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Abstract
Primary graft dysfunction (PGD) is one of the most common complications in the early postoperative period and is the 
most common cause of death in the first postoperative month. The underlying pathophysiology is thought to be the ischae-
mia–reperfusion injury that occurs during the storage and reperfusion of the lung engraftment; this triggers a cascade of 
pathological changes, which result in pulmonary vascular dysfunction and loss of the normal alveolar architecture. There are 
a number of surgical and anaesthetic factors which may be related to the development of PGD. To date, although treatment 
options for PGD are limited, there are several promising experimental therapeutic targets. In this review, we will discuss the 
pathophysiology, clinical management and potential therapeutic targets of PGD.
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Introduction

Since the first successful lung transplant in 1981, there 
have been tremendous advances in technology, surgical and 
anaesthetic techniques, as well as postoperative care of lung 
transplant patients [1]. The morbidity and mortality rates are 
considerably lower compared to a decade ago, and it is esti-
mated that more than 4000 lung transplants are now carried 
out each year worldwide [2, 3]. However, the early postop-
erative period remains a perilous time for the patients. It is 
estimated that approximately 7% of lung transplant patients 
dies within the first month after the operation, and more will 
suffer complications [2].

Primary graft dysfunction (PGD) is one of the most fre-
quent complications in the early postoperative period. It 
occurs in approximately 10% of the recipients, and is asso-
ciated with 42% mortality in the month after transplant, 

sevenfold increase compared to patients without PGD [4]. 
In our previous review, we discussed the pre-transplantation 
issues with donor and graft selection, graft harvesting and 
storage. In this review, we will discuss the pathophysiology 
of ischaemia reperfusion injury (IRI) and PGD.

Primary graft dysfunction

PGD is the most common cause of death in the first 30 days 
after lung transplant [2]. It occurs usually within the first 3 
days after lung transplant as demonstrated by hypoxemia 
secondary to impaired gas exchange and is associated with 
non-cardiogenic pulmonary infiltrates on chest radiograph 
[5]. It can be classified according to the Internal Society of 
Heart and Lung Transplant (ISHLT) grading system based 
on the arterial  O2 partial pressure to fraction of inspired  O2 
 (PaO2/FiO2) ratio and the presence of chest radiograph find-
ings. High-grade graft dysfunction is defined as the presence 
of both high  PaO2/FiO2 ratio and radiological pulmonary 
infiltrate which is associated with significantly worse prog-
nosis [6]. It has been found that more severe PGD as defined 
by the ISHLT grading system is associated with significantly 
worse prognosis [7]. In most lung transplant cases, the graft 
vasculature is flushed with preservative solution which is 
later kept in cold storage for the transfer process. It has been 
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noted in animal studies that even without the transplant sur-
gery, iatrogenic lung ischaemia and subsequent reperfusion 
results in respiratory and haemodynamic changes similar 
to that of PGD, demonstrating hypoxia, pulmonary oedema 
and reduced lung compliance [8–10]. It is, therefore, thought 
that IRI is likely to play a significant role in the development 
of PGD [11].

Ischaemia reperfusion injury

Energy depletion

As discussed in our previous review, ischaemia can very 
rapidly lead to a cascade of pathological changes in the cells. 
High-energy phosphate becomes depleted, which impairs 
a wide range of vital cellular functions. The lack of  Na+/
K+ ATPase action results in rapid loss of electrochemical 
gradients, while influx of sodium causes cell swelling. Dys-
regulated calcium homeostasis results in calcium accumu-
lation in the cytosol which results in aberrant activation of 
various signalling systems such as membrane phospholipase 
and phosphokinases [12, 13]. Ultimately, damage caused by 
ischaemia results in cell death and the release of damage-
associated molecular patterns molecules such as HMGB-1 
and HSP-60 [14, 15]. These molecules can bind to recep-
tors such as Toll-like receptors and RAGE, and results in 
activation of MAPK and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB). This eventually leads 
to the upregulation in cytokine production, which not only 
activates the alveolar resident macrophages, but also serves 
as chemo-attractants and activators to circulating immune 
cells upon reperfusion [16].

During ischaemia, metabolism of ATP results in the 
accumulation of hypoxanthine, which upon reperfusion 
induces oxidative stress [11]. In addition, it is thought that 
lack of shear stress on the vascular endothelium results in 
upregulated expression of nicotinamide adenine dinucleotide 
phosphate oxidase (NADPH oxidase) [17]. Subsequently 
during reperfusion, the upregulated activities of NADPH 
oxidase results in a surge of reactive oxygen species (ROS) 
generation.

It has also been demonstrated that ischaemia can result 
in significant vascular dysfunction. Studies have shown that 
cold ischaemia which occurs during storage can results in 
significant vascular endothelial structural changes [18], 
increasing the vascular permeability [19] while impairing 
pulmonary vasodilatation [20]. The vascular dysfunction 
further worsens the pathological changes upon reperfusion.

What is unique in lung graft, however, is its gas exchange 
surface and ability to maintain oxygenation in ischemic con-
dition. In animal models, preservation of lung graft inflated 
with 21% oxygen maintained its ATP and lactate level for 

more than 60 min during warm ischaemia; this is further 
augmented in grafts inflated with 100% oxygen, which main-
tained ATP production for almost 5 hours [21]. As such, it 
is recommended that lung grafts should be stored inflated 
or ventilated [6].

Oxidative and nitrosative stress

IRI is often characterised by rapid accumulation of ROS 
soon after reperfusion, with increased activities of ROS-
generating enzymes such as NADPH oxidase, xanthine 
oxidase and myeloperoxidase [8, 17, 22, 23]. Reduction in 
anti-oxidative capacity [15, 24] and the occurrence of oxida-
tive stress [24–27] are also observed. NADPH oxidase activ-
ity seems to play a significant role in the pathophysiology 
of IRI, as NADPH oxidase knockout animal demonstrates 
significantly blunted oxidative stress and inflammatory 
response to IRI. The lung grafts also displayed improved 
compliance, reduced pulmonary hypertension and oedema. 
Similar findings were also seen with NADPH oxidase inhi-
bition [15, 22]. It is thought that NADPH oxidase activ-
ity may also enhance the release of chemokines such as 
(C-X-C motif) ligand 1 (CXCL1), CXCL2, (C–C motif) 
ligand 2 (CCL 2) and CCL 5 responsible for further recruit-
ing immune cells such as neutrophils to the site of injury 
[15, 22]. The recruitment of neutrophil leads to a number 
of detrimental effects on the lung tissue, including further 
generation of ROS [28].

Another important source of reactive oxygen species is 
the activity of xanthine oxidase. Xanthine oxidase is an oxi-
doreductase which catalyses the reaction of hypoxanthine 
to xanthine, then to uric acid. Both steps generate hydro-
gen peroxide. As mentioned previously, hypoxia leads to 
the accumulation of hypoxanthine from the breakdown of 
ATP [11]. Studies in the past have also suggested that xan-
thine oxidase conversion from its precursor enzyme xanthine 
dehydrogenase is augmented by hypoxia and by neutrophil 
activity [29–31]. The upregulated xanthine oxidase activity, 
as well as an abundance of substrate leads to the excessive 
production of ROS. Indeed, it has been demonstrated that 
xanthine oxidase inhibition in animal models of IRI can sig-
nificantly reduce the extent of the endothelial dysfunction 
[32].

In addition, oxidative stress generated by NADPH oxi-
dase may also have an impact on the nitric oxide synthase 
(NOS) function. Oxidation of the NOS co-factor tetrahyd-
robiopterin uncouples NOS function, and causes it to gener-
ate ROS instead of nitric oxide, which further adds to the 
oxidative burden [33, 34]. In the presence of excessive ROS, 
nitric oxide may also be converted to peroxynitrite, a reac-
tive nitrogen species which could cause oxidation and nitra-
tion injury [35].
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Inflammatory response

IRI is associated with a cascade of proinflammatory changes, 
including the upregulation of cytokines such as tumour 
necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), IL-6; 
chemokines such as CCL1, CCL5, CXCL2 (IL-8); as well 
as immune cell adhesion molecules such as integrin, inter-
cellular adhesion molecule 1 (ICAM 1) and vascular cell 
adhesion protein (VCAM) [36–38]. It is thought that TNF-α 
upregulates NF-κB by inhibiting IκB, which further upregu-
lates TNF-α production and other inflammatory mediators as 
mentioned above [15, 36, 38, 39]. This promotes the chemo-
taxis of inflammatory cells such as neutrophils and natural 
killer cells.

Indeed, IRI is characterised by neutrophil infiltration 
and neutrophil activity, and inhibiting neutrophil function 
reduces the extent of ischaemia reperfusion related damage 
[23, 24, 38, 40], while IL-17, produced by natural killer T 
cell, is another potent neutrophil chemoattractant [41].

Outcome of injury: vascular dysfunction and loss 
of alveolar architecture

Pre-clinical studies showed that lung IRI is characteristically 
associated with pulmonary hypertension and increase in the 
lung water content. Cold storage could impair the function of 
both the endothelial barrier and the vascular smooth muscles 
[18–20]. In addition, both the recruited neutrophil and ROS 
generation during the reperfusion has also been shown to 
cause increase in permeability [22, 42–44]. The injury has 
also been associated with impaired vascular smooth muscle 
relaxation, leading to pulmonary hypertension [45, 46]. It 
has been suggested that this is likely mediated by HIF-1α, 
iNOS and ATP dependent potassium channels [47, 48].

The combination of cell death, inflammatory changes 
and pulmonary vascular dysfunction leads to widespread 
changes to the microscopic architecture of the alveolar 
space, with interstitial oedema, neutrophil infiltration, hya-
line membrane formation and intra-alveolar haemorrhages 
[49–51]. Not surprisingly, this impairs both the alveolar gas 
exchange as well as the ventilation mechanics.

Pre‑transplant risk factors of PGD

Clinically, both donor and recipient factors could impact 
on the occurrence of PGD. Donor factors include age and 
history of smoking, gender and pre-existing illness [52–55]. 
Recipient factors include BMI, gender, pre-existing lung 
pathologies such as sarcoidosis, pulmonary fibrosis and pul-
monary hypertension [52, 56, 57]. Prolonged ischaemic time 
is also associated with significantly higher risk of PGD [52].

It is estimated that PGD accounts for almost 1 in 4 post-
transplant deaths in the first month [55, 58]. In recent years, 

extensive research has been done in attempt to reduce the 
development of PGD, including shortening ischaemic time, 
controlled reperfusion, and various medications and IRI 
pathway modulations [59–62]; we will discuss this in detail 
in the next section.

Surgical and anaesthetic consideration 
in PGD prevention

Reperfusion considerations

As described above, repurfusion and ventilation of lung graft 
are closely linked to the development of IRI and subsequent 
PGD. Introduction of oxygen to the ischaemic lung graft 
could result in worsened oxidative stress. The pulmonary 
vasculature is often constricted which results in pulmonary 
hypertension, and reperfusion induces a myriad of immune 
cells which worsens inflammation. This would make the 
reperfusion process a therapeutic target of preventing PGD 
[57, 63]. Due to pulmonary vascular constriction, a sudden 
restoration of circulation can result in sharp increase in the 
pulmonary artery pressure. A few studies have looked into 
the effect of varying rates of reperfusion on the function 
of the lung graft, and found that initial perfusion the lung 
graft at a lower flow rate is associated with significantly less 
pulmonary oedema and reduced shunting, which results in 
improved lung compliance and gas exchange [64–67].

Indeed, Ardehal et al. conducted a clinical study where 
the lung graft was perfused with of a modified perfusate via 
pressure-controlled delivery for 10 min, before pulmonary 
blood flow was re-established. They reported that the modi-
fied perfusion was associated with a significantly lower rate 
of PGD [63].

In addition to the pressure-controlled delivery, Ardehal 
also reported a number of modifications to the perfusate, this 
includes leucodepletion [63]. There are also animal studies 
which suggest that leucodepletion during both ex vivo lung 
perfusion (EVLP) and reperfusion after engraftment results 
in improved graft function [68, 69].

Diamond et al. conducted a multicentre retrospective 
study of 1255 lung transplant patients, and found that the 
only significant perioperative risk factors associated with 
PGD were  FiO2 during reperfusion, single lung transplant 
and cardiopulmonary bypass. The study went on further to 
illustrate that the odd ratio for PGD increases by 10% for 
every 10% increase in  FiO2 at the time of reperfusion [57]. 
While the authors acknowledged that high oxygen require-
ment is an indication of poor graft function, they also com-
mented that the observed variation of reperfusion  FiO2 may 
be partly due to clinician preference and suggested judicious 
 FiO2 setting may be a modifiable risk factor in PGD. Studies 
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directly comparing liberal vs restrictive oxygen therapy at 
the time of reperfusion are warranted.

Inhaled nitric oxide

Nitric oxide is known to possess vasodilatory effect to blood 
vessels by relaxing smooth muscle cells through increasing 
cGMP. It was thought that inhaled nitric oxide (iNO) may 
bring localised, vasodilatory effect to pulmonary vascula-
ture, improving oxygenation [70, 71]. Clinical studies have 
showed the use of iNO in acute respiratory distress syn-
drome (ARDS) is associated with improved oxygenation, 
although no impact on mortality is observed [72]. Some evi-
dence showed that iNO may be beneficial on the prevention 
and treatment of PGD in lung transplantation. A small study 
that included 6 patients has shown that the administration 
of iNO immediately after lung transplant reduces pulmo-
nary artery pressure and improves oxygenation [73] Another 
study investigated the effect of postoperative administration 
of iNO for a period of 84 h on average, on those who had 
already developed PGD. It showed that iNO improves the 
arterial oxygenation and reduces pulmonary artery pressure 
[70]. In contrast, a randomised controlled trial showed that 
iNO may not be beneficial in treatment of PGD [74]. In one 
study, iNO or placebo were administered 10 min after the 
reperfusion at lung transplantation. It showed that there is 
no difference on  PaO2/FiO2 ratio, successful extubation and 
intensive care unit discharge time or 30-day postoperative 
mortality [74]. Studies also focused on the preventative role 
of iNO on PGD. Evidence has shown that prophylactic iNO 
does not prevent the development of PGD but may improve 
oxygenation in those who have already developed PGD [75]. 
A similar result was also seen in a study that looked in the 
effect of prophylactic use of iNO during the first 30 min 
of reperfusion showed no impact on preventing PGD [76] 
Another randomised controlled trial study also showed that 
prophylactic iNO has no impact on the development of 
pulmonary oedema [77]. iNO exposure could theoretically 
lead to the formation of methaemoglobin (MetHb), but the 
risk of significant methaemoglobinaemia is minimal at the 
therapeutic doses. A Cochrane review of 679 patients who 
received iNO therapy reported 4 cases where MetHb were 
above 5% [72]. On the other hand, the risk of iNO induced 
methaemoglobinaemia in children may be significant [78]. 
In addition, there have been cases of renal failure observed 
with iNO exposure [70, 72].

Inhaled prostaglandin

Prostaglandin (PGE1) can cause vasodilation by increasing 
the intracellular cyclic adenosine monophosphate (cAMP) 
[79]. Similar to iNO, it was thought that inhaled PGE1 
may bring vasodilatory effect to the lungs and improve 

oxygenation [80]. PGE1 may also reduce the expression 
of proinflammatory mediators such as TNF-α, IL12; and 
promote expression of IL 10 after IRI [81]. Other studies 
have reported that PGE1 reduces the expression of vascu-
lar adhesion molecules and monocyte recruitment, while 
increasing the expression of IL 6 [82, 83]. A meta-analysis 
of 25 studies has suggested that inhaled PGE1 may improve 
oxygenation in patients with ARDS [84]. A study evalu-
ated the effect of intraoperative administration of aerosol 
PGE1 during lung transplantation. Compared to the patient’s 
baseline, an improvement on  PaO2/FiO2 ratio and reduc-
tion in pulmonary arterial pressure are observed, whilst the 
haemodynamics remain unchanged [85]. Another study eval-
uated the effect of donor PGE1 bolus before cross clamp-
ing plus PGE1 addition to the graft preservation fluid, and 
reported that the intervention is associated with significantly 
increased long-term survival (odds ratio = 9.8) [86]. It has 
also been suggested that PGE1 infusion may be beneficial as 
a rescue treatment in patients with severe PGD [87].

Positive end expiratory pressure (PEEP)

The use of PEEP as a ventilation strategy has been shown to 
improve pulmonary gas exchange and oxygenation, decrease 
work of breathing [88, 89]. Evidence showed that high PEEP 
may reduce mortality in patients with ARDS [90]. Animal 
and clinical studies have shown that higher PEEP may also 
play a role in prevention of PGD after lung transplant. A 
study was carried out to compare higher and lower PEEP 
on unilateral lung transplant on pigs. It showed that higher 
PEEP (10 cmH2O) compared to lower PEEP (5 cmH2O) 
has an impact on increased compliance and reduced airway 
resistance, although no difference is observed on  PaO2 level 
[91]. A randomised controlled study investigated the effect 
of open lung protective ventilation on lung transplant [92]. 
They compared the control group using 5  cmH2O PEEP 
and tidal volume of 6 ml kg−1 for 2 lung ventilation and 
4 ml kg−1 for 1 lung ventilation and the study group using 
pressure-controlled ventilation of 16  cmH2O with 10  cmH2O 
PEEP and recruitment manoeuvres [92]. It was shown that 
the group with higher PEEP and the use of recruitment 
manoeuvres is associated with an improvement of  PaO2/
FiO2 as well as shorter time for tracheal extubation. How-
ever, a prolonged effect on the improvement of  PaO2/FiO-
2was not observed.

β‑Adrenoceptor agonists

β2-Adrenoceptors are distributed throughout the lung tis-
sue. β2-Adrenoceptors agonists are commonly used for its 
bronchodilating effect; however, other proposed effects of 
β2-adrenoceptors agonists include the relaxation of vascu-
lar smooth muscle, maintenance of the endothelial barrier, 
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and may promote the uptake of alveolar fluid. A number 
of animal studies have demonstrated that nebulisation of 
β2 selective agonists during ventilated EVLP is associated 
with significantly lower graft vascular resistance, reduced 
oedema development, better pulmonary compliance and 
better gas exchange [23, 93–95]. Similar findings have also 
been observed in animal recipients of the transplant stud-
ies [96, 97]. In addition, a study by Sapru et al. [98] found 
that single-nucleotide polymorphisms (SNP) in the donor 
β adrenoceptor genes are associated with significant varia-
tions in the graft viability, with higher viability in SNPs with 
higher isoprenaline sensitivity [99, 100].

To date, the only human study using β2 agonist was 
reported by Ware et al. [73]. They demonstrated that in 
brain dead critical care patients awaiting transplant work-up, 
intermittent nebulisation of salbutamol did not result in sig-
nificant change in the oxygenation or lung compliance. Not 
surprisingly, significantly more patients in the intervention 
group developed tachycardia which warranted stopping of 
the medication [94]. However, it is possible that the effective 
window of β2 agonists is limited to the graft storage period; 
and that higher dose of β2 agonists may be administered to 
the isolated lung without the cardiovascular side effects [96, 
97]. More human studies are needed to clarify if aggres-
sive β2 agonist treatments are clinically useful during graft 
retrieval and implantation process.

Other interventions

Transfusion-related acute lung injury (TRALI) is defined 
as acute lung injury within 6 h after a blood transfusion, 
and is characterised by radiological pulmonary infiltrate and 
hypoxia. The risk of TRALI is increased by both intrinsic 
lung injury (as with surgical manipulation of the graft) and 
systemic insult (as with cardiopulmonary bypass), thus mak-
ing lung transplant patients high risk for developing TRALI 
[101]. In addition, there is a possibility that the antibody 
from the transfused blood may cross react with the lung 
graft [102]. Judicious use of blood products, as well as close 
monitoring is required to minimize the risk.

Non-invasive ventilation (NIV) may also be beneficial 
in patients who have developed PGD [103]. A study inves-
tigated the role of NIV in those who had developed acute 
respiratory failure after lung transplant. After the admin-
istration of NIV for an average of 5 days, improved  PaO2/
FiO2ratio and reduction in  PaCO2 were observed [103].

Prone positioning may also be beneficial in protection 
against PGD. It is possible that ventilating through prone 
position with the use of non-invasive high-frequency percus-
sion ventilation postoperatively may help with improved gas 
exchange and mucus clearance [104].

Low-flow venovenous removal of  CO2 is a method that 
removes 20–25% of carbon dioxide from blood. A small 

study including 3 patients was carried out to investigate the 
beneficial role of venovenous removal of  CO2. It showed 
that together with the use of iNO and prostacyclin, a reduc-
tion in  PaCO2, pulmonary infiltrates and increased  PaO2/
FiO2 ratio were observed [105]. Similar results on improved 
 PaO2/FiO2 ratio and pH level were also observed in another 
study, although one patient eventually died [106].

Novel therapies for ischaemia–reperfusion 
injury

In the last decade, a number of experimental approaches for 
minimising IRI have been studied and reported in literature, 
with varying degrees of success. A summary of the therapies 
and their effects are summarised in Fig. 1.

Ischaemic pre‑conditioning and post‑conditioning

Ischaemic pre-conditioning is a process of transient (seconds 
to minutes) disruption of blood supply, which is thought to 
have protective effects against further ischaemia and IRI. 
It can be carried out directly on the tissue of interest, or 
carried out remotely on another part of the organism [107, 
108]. Ischaemic post-conditioning on the other hand is a 
process of deliberate, cyclic disruption of blood supply after 
the initial insult [109], which ideally needs to occur within 
minutes of the initial insult [110].

In animal models of IRI, both direct and remote ischae-
mic pre-conditionings, as well as ischaemic post-condition-
ing have been demonstrated to reduce the extent of the IR 
injury [109, 111, 112]. Ischaemic conditioning has a myriad 
of effects on the inflammatory response to IR, it reduces the 
expression of inflammatory cytokines such as TNF-α, IL1b, 
IL6, CCL2; reduces leucocyte recruitment and extravasation 
by downregulating ICAM [107, 111, 113]. The reduction 
in neutrophil chemotaxis and activity also reduces of the 
production of ROS, as seen by a reduction in MDA and 
lipid hydroperoxides (LPO) production [27]. In addition, 
ischaemic conditioning also reduces mediators of apopto-
sis, including BAX, Caspase, cytochrome C and Fas ligand 
[108, 112].

Indeed, ischaemic pre-conditioning and post-condition 
have both demonstrated protective effects against signs of 
PGD in animal models of lung transplant. In a rat model 
of lung transplant, Hu et al. reported significantly less pul-
monary oedema and better gas exchange in animals under-
went ischaemic post-conditioning, with 5 cycles if 1 min 
occlusion of the pulmonary artery [107]. While Jiang et al. 
reported significantly less pulmonary oedema and micro-
scopic changes after transplant in animals underwent both 
direct and remote ischaemic pre-conditioning [49].
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In 2014, Lin et al. reported a clinical trial of 60 patients 
who underwent bilateral lung transplant. Patients were ran-
domised to receive either 3 cycles of lower limb ischaemic 
pre-conditioning prior to the reperfusion, or the control 
group. They reported a tendency towards higher alveo-
lar–arterial  O2 gradient and lower rate of PGD; however, 
neither were statistically significant [114]. The exact role of 
ischaemic conditioning on the outcome of lung transplant 
will need to be explicated through larger clinical trials.

Prostacyclin analogue

Iloprost is a prostacyclin analogue and a cyclic adenosine 
monophosphate (cAMP)-mediated pulmonary vasodilator. It 
is thought that in the context of lung transplant, the pulmo-
nary vasodilatory effect could alleviate pulmonary hyperten-
sion and improve gas exchange through reducing shunting 
[115]. In addition, it is thought to maintain endothelial integ-
rity, and reduce platelet aggregation [116]. Animal studies 
have shown that when nebulised through the ventilator, or 
added to the preservative fluid, iloprost administration is 
associated with better function of the lung graft in the recipi-
ent animal, with significantly lower pulmonary vascular 
resistance, better compliance and oxygenation [45, 46, 117].

In addition, Lee et al. reported that in a cohort of 60 
patients, those given nebulised iloprost immediately after 

reperfusion had significantly lower oxygen requirement 
and less pulmonary infiltrate, as well as higher compliance 
[61]. The current literature suggests that iloprost is a promis-
ing lung graft protecting agent, and large clinical trials are 
needed to confirm its benefits.

Hydrogen sulfide donors

Hydrogen sulfide is a gas with a characteristically pun-
gent odour and is toxic at a high concentration [118]. At 
a lower concentration, however, it has been shown to have 
anti-inflammatory, anti-oxidative and anti-apoptotic effects 
[119, 120].

In animal studies, hydrogen sulfide administered through 
the ventilator, as well as hydrogen sulfide donor sodium 
hydrosulfide given systemically to the graft recipients have 
been shown to reduce the expression of pro-inflammatory 
cytokines, alleviates oxidative stress, and reduce caspase 
driven apoptosis. This is associated with an increased pul-
monary compliance, increased alveolar gas exchange, and 
reduction in shunting and oedema [121–124].

Other inhaled gases

Hydrogen gas has been proposed to be a potent free radi-
cal scavenger as well as anti-inflammatory agent [125]. In 
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Fig. 1  Potential therapeutic agents for primary graft dysfunction and their mechanisms of action
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animal models, insufflating the lung graft with 2–3% hydro-
gen is associated with significantly better compliance and 
gas exchange, reduced pulmonary vascular resistance and 
histological changes. This is thought to be mediated through 
a number of mechanisms, such as reducing the expression 
of proinflammatory cytokines (TNF-α, IL-1, 6, 8), reducing 
oxidative stress and reducing caspase-mediated apoptosis 
[24, 50, 126].

Although the mechanism is not clear, carbon monoxide is 
thought to have potent anti-inflammatory properties [127]. 
In animal models of lung transplant, insufflating the lung 
graft with 500PPM carbon monoxide was associated with 
reduced pro-inflammatory mediators, oxidative stress, and 
apoptosis mediators. In addition, the transplanted lung grafts 
demonstrated reduced edema and improved compliance and 
gas exchange [8, 126].

α1‑Antitrypsin

α1-Antitrypsin is a protease inhibitor that protects tissue 
from the proteolytic enzymes produced by inflammatory 
cells. In addition to the direct inhibitory effect on proteases, 
it is also thought to have anti-apoptotic properties, regulate 
macrophage and neutrophil actions, and has been shown to 
protect against ischaemia/reperfusion injuries in a number 
of animal models [128].

In animal models of lung transplant, α1-antitrypsin 
administration has been associated with significantly 
reduced NF-κB expression and neutrophil infiltration, bet-
ter gas exchange, and better lung compliance [129, 130]. In 
addition, in EVLP only and in ischaemia/reperfusion mod-
els, α1-antitrypsin administration has also been associated 
with significantly reduced inflammatory cytokine expres-
sion, neutrophil infiltration and apoptosis, with better lung 
compliance [62, 131].

Other novel targets

Sphingosine 1 phosphate (S1P) is a lipid growth factor 
derived from cell membrane sphingolipids. It has been pro-
posed to promote cell survival, proliferation and angiogene-
sis [132, 133]. In animal lung transplant models, S1P admin-
istration is associated with significantly reduced cytokines, 
immune cell infiltrate and apoptosis. This results in reduced 
vascular permeability and oedema, as well as improved oxy-
genation and compliance [134–136].

Adenosine receptor agonism has been shown to reduce 
IRI by through its regulatory function on T cells and NK 
cells [137, 138]. Animal models of IRI have reported that 
adenosine receptor agonists significantly reduce inflamma-
tory mediator expression, as well as improve lung function 
[139–143].

Del Sorbo et al. suggested that siRNA against Fas recep-
tor, responsible for apoptosis in ischaemia/reperfusion could 
reduce graft dysfunction [144].

Necroptosis as a result of the calpain-STAT3-RIPK path-
way activation has also been implicated in ischaemia/reper-
fusion pathology, and it has been suggested that blocking the 
said pathway may also reduce graft dysfunction [145, 146].

IL-10 is a regulatory cytokine that can inhibit NF-κB and 
the JAK/STAT pathways. Upregulation of IL-10 has been 
implicated in the cytoprotective effect of α1-antitrypsin 
[147], and in animal model of lung transplant, IL-10 gene 
therapy was associated with significantly better gas exchange 
[51].

Conclusion

PGD is a common and potentially life-threatening com-
plication which is thought to be secondary to IRI follow-
ing engraftment. While there are now clear guidelines on 
its diagnosis, there are limited preventative and treatment 
options available. We have discussed in detail the patho-
physiology of PGD and highlighted some of the therapeutic 
options reported in pre-clinical studies, which includes some 
drugs which are already licensed for clinical use. With the 
expansion of the pre-clinical evidence, it may be possible 
for some of those experimental therapies to be developed 
for clinical use.
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