with the exhaustive projection algorithm, together with the

non-Euclidean r2 statistic, with reference values in parentheses
Low dispersion High dispersion

Topological scenario D2
Z r2 (%) D2

Z r2 (%)

2 × nearest-neighbour interchange 0·28 (0·27) 41 (50) 2·7 (2·7) 18 (18)

4 × nearest-neighbour interchange 0·31 (0·30) 61 (66) 2·6 (2·9) 27 (20)

2 × subtree prune and regraft 0·26 (0·25) 59 (62) 2·1 (2·4) 29 (21)

4 × subtree prune and regraft 0·27 (0·28) 54 (48) 2·4 (2·8) 24 (22)

past few decades researchers have worked on the phylogenetic relations between coelacanths,
lungfishes and tetrapods, but controversy remains despite several studies (Hedges, 2009). Most
morphological and palaeontological studies support the hypothesis that lungfishes are closer to
tetrapods than they are to coelacanths. However, some research supports alternative hypotheses:
that coelacanths are closer to tetrapods; that coelacanths and lungfish are closest; or that tetrapods,
lungfishes and coelacanths cannot be resolved. Liang et al. (2013) present these four hypotheses
in their Fig. 1, Trees 1–4, respectively.

We reconstructed gene trees using the R (R Development Core Team, 2017) package Phang-
orn (Schliep, 2011), with each gene tree estimated using maximum likelihood under the Le
& Gascuel (2008) model. The dataset consisted of 1290 gene alignments for 10 species: lung-
fish, Protopterus annectens, and coelacanth, Latimeria chalumnae; three tetrapods, frog, Xenopus
tropicalis, chicken, Gallus gallus, and human, Homo sapiens; two ray-finned fish, Danio rerio and
Takifugu rubripes; and three cartilaginous fish included as an out-group, Scyliorhinus canicula,
Leucoraja erinacea and Callorhinchus milii.

Analysis was performed ignoring pendant edge lengths. A total of 97 outlying trees were
removed using KDETrees (Weyenberg et al., 2016), so that 1193 gene trees remained. The Fréchet
mean was computed using the Bačák algorithm and its topology is shown in Fig. 4. The mean tree
does not resolve whether coelacanth or lungfish is the closest relative of the tetrapods. The sum
of squared distances of the data points to the Fréchet mean was 19·7. A principal geodesic was
constructed using the algorithm from Nye (2014): the sum of squared projected distances was
9·53 and the non-Euclidean r2 statistic was 51·4%. Traversing the principal geodesic gives trees
with the same topology as the Fréchet mean that contract down to a star tree at one end of the
geodesic and expand in size at the other end. This shows that the principal source of variation in
the dataset is the overall scale of the gene trees or, in other words, the total amount of evolutionary
divergence for each gene.

Figure 4 illustrates the second principal component. The sum of squared projected distances
was 7·29 and the non-Euclidean r2 statistic was 61·8%. This represents a relatively small increase
in the proportion of variance in relation to the principal geodesic. Three runs of Algorithm 4 were
performed to construct the second principal component. The results obtained had very similar
summary statistics, but the topologies displayed on the surfaces were more variable, so Fig. 4
is a representative choice. Although the projected points are clustered towards the bottom of the
simplex in the figure, the full simplex was drawn to show all the different topological regions.
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Fig. 4. The second principal component computed from the lungfish dataset: (a) the simplex shaded according to the
topology of the corresponding points on �(V ), with the projections of the data points also displayed; (b) topologies
of trees on �(V ). Species abbreviations are based on the binary nomenclature: lungfish, Pa; coelacanth, Lc; frog Xt;
chicken, Gg; human, Hs; ray-finned fish, Dr and Tr; cartilaginous fish, Sc, Le and Cm. The number of data points

projecting to each topology is displayed in brackets.

Of the 1193 gene trees, 1094 projected to points with topology 1, which supports lungfish being
the closest relative of the tetrapods. From the remaining projected data points, 75 have topology
5, placing both lungfish and coelacanth in a clade with the tetrapods. The topologies 3, 4, 6 and
7 have biologically implausible relationships. However, the projected data points lying outside
topology 1 all lie close to the boundary of their respective orthants, having at least one edge
length less than 0·0005. For example, the projected data points with topology 3 have very short
edge lengths for the biologically implausible clades, such as the grouping of X. tropicalis with
S. canicula, and so lie close to trees with more plausible topologies.

Overall, the second principal component suggests that the data support topology 1, with lung-
fish as the closest relative of tetrapods, and that most of the variation within the data comes from
edge length variation within that topology rather than from conflicting topologies. Although the
estimates are subject to random variation, it is interesting that the Fréchet mean and principal
geodesic did not exhibit topology 1, while the second principal component suggests a solution to
the controversial relationship between coelacanth, lungfish and tetrapods. The exhaustive projec-
tion algorithm was used to project the data onto the surface �(V ) produced by Algorithm 4, in
order to compare with the results obtained by geometric projection. The sum of squared distances
between the projected trees obtained with the two different algorithms was 0·004, a small fraction
of the sum of squared projected distances 7·29 for �(V ).

5·2. Apicomplexa

We also applied our method to a set of trees constructed from 268 orthologous sequences from
eight species of protozoa in the Apicomplexa phylum, previously presented by Kuo et al. (2008).
The same dataset was also analysed by Weyenberg et al. (2016), and more details are given in
that paper, such as the gene sequences used to infer each tree. The phylum Apicomplexa con-
tains many important protozoan pathogens (Levine, 1988), including the mosquito-transmitted
Plasmodium species, the causative agent of malaria; T. gondii, which is one of the most prevalent
zoonotic pathogens worldwide; and the water-borne pathogen Cryptosporidium species. Several
members of the Apicomplexa also cause significant morbidity and mortality in both wildlife
and domestic animals. These include the Theileria and Babesia species, which are tick-borne
haemoprotozoan ungulate pathogens, and several species of Eimeria, which are enteric parasites
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Fig. 5. The second principal component computed from the Apicomplexa dataset: (a) the simplex shaded according to
the topology of the corresponding points on �(V ), with the projections of the data points also displayed; (b) topologies
of trees on �(V ). Species abbreviations are based on the species’ binary nomenclature. The number of data points

projecting to each topology is displayed in brackets.

that are particularly detrimental to the poultry industry. Because of their medical and veterinary
importance, whole-genome sequencing projects have been completed for multiple prominent
members of the Apicomplexa. We removed 16 outlier trees previously identified by Weyenberg
et al. (2016) before fitting principal components.

The trees were analysed ignoring pendant edges. The Fréchet mean was computed using the
Bačák algorithm: the corresponding tree topology was unresolved, and is shown in Fig. 5. The
sum of squared distances from the mean to the data points was 24·6. The principal geodesic was
estimated using the algorithm from Nye (2014). The principal geodesic has a non-Euclidean r2

statistic of 40%, and the sum of squared projected distances was 14·2. The principal geodesic
displays two main effects. First, the edges leading to the P. vivax and P. falciparum clade, the E.
tenella and T. gondii clade, and the B. bovis and T. annulata clade vary substantially in length. The
second is a topological rearrangement whereby the clade containing P. vivax and P. falciparum
paired with E. tenella and T. gondii is replaced with a clade containing P. vivax and P. falciparum
paired with B. bovis and T. annulata. However, the second effect involved very short internal
edges, so that along its length, the trees on the principal geodesic resembled the mean tree shown
in Fig. 5 but with different overall scale. The principal geodesic therefore reflects variation in the
scale of the tree.

Figure 5 illustrates the second principal component, with the simplex shaded according to the
corresponding tree topology on �(V ). Three separate runs of Algorithm 4 converged to give
similar results. The summary statistics for the second principal component are: sum of squared
projected distances 10·3; non-Euclidean r2 statistic 56%. While these summary statistics were
consistent between runs, the set of topologies displayed on �(V ) was subject to more variation,
so Fig. 5 is a representative choice, although topologies 1, 4 and 6 were present in all runs. The
results show how the second principal component is able to tease out more from the data than the
variation in overall scale captured by the principal geodesic. Topology 4 is congruent with the
generally accepted phylogeny of taxa within the Apicomplexa and is a resolution of the Fréchet
mean tree: T. annulata and B. bovis group together; the two Plasmodium species group together;
C. parvum is the deepest rooting apicomplexan; and P. vivax, P. falciparum, T. annulata and B.
bovis are monophyletic. The latter group are all haemosporidians or blood parasites.

Figure 5 shows that the second principal component corresponds to variation in topology
consisting of nearest-neighbour interchange operations that transform topology 4 into topologies
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1 and 6. None of the projected trees have topology 5, although this is the topology of one of the
vertices of �(V ). This topology appears to be present in order for �(V ) to be positioned in such
a way as to capture the other topologies. Topology 2 shows evidence of stickiness, as discussed
in § 3·1. Although the topology is unresolved, so that the coloured triangle lies in a codimension-
1 region of tree space, it occupies the nonzero area on the simplex. As for the lungfish, the
exhaustive and geometric projection algorithms were compared on the surface �(V ) produced
by Algorithm 4. The distances between the projected points obtained with the two algorithms
were very small compared to the distances of the data points from �(V ): the sum of squared
distances between pairs of projected points was 3·91× 10−4.

6. DISCUSSION

This paper presents three main innovations: (i) use of the locus of the Fréchet mean �(V ) as an
analogue of a principal component in tree space; (ii) proof that �(V ) has the desired dimension;
and (iii) the geometric projection algorithm for projecting data onto �(V ). The locus of the
Fréchet mean was first proposed as a geometric object for principal component analysis in tree
space in a 2015 University of Kentucky PhD thesis by G. Weyenberg. Pennec (2015) made a
similar proposal for an analogue of principal component analysis in Riemannian manifolds and
other geodesic metric spaces, called barycentric subspace analysis. The barycentric subspaces of
Pennec correspond exactly to the surfaces �(V ) considered in this paper, except that the weights
p0, . . . , pk are not constrained to lie in the simplex and can be negative. Pennec’s approach,
however, is principally based in the context of a Riemannian manifold rather than in tree space,
though he points out the potential for generalization. There are substantial differences between
barycentric subspace analysis and the method presented in this paper. In particular, a key aim of
barycentric subspace analysis is to produce nested principal components, �0 ⊂ �1 ⊂ �2 ⊂ · · · ,
while we do not have that restriction here. The nesting is achieved by either adding or removing
points from V in order to obtain, respectively, a higher- or lower-order nested principal component.
This is also possible in the context of our analysis, but the kth principal component would in
each case form part of the boundary of the (k + 1)th principal component. This is undesirable as
it leads to poorly fitting principal components. For example, suppose that the second principal
component is constructed by adding an extra vertex to the principal geodesic; many data points
would project onto the edge of the second principal component corresponding to the principal
geodesic rather than being distributed over the interior of the surface. Similar problems arise if
the analysis is performed by removing points from V sequentially. These problems do not arise
with Pennec’s methodology, because the weights p0, . . . , pk are not restricted to the simplex, so
a nested principal component can lie in the interior of higher-order components. In contrast, the
existing algorithms for computing the Fréchet mean in tree space and our algorithm for projection
onto �(V ) all require the weights p0, . . . , pk to lie in the simplex, and this motivated the decision
to consider principal components which are not nested in this paper. If these algorithms could
be adapted to allow negative values for the weights, then a nested principal component analysis
would be possible in tree space.

Our analysis has been restricted to datasets with relatively few taxa and to the construction of the
first and second principal components. The algorithms presented in this paper scale linearly with
respect to the number of data points n, but run in polynomial time with respect to the number of taxa
N . However, by partitioning the dataset for the geometric projection algorithm, parallel computer
architectures can be employed and the speed-up is approximately proportional to the number of
processors used.While the geometric projection algorithm runs relatively quickly, the calculations
involved in searching for the optimal set of vertices V can be very substantial. The experimental
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datasets in § 5 took between one and three days to analyse, running on four processors each. For
higher-order components, k > 2, this computational burden will increase, and it is likely that
finding a global minimum for D2

Z {�(V )} will be more difficult. While the method presented in
this paper generalizes to arbitrary k , including the geometric projection algorithm, computational
issues limited our analysis to k � 2. However, fitting a principal component �(V ) with k = 3
would give an upper bound on D2

Z {�(V )} even if a global minimum were not found, and hence
an approximate lower bound on the non-Euclidean r2 statistic. Consequently, even a poorly fit
principal component with k = 3 might give some indication of the additional variance explained
by higher-order components.

Uncertainty in estimated principal components could be assessed by bootstrap methods; for
example, one can generate replicate datasets by resampling the data z1, . . . , zn and constructing
principal components for each replicate. An alternative bootstrap procedure involves estimating
a principal component �(V ) for z1, . . . , zn and then generating replicate datasets by randomly
perturbing the projection of each point zi onto �(V ) using a random walk, in a similar way to the
simulations in § 4·3. However, both these approaches are highly computationally expensive, and
would only be feasible for relatively small datasets. Obtaining analytical results about uncertainty,
such as proving validity of the bootstrap procedure or establishing confidence regions for principal
components, would involve development of asymptotic theory on the space of configurations of
the vertices V , and this lies well beyond existing probability theory on tree space (Barden et al.,
2013).

The figures in § 5 demonstrate the potential for creating visualizations of the data which reveal
meaningful biological structure. The pattern of projected points obtained for the experimental
datasets we considered were very similar to results obtained via multi-dimensional scaling. How-
ever, multi-dimensional scaling is not capable of revealing the features of the dataset that cause
the observed variation. More information could be included in the graphical representation of
our results, such as the distance of the data points from their projections, information about the
principal geodesic, and the proximity of points to orthant boundaries.

Our software for finding principal components in tree space is available to download from
http://www.mas.ncl.ac.uk/∼ntmwn/geophytterplus/. The datasets analysed in this paper are also
available from that website. An optional R package used to produce the figures in this article can
be obtained from https://github.com/grady/geophyttertools.

We presentedAlgorithm 3, the geometric projection algorithm, without a proof of convergence,
and we used simulation to assess its accuracy. The algorithm is attractive in that it is defined
entirely in terms of the geodesic structure on tree space, so it could be used on any geodesic metric
space, including Riemannian manifolds. The algorithm clearly deserves further investigation, and
we intend to study its properties in future work.
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